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We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes.
For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model cou-
pled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event
horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in

the region inside the event horizon is discussed.

1. INTRODUCTION

The phenomenon of electromagnetic plane wave
propagation with negative phase velocity (NPV) in a
curved spacetime has gained much attention during the
last few years [1-7]. This occurs when the wave vector
has a negative projection on the time-average Poynt-
ing vector. A wide range of useful phenomena such
as the negative Doppler effect, inverse Cerenkov radi-
ation, and negative refraction have been predicted for
NPV materials [8].

In [1-5], NPV wave propagation was investigated
in different black-hole spacetimes and it was proved
that a gravitationally affected vacuum resembling a
medium can admit NPV wave propagation in certain
curved spacetimes. The same authors [6, 7] showed that
the erogosphere of an uncharged rotating and charged
rotating black holes admits NPV wave propagation.
Plasma wave properties in a Veselago medium for par-
ticular black holes were discussed in [9]. In a recent
paper [10], we have explored conditions of NPV for
static charged black strings.

Here, we extend the above work to investigate prop-

*E-mail: msharif.math@pu.edu.pk
“*E-mail: rubabmanzoor9@yahoo.com

agation of electromagnetic plane waves with NPV in
regular black holes. In the next section, we briefly
review the relevant formulation. Section 3 explicitly
deals with wave propagation and NPV conditions for
two types of regular black holes. In Sec. 4, we discuss
the results and the possibility of NPV wave propaga-
tion in the region inside the event horizon.

2. GENERAL FORMULATION: AN OVERVIEW

We briefly review the formulation in [1-7] to explain
the electrodynamics of a gravitationally affected vac-
uum serving as an equivalent instantaneously respond-
ing medium for wave propagation. The general line
element of a charged regular black hole is of the form

ds® = (1 = h(r))dt* — (1 = h(r)) " dr® —

—r2(df? + sin? 0 d¢?). (1)

The metric can be expressed in Cartesian coordinates
as
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1= h(r) 0 0 0
0 o h(r)x? __xyh(r) __xzh(r)
r>(1 = h(r)) r>(1 = h(r)) r>(1 = h(r))
Jab = 0 __ayh(r) 1 h(r)y? _zyh(r) ,
r?(1 = h(r)) r*(1 = h(r)) r>(1 = h(r))
0 _ zyh(r) _ zyh(r) 1 h(r)z?
r2(1 — h(r)) r2(1 — h(r)) r2(1 — h(r))
whose inverse is
1
T=h) 0 0 0
0 14 h(r)x? xyh(r) xzh(r)
o 2 2 2
0 zyh(r) — _, by zyh(r)
0 2yh(r) z2yh(r) 1+ h(r)z?

The electromagnetic response of the vacuum in a
curved spacetime is described by the constitutive re-
lations

D(r,t) =€y - E(r,t), B(r,t) = uoy- H(r,t).

(2)

Y

The dyadic v is a second-rank Cartesian tensor that

can be expressed in the metric [vq5] form with

gab
Yab = —V/—9 . (3)
dJoo

We note that only a global observer based on a curved
spacetime can observe electromagnetic wave propaga-
tion in a gravitationally affected vacuum, and we there-
fore observe this phenomenon globally [2]. The consti-
tutive relations describe the regular black hole space-
time globally.

To approximate a nonuniform metric 7., by a uni-
form metric 7,5, we partition the global spacetime into
adjoining and sufficiently small neighborhoods R at an
arbitrary location (%, ¢, Z) and formulate a global solu-
tion by stitching together the solutions evaluated from
the neighborhoods. Also, it is assumed that the wave-
length is shorter than the linear dimension of the neigh-
borhood R, which is in turn shorter than the curvature
radius of the spacetime. Differential equations with
nonhomogeneous coefficients are solved by this method.

5 = (] = —— x
L0 T
h(F) &> h(F)Eg h(F)iz
1—-— —— ——
72 72 72
« | kg hE)Y hFE |
7:2 7:2 772
h(F)iz h(F)ijz h(F)z>
- 7:2 - 772 - 772
where
and

det [l] — (1 - h(7) 2.

We now find the dispersion relation of the medium and
the complex time-average Poynting vector in a time-
harmonic electromagnetic field [11, 12]. We consider
plane wave solutions

E(r,t) = ReEgexpli(k - r — wt)], @
H(r,t) = ReHpexp[i(k - r — wt)],
where r is the position vector within the neighborhood
R containing (Z,7, Z), k is the wave vector, and w is
the angular frequency. The complex-valued amplitudes
are represented by Eq and Hj.
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The source-free Maxwell curl postulates in R are
given by

V x E(r,t) + 835‘;’” o,
(5)
oD(r,t)
V xH(r,t) — T 0.

We seek a plane-wave solution of Eq. (5) and obtain
an eigenvector equation, after some algebraic manipu-
lations, as

[(Kidet [3] ~d-3-k) L+kk-3] -Bo=0,  (6)

where
ko = wy/eopto

and kk represents the tensor product of vectors. The
corresponding dispersion relation is obtained by setting

det[(kgdet [l] —k-l-k)£+kk-fy] —0,

which is [5]
k2det [l] (kgdet [l] —k ~i~k)2 =0. (7

Since 7 is nonsingular, the above equation leads to

k5 k = Kdet [l] (8)

Inserting this value in Eq. (6) yields

b

k-7 -Eo=0, (9)

||

which shows that k - 4 and Eq are orthogonal.

Because spacetimg (1) is spherically symmetric, we
can take
k = kk = ku,

without any loss of generality. Here, G, is a unit vector
along the Z axis and k is the magnitude of the wave
vector. Then

k l = k[H130, + F230y + Y330:].

