А. В. Зарубин, В. Ю. Ирхин*

Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 15 июля 2011 г.

Рассмотрена модель Хаббарда для металла с сильными корреляциями в представлении многоэлектронных ных X-операторов. Получены общие самосогласованные выражения для одночастичных функций Грина с учетом флуктуационных поправок. Найдены области устойчивости насыщенного и ненасыщенного ферромагнетизма в основном состоянии на плоскости n-U (n — концентрация электронов, U — параметр кулоновского взаимодействия) для различных затравочных плотностей состояний (полуэллиптическая зона, квадратная, кубическая и гиперкубическая решетки).

1. ВВЕДЕНИЕ

Сильный ферромагнетизм коллективизированных электронов имеет место в ряде сильнокоррелированных *d*-соединений [1, 2], например, в полуметаллических ферромагнетиках [3]. Соответствующая многоэлектронная картина ферромагнетизма, учитывающая формирование локальных моментов, очень сложна и существенно отличается как от стонеровской (коллективизированные электроны в среднем поле), так и от гейзенберговской (локализованный магнетизм). Для ее анализа может быть использована простейшая модель Хаббарда [4].

В простейшем приближении Хаббард I [4] (см. ниже формулы (6)) магнитное упорядочение есть результат сужения и расширения спиновых подзон (а не постоянного спинового расщепления, как в теории Стонера). Однако оказалось, что это приближение, рассматривающее невзаимодействующие квазичастицы в хаббардовских подзонах, также не дает удовлетворительных результатов. В частности, Хаббард [4] не нашел магнитных решений для простых затравочных плотностей состояний (хотя ситуация может измениться в случае вырожденных *d*-зон [5]).

Метод многоэлектронных *X*-операторов Хаббарда [2, 6]

$$X_i^{\alpha\beta} = |i\alpha\rangle\langle i\beta|$$

 $(\alpha = 0$ означает дырки, $\alpha = 2$ — двойки, а $\alpha = \pm (\uparrow, \downarrow)$ — однократно занятые состояния на узле)

проясняет причину этой неудачи: выражения для функций Грина Хаббард I нарушают кинематические соотношения для X-операторов. Действительно, в ферромагнитной фазе (при $\langle S^z \rangle \neq 0$) в простом квазичастическом (полюсном) приближении невозможно одновременно для обеих проекций спина σ удовлетворить тождества

$$\sum_{\mathbf{k}} \langle X_{-\mathbf{k}}^{0\sigma} X_{\mathbf{k}}^{\sigma 0} \rangle = \langle X^{00} \rangle = n_0 \equiv \delta, \qquad (1)$$

где $X_{\mathbf{k}}^{\alpha\beta}$ — фурье-компоненты X-операторов, n_0 — концентрация носителей тока (дырок), подробнее см. разд. 3.

Таким образом, необходим учет флуктуаций и некогерентных состояний, которые дают существенный вклад в электронный спектр.

Более успешным оказывается критерий неустойчивости насыщенного ферромагнетизма, учитывающий неполюсные вклады и связанный с появлением спин-поляронного полюса функции Грина со спином вниз ниже уровня Ферми [7]. Однако этот подход не позволяет описать ненасыщенное ферромагнитное состояние.

Рот [8] применила к модели Хаббарда специальное двухполюсное приближение и получила две критические концентрации носителей тока. Первая соответствует неустойчивости насыщенного ферромагнетизма и в пределе большого кулоновского взаимодействия $U \rightarrow \infty$ составляет для различных решеток около 30 % — значение, которое было затем получено различными методами. Вторая соответствует

^{*}E-mail: Valentin.Irkhin@imp.uran.ru

переходу из ненасыщенного ферромагнетизма в парамагнитное состояние, причем результаты для нее гораздо менее устойчивы.

В ряде работ, начиная с пионерской работы Нагаока [9], исследовалась неустойчивость насыщенного состояния относительно переворота спина [10–13].

В предыдущих работах [14, 15] мы применили к модели Хаббарда с $U = \infty 1/z$ -разложение для одночастичных функций Грина в многоэлектронном представлении с учетом продольных флуктуаций и получили интерполяционное описание насыщенного и ненасыщенного ферромагнетизма.

В настоящей работе мы обобщим это рассмотрение на случай конечных значений U и построим магнитную фазовую диаграмму с учетом насыщенного и ненасыщенного ферромагнетизма для различных решеток.

2. ВЫЧИСЛЕНИЕ ОДНОЭЛЕКТРОННОЙ ФУНКЦИИ ГРИНА В ПРЕДСТАВЛЕНИИ *X*-ОПЕРАТОРОВ

Запишем гамильтониан модели Хаббарда в многоэлектронном представлении [6, 16]

$$\mathcal{H} = \sum_{\mathbf{k}\sigma} t_{\mathbf{k}} (X_{-\mathbf{k}}^{\sigma 0} + \sigma X_{-\mathbf{k}}^{2-\sigma}) (X_{\mathbf{k}}^{0\sigma} + \sigma X_{\mathbf{k}}^{-\sigma^2}) + U \sum_{i} X_{i}^{22}, \quad (2)$$

где $t_{\mathbf{k}}$ — зонный спектр, явные выражения для обобщенных проекционных операторов Хаббарда имеют вид

$$X_i^{\sigma 0} = c_{i\sigma}^{\dagger} (1 - n_{i-\sigma}), \quad X_i^{2-\sigma} = \sigma c_{i\sigma}^{\dagger} n_{i-\sigma}.$$
(3)

Рассмотрим запаздывающую функцию Грина

$$G_{\mathbf{k}\sigma}(E) = \langle\!\langle c_{\mathbf{k}\sigma} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E} =$$

= $\langle\!\langle X_{\mathbf{k}}^{0\sigma} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E} + \sigma \langle\!\langle X_{\mathbf{k}}^{-\sigma 2} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E}, \quad \text{Im } E > 0. \quad (4)$

Записывая пару уравнений движения для функций Грина в правой части (4), мы находим формальное решение

$$G_{\mathbf{k}\sigma}(E) = G^0_{\mathbf{k}\sigma}(E)[1 + F^0_{\sigma}(E)\Gamma_{\mathbf{k}\sigma}(E)].$$
(5)

Здесь функции Грина в приближении Хаббард I выражаются через нулевой локатор:

$$G^{0}_{\mathbf{k}\sigma}(E) = \frac{1}{F^{0}_{\sigma}(E) - t_{\mathbf{k}}},$$

$$F^{0}_{\sigma}(E) = \frac{E(E - U)}{E - U(n_{0} + n_{\sigma})},$$
(6)

12 ЖЭТФ, вып. 5

где $n_{\alpha} = \langle X_i^{\alpha \alpha} \rangle$,

$$\Gamma_{\mathbf{k}\sigma}(E) = \frac{1}{E} \sum_{\mathbf{q}} t_{\mathbf{q}} \langle\!\langle \delta(X_{\mathbf{k}-\mathbf{q}}^{00} + X_{\mathbf{k}-\mathbf{q}}^{\sigma\sigma}) c_{\mathbf{q}\sigma} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E} + \frac{1}{E-U} \sum_{\mathbf{q}} t_{\mathbf{q}} \langle\!\langle \delta(X_{\mathbf{k}-\mathbf{q}}^{-\sigma-\sigma} + X_{\mathbf{k}-\mathbf{q}}^{22}) c_{\mathbf{q}\sigma} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E} + \left(\frac{1}{E} - \frac{1}{E-U}\right) \times \sum_{\mathbf{q}} t_{\mathbf{q}} \langle\!\langle X_{\mathbf{k}-\mathbf{q}}^{-\sigma\sigma} c_{\mathbf{q}-\sigma} + \sigma c_{\mathbf{q}-\sigma}^{\dagger} X_{\mathbf{k}+\mathbf{q}}^{02} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_{E}, \quad (7)$$

 $\delta A = A - \langle A \rangle$ — флуктуирующая часть оператора. Составляя уравнения движения для функции Грина (7) и выполняя расцепления членов с тремя X-операторами, запишем электронную функцию Грина (5) через самосогласованный локатор

$$G_{\mathbf{k}\sigma}(E) = \frac{1}{F_{\mathbf{k}\sigma}(E) - t_{\mathbf{k}}}, \quad F_{\mathbf{k}\sigma}(E) = \frac{b_{\mathbf{k}\sigma}(E)}{a_{\mathbf{k}\sigma}(E)}, \quad (8)$$

$$a_{\mathbf{k}\sigma}(E) = \frac{n_{0} + n_{\sigma}}{E} + \frac{n_{-\sigma} + n_{2}}{E - U} + \left(\frac{1}{E} - \frac{1}{E - U}\right) \times \\ \times \sum_{\mathbf{q}} t_{\mathbf{q}} \left(\frac{-En_{\mathbf{q}-\sigma} + U(\tilde{n}_{\mathbf{q}-\sigma} - \chi_{\mathbf{k}-\mathbf{q}}^{-\sigma\sigma})}{E^{2} - E(t_{\mathbf{q}} + U) + Ut_{\mathbf{q}}(n_{0} + n_{-\sigma})} + \right. \\ \left. + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma} - \kappa_{\mathbf{k}-\mathbf{q}}^{-\sigma})}{E^{2} + E(t_{\mathbf{q}} - U) - Ut_{\mathbf{q}}(n_{\sigma} + n_{2})}\right) - \right. \\ \left. - U\left(\frac{1}{E} - \frac{1}{E - U}\right) \times \right. \\ \left. \times \sum_{\mathbf{q}} t_{\mathbf{q}} \frac{\lambda_{\mathbf{k}-\mathbf{q}}^{\sigma}}{E^{2} - E(t_{\mathbf{q}} + U) + Ut_{\mathbf{q}}(n_{0} + n_{\sigma})}, \right.$$
(9)

$$b_{\mathbf{k}\sigma}(E) = 1 - \left(\frac{1}{E} - \frac{1}{E - U}\right) \times \\ \times \sum_{\mathbf{q}} t_{\mathbf{q}}^2 \left(\frac{En_{\mathbf{q}-\sigma} - U\tilde{n}_{\mathbf{q}-\sigma}}{E^2 - E(t_{\mathbf{q}} + U) + Ut_{\mathbf{q}}(n_0 + n_{-\sigma})} + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma})}{E^2 + E(t_{\mathbf{q}} - U) - Ut_{\mathbf{q}}(n_{\sigma} + n_2)}\right), \quad (10)$$

где $n_{\mathbf{k}\sigma} = \langle c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} \rangle$ — одночастичные числа заполнения,

$$\tilde{n}_{\mathbf{k}\sigma} = \langle c^{\dagger}_{\mathbf{k}\sigma} X^{0\sigma}_{\mathbf{k}} \rangle, \quad n_{\mathbf{k}\sigma} - \tilde{n}_{\mathbf{k}\sigma} = \sigma \langle X^{2-\sigma}_{-\mathbf{k}} c_{\mathbf{k}\sigma} \rangle \quad (11)$$

и введены спиновые и зарядовые корреляционные функции

$$\chi_{\mathbf{q}}^{\sigma-\sigma} = \langle S_{\mathbf{q}}^{\sigma} S_{-\mathbf{q}}^{-\sigma} \rangle, \quad \kappa_{\mathbf{q}}^{\sigma-\sigma} = \langle \rho_{\mathbf{q}}^{\sigma} \rho_{-\mathbf{q}}^{-\sigma} \rangle,$$

977

$$\lambda_{\mathbf{q}}^{\sigma} = \langle \delta(\sigma S_{\mathbf{q}}^{z} - \rho_{\mathbf{q}}^{z}) \delta(\sigma S_{-\mathbf{q}}^{z} - \rho_{-\mathbf{q}}^{z}) \rangle, \qquad (12)$$

$$S_{\mathbf{q}}^{\sigma} = X_{\mathbf{q}}^{\sigma-\sigma}, \quad S_{\mathbf{q}}^{z} = \frac{1}{2}(X_{\mathbf{q}}^{++} - X_{\mathbf{q}}^{--}),$$
$$\rho_{\mathbf{q}}^{+} = X_{\mathbf{q}}^{20}, \quad \rho_{\mathbf{q}}^{z} = \frac{1}{2}(X_{\mathbf{q}}^{22} - X_{\mathbf{q}}^{00}). \tag{13}$$

Результат (8) соответствует первому порядку формального разложения по обратному координационному числу 1/z. При этом приближение Хаббард I [4] (результат расцепления на разных узлах) выступает в качестве приближения среднего поля по электронному переносу. Знаменатели в (9) и (10) можно выразить через функции Грина Хаббард I (6) и сопряженные функции Грина

$$G^{0*}_{\mathbf{k}\sigma}(E) = \frac{1}{F^{0*}_{\sigma}(E) + t_{\mathbf{k}}},$$

$$F^{0*}_{\sigma}(E) = \frac{E(E - U)}{E - U(n_{\sigma} + n_{2})}.$$
(14)

Заменяя функции Грина Хаббард I на точные, получаем

$$a_{\mathbf{k}\sigma}(E) = \frac{n_0 + n_\sigma}{E} + \frac{n_{-\sigma} + n_2}{E - U} + \left(\frac{1}{E} - \frac{1}{E - U}\right) \times \\ \times \sum_{\mathbf{q}} t_{\mathbf{q}} \left(\frac{-En_{\mathbf{q}-\sigma} + U(\tilde{n}_{\mathbf{q}-\sigma} - \chi_{\mathbf{k}-\mathbf{q}}^{-\sigma\sigma})}{E - U(n_0 + n_{-\sigma})}G_{\mathbf{q}-\sigma}(E) + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma} - \kappa_{\mathbf{k}-\mathbf{q}}^{\sigma-\sigma})}{E - U(n_{\sigma} + n_2)}G_{\mathbf{q}\sigma}^*(E)\right) - \\ - U\left(\frac{1}{E} - \frac{1}{E - U}\right)\sum_{\sigma} t_{\mathbf{q}}\frac{\lambda_{\mathbf{k}-\mathbf{q}}^{\sigma}}{E - U(n_0 + n_{\sigma})}G_{\mathbf{q}\sigma}(E), \quad (15)$$

$$\begin{split} b_{\mathbf{k}\sigma}(E) &= 1 - \left(\frac{1}{E} - \frac{1}{E - U}\right) \times \\ &\times \sum_{\mathbf{q}} t_{\mathbf{q}}^2 \left(\frac{En_{\mathbf{q}-\sigma} - U\tilde{n}_{\mathbf{q}-\sigma}}{E - U(n_0 + n_{-\sigma})} G_{\mathbf{q}-\sigma}(E) + \right. \\ &+ \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma})}{E - U(n_{\sigma} + n_2)} G_{\mathbf{q}\sigma}^*(E) \right). \end{split}$$
(16)

В свою очередь, для самосогласованной функции Грина $G^*_{\mathbf{k}\sigma}(E)$ необходимо записать свою систему уравнений. Разрешая ее, получаем

$$G^*_{\mathbf{k}\sigma}(E) = \frac{1}{F^*_{\mathbf{k}\sigma}(E) + t_{\mathbf{k}}}, \quad F^*_{\mathbf{k}\sigma}(E) = \frac{b_{\mathbf{k}\sigma}(E)}{a^*_{\mathbf{k}\sigma}(E)}, \quad (17)$$

$$a_{\mathbf{k}\sigma}^{*}(E) = \frac{n_{0}+n_{-\sigma}}{E-U} + \frac{n_{\sigma}+n_{2}}{E} + \left(\frac{1}{E} - \frac{1}{E-U}\right) \times \\ \times \sum_{\mathbf{q}} t_{\mathbf{q}} \left(\frac{-En_{\mathbf{q}-\sigma} + U(\tilde{n}_{\mathbf{q}-\sigma} - \chi_{\mathbf{k}-\mathbf{q}}^{-\sigma\sigma})}{E-U(n_{0}+n_{-\sigma})}G_{\mathbf{q}-\sigma}(E) + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma} - \kappa_{\mathbf{k}-\mathbf{q}}^{\sigma-\sigma})}{E-U(n_{\sigma}+n_{2})}G_{\mathbf{q}\sigma}^{*}(E)\right) - \\ - U\left(\frac{1}{E} - \frac{1}{E-U}\right)\sum_{\mathbf{q}} t_{\mathbf{q}} \frac{\lambda_{\mathbf{k}-\mathbf{q}}^{\sigma}}{E-U(n_{0}+n_{\sigma})}G_{\mathbf{q}\sigma}(E).$$
(18)

Числа заполнения $n_{\mathbf{k}\sigma}$ выражаются через функции Грина (8) с помощью спектрального представления (ср. ниже (24)). Для определения недиагональных чисел заполнения $\tilde{n}_{\mathbf{k}\sigma}$ аналогичным образом вычислим функцию Грина

$$\tilde{G}_{\mathbf{k}\sigma}(E) = \langle\!\langle X_{\mathbf{k}}^{0\sigma} | c_{\mathbf{k}\sigma}^{\dagger} \rangle\!\rangle_E = \frac{1}{\tilde{F}_{\mathbf{k}\sigma}(E) + t_{\mathbf{k}}},\tag{19}$$

$$\tilde{F}_{\mathbf{k}\sigma}(E) = \frac{\tilde{b}_{\mathbf{k}\sigma}(E)}{\tilde{a}_{\mathbf{k}\sigma}(E)}.$$

В результате найдем

$$\tilde{a}_{\mathbf{k}\sigma}(E) = \frac{n_0 + n_{\sigma}}{E} + \frac{1}{E} \sum_{\mathbf{q}} t_{\mathbf{q}} \left(\frac{-En_{\mathbf{q}-\sigma} + U(\tilde{n}_{\mathbf{q}-\sigma} - \chi_{\mathbf{k}-\mathbf{q}}^{-\sigma\sigma})}{E - U(n_0 + n_{-\sigma})} G_{\mathbf{q}-\sigma}(E) + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma} - \kappa_{\mathbf{k}-\mathbf{q}}^{\sigma-\sigma})}{E - U(n_{\sigma} + n_2)} G_{\mathbf{q}\sigma}^*(E) \right) - \frac{U}{E} \sum_{\mathbf{q}} t_{\mathbf{q}} \frac{\lambda_{\mathbf{k}-\mathbf{q}}^{\sigma}}{E - U(n_0 + n_{\sigma})} G_{\mathbf{q}\sigma}(E), \quad (20)$$

$$\tilde{b}_{\mathbf{k}\sigma}(E) = 1 - \frac{1}{E} \sum_{\mathbf{q}} t_{\mathbf{q}}^2 \left(\frac{En_{\mathbf{q}-\sigma} - U\tilde{n}_{\mathbf{q}-\sigma}}{E - U(n_0 + n_{-\sigma})} G_{\mathbf{q}-\sigma}(E) + \frac{En_{\mathbf{q}-\sigma} - U(n_{\mathbf{q}-\sigma} - \tilde{n}_{\mathbf{q}-\sigma})}{E - U(n_{\sigma} + n_2)} G_{\mathbf{q}\sigma}^*(E) \right).$$
(21)

Таким образом, мы вывели замкнутую самосогласованную систему уравнений. Полученные выражения могут быть использованы для анализа электронного спектра и различных фазовых переходов в модели Хаббарда с сильными корреляциями. При этом корреляционные функции возбуждений бозевского типа, вообще говоря, также должны находиться самосогласованно — через соответствующие функции Грина. Кроме того, следует учесть динамику этих возбуждений. К сожалению, такая программа сталкивается со значительными вычислительными трудностями. Поэтому здесь мы используем для этих корреляторов локальное приближение, заменяя их одноузельными значениями, определенными из правила сумм:

$$\chi_{\mathbf{q}}^{\sigma-\sigma} = n_{\sigma}, \quad \kappa_{\mathbf{q}}^{\sigma-\sigma} = n_{2},$$

$$\lambda_{\mathbf{q}}^{\sigma} = (n_{0} + n_{\sigma})(n_{-\sigma} + n_{2}).$$
 (22)

Тогда величины $a_{\mathbf{k}\sigma}(E)$ и $b_{\mathbf{k}\sigma}(E)$ не зависят от импульсов, а при численном решении уравнений мы можем перейти к однократному интегрированию с плотностью состояний. Отметим, что для поведения электронных спектральных функций (особенно в низкоразмерных системах) импульсная зависимость корреляторов важна и приближение (22) может оказаться недостаточным. Однако для интегральных термодинамических величин и фазовой диаграммы оно удовлетворительно. Подчеркнем, что в отличие от локального приближения Хаббард III [17] выражения (8)-(10) позволяют последовательно учесть эффект фермиевских возбуждений, причем без перехода к вспомогательной модели Андерсона, как это делается в динамической теории среднего поля (DMFT) [18].

3. МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА

Поскольку, как это подтверждается дальнейшими вычислениями, ферромагнитное состояние в модели Хаббарда возникает при достаточно больших U, мы можем пренебречь зарядовыми флуктуациями и (в случае электронных концентраций n < 1) положить $n_2 = 0$. (Отметим, что в пределе больших U имеем $n_2 \propto 1/U^2$.) Это позволяет нам зафиксировать число дырок $n_0 = \delta = 1 - n$ и решать самосогласованные уравнения только для намагниченности основного состояния $m = \langle S^z \rangle = (n_{\uparrow} - n_{\downarrow})/2$ и химического потенциала

$$n_{\sigma} = \sum_{\mathbf{k}} n_{\mathbf{k}\sigma} = \sum_{\mathbf{k}} \langle X_{-\mathbf{k}}^{\sigma 0} X_{\mathbf{k}}^{0\sigma} \rangle =$$
$$= -\frac{1}{\pi} \sum_{\mathbf{k}} \int_{-\infty}^{\infty} \operatorname{Im} G_{\mathbf{k}\sigma}(E) (1 - f(E)) \, dE, \quad (23)$$

$$\delta \equiv n_0 = \sum_{\mathbf{k}} \langle X_{\mathbf{k}}^{0\sigma} X_{-\mathbf{k}}^{\sigma 0} \rangle =$$
$$= -\frac{1}{\pi} \sum_{\mathbf{k}} \int \operatorname{Im} G_{\mathbf{k}\sigma}(E) f(E) \, dE, \quad (24)$$

где f(E) — функция Ферми. С хорошей точностью решение уравнения для химического потенциала (24) не зависит от σ . Выполнение этих правил

Рис.1. Магнитная фазовая диаграмма для квадратной решетки. Линии 1 и 2 — границы между ненасыщенным ферромагнетизмом и парамагнитной фазой (ФМ'-ПМ) и между насыщенным и ненасыщенным ферромагнетизмом (ФМ-ФМ') в многоэлектронном подходе, 3 — граница между насыщенным и ненасыщенным ферромагнетизмом в приближении [7], 4 — результаты вариационных приближений RES1 и RES3 [11], 7 — результат работы [20], 8 — граница области фазового расслоения по Вишеру [21]

сумм обеспечивается неполюсными (некогерентными) флуктуационными вкладами [2,19].

Результаты численного исследования уравнений (23), (24) показаны на рисунках. На фазовых диаграммах в координатах $W/U-\delta$ (W — полуширина зоны) имеются два магнитных фазовых перехода: от насыщенного ферромагнетизма (Φ M) к ненасыщенному ферромагнетизму (Φ M') и от ненасыщенного ферромагнетизма к парамагнитному состоянию (ПМ).

Для первого перехода приведены и результаты наших расчетов в одноэлектронном приближении Эдвардса–Герца [7] (хорошо описывающем насыщенное состояние):

$$G_{\mathbf{k}\uparrow}^{EH}(E) = \frac{1}{E - t_{\mathbf{k}}},$$

$$G_{\mathbf{k}\downarrow}^{EH}(E) = \frac{1}{E - t_{\mathbf{k}} - \Sigma_{\mathbf{k}\downarrow}(E)},$$
(25)

где

$$\Sigma_{\mathbf{k}\downarrow} = \frac{Un_{+}}{1 - UR_{\mathbf{k}}(E)},$$
$$R_{\mathbf{k}}(E) = \sum_{\mathbf{q}} f(t_{\mathbf{k}-\mathbf{q}}) G_{\mathbf{k}-\mathbf{q}\uparrow}^{EH}(E + \omega_{\mathbf{q}}).$$

ττ

 12^{*}

Рис.2. Зависимости намагниченности основного состояния $\langle S^z \rangle$ для квадратной решетки: a — от концентрации дырок δ для различных параметров W/U = 0.05 (линия 1), 0.10 (линия 2), 0.17 (линия 3) и δ — от обратного параметра кулоновского взаимодействия на узле W/U для различных концентраций носителей тока $\delta = 0.10$ (линия 1), 0.15 (линия 2), 0.25 (линия 3), 0.30 (линия 4), 0.35 (линия 5)

Результаты по переходу $\Phi M - \Phi M'$ для квадратной и кубической решеток сравниваются с результатами спин-волновых и вариационных приближений (в отличие от наших расчетов, они показаны более тонкими линиями). В частности, на рис. 1 приведены результаты вариационного метода [10], который дает точную верхнюю границу насыщенного ферромагнетизма для квадратной решетки. Имеются, однако, приближения, которые дают еще более узкую область существования насыщенного ферромагнетизма [11, 20]. Для кубической решетки мы также приводим результаты работы [12], основанные на двух критериях: обращения в нуль спин-волновой жесткости D и магнонной частоты на волновом векторе $\mathbf{Q} = (\pi, \pi, \pi)$.

Рис. 3. Магнитная фазовая диаграмма для простой кубической решетки. Линии 1, 2, 3 — как на рис. 1; 4, 5 — приближения RES1 и RES3 [11]; 6, 7 — границы насыщенного ферромагнетизма из критериев D = 0 и $\omega_{\mathbf{Q}} = 0$ [12]; 8 — граница области фазового расслоения по Вишеру [21]

Таким образом, наш подход согласуется со спин-волновыми приближениями при описании неустойчивости насыщенного ферромагнетизма, а также описывает переход в парамагнитную фазу.

На рис. 2, 4 приведены соответствующие семейства зависимостей намагниченности основного состояния $\langle S^z \rangle$ от концентрации носителей тока (дырок) и обратного параметра кулоновского взаимодействия на узле W/U для различных концентраций носителей тока δ . При этом начальные линейные участки соответствуют насыщенному ферромагнетизму. Для больших δ (между двумя критическими концентрациями) зависимости $\langle S^z \rangle (1/U)$ сразу начинаются с ненасыщенной фазы.

На рис. 1–4 видно, что с уменьшением U картина магнетизма становится ближе к стонеровской (раздвижка подзон с различной проекцией спина). При этом область ненасыщенного ферромагнетизма быстро уменьшается (особенно для квадратной решетки, где затравочная плотность состояний сингулярна), так что магнитный фазовый переход в основном состоянии близок к переходу первого рода.

На рис. 5, 6 показаны фазовые диаграммы для гауссовой плотности состояний, которая соответствует динамической теории среднего поля (предел больших размерностей пространства, гиперкубическая решетка) с гауссовой затравочной плотностью состояний

Рис. 4. То же, что на рис. 2, для простой кубической решетки: a - W/U = 0.05 (линия 1), 0.10 (линия 2), 0.15 (линия 3); $\delta - \delta = 0.10$ (линия 1), 0.15 (линия 2), 0.25 (линия 3), 0.30 (линия 4), 0.35 (линия 5)

$$N_0(E) = \frac{2}{\sqrt{2\pi}W} \exp\left[-2\left(\frac{E}{W}\right)^2\right],\qquad(26)$$

и полуэллиптической зоны (решетка Бете, соответствующая пределу больших координационных чисел), где

$$N_0(E) = \frac{2}{\pi W} \sqrt{1 - \left(\frac{E}{W}\right)^2}.$$
 (27)

4. ЗАКЛЮЧЕНИЕ

Таким образом, мы получили области существования насыщенного и ненасыщенного ферромагнетизма в основном состоянии модели Хаббарда с большими U, причем результаты согласуются с ранее рассмотренными частными случаями. Более

Рис.5. Магнитная фазовая диаграмма для гиперкубической решетки. Линии 1, 2, 3 — как на рис. 1; 4, 5 — границы между ферромагнитным и парамагнитным состояниями в работе [22] и вариационном методе [23]

Рис.6. Магнитная фазовая диаграмма для полуэллиптической плотности состояний. Обозначения как на рис. 1

полная диаграмма должна включать дополнительные фазы, в частности, антиферромагнитного типа. Обычный неелевский антиферромагнетизм существует только при $\delta = 0$: при наличии носителей тока он неустойчив относительно образования пространственно-неоднородных состояний (расслоение на ферро- и антиферромагнитную фазы [21]). Граница области фазового расслоения и ферромагнетизма показана на рис. 1, 3 (линия 8); она определяется уравнениями $t/U = \pi \delta^2/2$ для квадратной решетки (W = 4t) и $t/U = 1.013\delta^{5/3}$ для простой кубической решетки (W = 6t), см. [21, 24]. Другой возмож-

ный тип неустойчивости связан с формированием спиральных магнитных структур, которые, однако, возникают при существенно меньших U (см. соответствующие результаты теории среднего поля [24]). Скошенные антиферромагнитные структуры оказываются энергетически невыгодными [24].

Из полученных результатов ясно, что ферромагнетизм возникает только при весьма больших значениях U. Ситуация может существенно меняться при наличии особенностей плотности состояний вблизи уровня Ферми (которая имеется в слоистых рутенатах, см. [25]). Такая сильная логарифмическая особенность наблюдается в модельной плотности состояний для квадратной решетки, но в приближении ближайших соседей она находится в центре затравочной зоны и не оказывает существенного влияния на ферромагнетизм, поскольку доминируют антиферромагнитные флуктуации. При введении переноса между вторыми соседями t' сингулярность смещается из центра зоны и фазовая диаграмма становится асимметричной относительно электронов и дырок. При этом для одного из знаков носителей заряда критические значения U существенно падают, как и в теории среднего поля [24].

Представляет интерес также исследование ферромагнетизма в рамках нашего подхода для более реалистического электронного спектра трехмерных магнетиков — с учетом вырождения зон и особенностей ван Хова.

Авторы благодарны А. О. Анохину, А. А. Катанину и П. А. Игошеву за обсуждения. Работа частично выполнена в рамках программы Президиума РАН «Квантовая физика конденсированного состояния», программы поддержки научных школ (грант № 4711.2010.2) и РФФИ (гранты №№ 11-02-00931-а, 11-02-00937-а).

ЛИТЕРАТУРА

- M. I. Auslender, V. Yu. Irkhin, and M. I. Katsnelson, J. Phys. C: Sol. St. Phys. 21, 5521 (1988).
- В. Ю. Ирхин, Ю. П. Ирхин, Электронная структура, физические свойства и корреляционные эффекты в d- и f-металлах и их соединениях, УрО РАН, Екатеринбург (2004).
- M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel et al., Rev. Mod. Phys. 80, 315 (2008).
- J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963); 281, 401 (1964).

- **5**. Л. А. Максимов, К. А. Кикоин, ФММ **28**, 43 (1969).
- 6. J. Hubbard, Proc. Roy. Soc. A 285, 542 (1965).
- J. A. Hertz and D. M. Edwards, J. Phys. F 3, 2174 (1973); D. M. Edwards and J. A. Hertz, J. Phys. F 3, 2191 (1973).
- L. M. Roth, Phys. Rev. 184, 451 (1969); Phys. Rev. 186, 428 (1969).
- 9. Y. Nagaoka, Phys. Rev. 147, 392 (1966).
- W. von der Linden and D. M. Edwards, J. Phys.: Condens. Matter 3, 4917 (1991).
- T. Hanisch, G. S. Uhring, and E. Müller-Hartmann, Phys. Rev. B 56, 13960 (1997).
- 12. T. Okabe, Phys. Rev. B 57, 403 (1998).
- J. Igarashi, M. Takahashi, and T. Nagao, J. Phys. Soc. Jpn. 68, 3682 (1999).
- 14. А. В. Зарубин, В. Ю. Ирхин, ФТТ 41, 1057 (1999).
- V. Yu. Irkhin and A. V. Zarubin, Phys. Rev. B 70, 035116 (2004); J. Magn. Magn. Mater. 300, 246 (2006); in *Progress in Ferromagnetism Research*, ed. by V. N. Murray, Nova Science Publishers, New York (2006), p. 199.
- 16. V. Yu. Irkhin and Yu. P. Irkhin, Phys. Stat. Sol. (b) 183, 9 (1994).
- 17. J. Hubbard, Proc. Roy. Soc. A 281, 401 (1964).
- A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- 19. Β. Ю. Ирхин, М. И. Кацнельсон, ФТТ 25, 1947 (1983); V. Yu. Irkhin and M. I. Katsnelson, J. Phys. C 18, 4173 (1985); J. Phys.: Cond. Mat. 2, 7151 (1990).
- 20. P. Wurth, G. Uhrig, and E. Müller-Hartmann, Ann. Phys. 5, 148 (1996).
- **21**. P. B. Visscher, Phys. Rev. B **10**, 943 (1973).
- 22. R. Zitzler, Th. Pruschke, and R. Bulla, Eur. Phys. J. B 27, 473 (2002).
- 23. P. Fazekas, B. Menge, and E. Müller-Hartmann, Z. Phys. B 78, 69 (1990).
- 24. P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Yu. Irkhin, Phys. Rev. B 81, 094407 (2010).
- 25. P. A. Igoshev, V. Yu. Irkhin, and A. A. Katanin, Phys. Rev. B 83, 245118 (2011).