The terms 413, 723, and 33 are given by

Y13 = —hfim Yoz = —M
(1= h(F))i2’ (1= h(7)7?’
. (h(7))-
T A=k
where -
(). = 1 M0

and @, and G, are unit vectors along the & and § axes.
Equation (8) yields

whose roots are

k=ko [(1=RE)(RE)] . (10)
For k% to be real, we must have
(1 = h(7))(h(7))= > 0 (11)

which is possible if both terms (1 — h(7)) and (h(7)).
have the same sign. Equation (9) is satisfied if two
linearly independent eigenvectors are

e = a3, — Y131y,
e = Y33Y130, + Y33Y231y — [(F13)” + (F23)°] ..

The general solution of Eq. (6) can be written as

Eo = cie1 + cen, (12)
where ¢; and ¢s are complex constants. Combining
Eqgs. (2), (4), (5), and (12), we obtain

kel = h(R))es = ex(h(F) e
Hy = . (13)

W o

The NPV wave propagation is defined by
k- (P), <0, (14)
where
1
<P>t = 5 RG{EU X Ha}

is the time-average complex Poynting vector and Hj, is
the complex conjugate of Hy. Using Egs. (12) and (13)
in the above equation, we have

S S 00 N
P = [52(1—13(77))] i
X <|Cl|2 + |02|21(h_(772();)> (i),(f))z

Using this value in Eq. (14) along with (11), we see
that NPV exists if

(h(7). < 0. (15)
Because this condition is derived for the neighborhood

R on an arbitrary location within the spacetime, it
holds generally.
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3. NPV AND REGULAR BLACK HOLES

The concept of a regular black hole has played an
important role in understanding the hidden interior of
black holes. These are more general black-hole solu-
tions in which true singularities of the black hole such
as the Schwarzschild, Reissner—Nordstrom, Kerr and
Kerr—Newmann black holes would be replaced by a spe-
cial matter core. The work on NPV propagation has
been done on black-hole solutions experiencing true sin-
gularities and therefore the conditions of NPV wave
propagation are restricted to the outside of the event
horizon. We are interested in extending this study to
the interior of the black hole.

In this section, we apply the above formalism to
two types of regular black holes. In Refs. [13, 14], the
Bardeen model was described as a nonlinear magnetic
monopole. This is obtained for

2mr?

(r2 + ¢2)3/2

h(r) =

in Eq. (1), where m is the mass and ¢ is the monopole
charge of a self-gravitating magnetic field of a nonlinear
electrodynamic source. We note that when
16
2 _ 10
q < 571
there is an event horizon. For ¢ = 0, this reduces to
the Schwarzschild black hole.
It follows from Eq. (15) that NPV wave propagation
is possible if the condition

((7))- = [1 -

holds, which implies that

2mi> r

FroE T (16)

The event, horizon for this regular black hole lies at r4
that is obtained from

2
2mr T

1—— "+
GRS

It is difficult to find an explicit expression for r; from
here, and hence the regions lying outside or inside the
event horizon could not be explored. However, we use
the following inequality to investigate NPV wave prop-
agation in these regions. The regions r < ry and
r > ry can be determined by respectively taking

2 2mr>

<07 1_m>0.

2mr
(r2 + q2)3/2

It follows from (16) that

2mi2 72

~ i<l w (17)

Because

2:532_'_:&2_'_227

7
it follows that #> > 22 for nonzero i and j2. For
7 > ry, Eq. (17) does not hold because the term
(1 —72/%2) is negative and cannot be greater than any
positive term. On the other hand, for 7 < ry, Eq. (17)
holds.

The line element of a regular black hole coupled
to nonlinear electrodynamics with a cosmological con-
stant [15, 16] is obtained for

2mr? @*r? Ar?

(r2 + ¢2)3/2 - (r2 + ¢2)2 + 3

h(r) =

(18)

where m, ¢, and A are the mass, the electric charge,
and the cosmological constant. For A > 0 and A < 0,
Eq. (18) respectively represents de Sitter and anti-
de Sitter type spacetimes. Furthermore, if m = ¢ = 0,
this becomes the de Sitter spacetime, and if ¢ = A = 0,
it reduces to the Schwarzschild spacetime. The event
horizon is obtained from

2
2mry

2.2
3 gy _/&7‘2+
2 2)3/2
(ri +4¢?)

=0.
(r3 +¢?)? 3

As in the preceding case, it is difficult to evaluate the
explicit function of ry and the regions r» < r; and r >
> ry. But we can obtain the regions r < ry and r > ry
as

B 2mr? n *r? B A_7'2 <0

P2+ @32 " (72 + )2 3 J
22 2,.2 Ar2

mr q°r ” o

- (r2 + ¢2)3/2 + (r2 + ¢2)? Y
Equation (15) yields the NPV condition in the form

2mi2 7*r? N A2 . 72 (19)
(P + )32 (P +¢2)? 3 32"
which implies that
2mi> @*r? A72 1 72 (20)

a (72 + ¢2)3/2 + (72 + ¢2)2 T3 < 32

Here, also
,f;2 _ 1,2 + g2 + 22
and 7> > 22 for nonzero #> and 2. For # > r,, Eq. (20)

does not hold because the term (1 — 7#2/%%) cannot be
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positive and the left-hand side of (20) is positive irre-
spective of whether A is negative or nonnegative. It
may be noted that (20) holds for 7 < r,.

We note that the regular black hole solution
given in [15] asymptotically approaches the Reissner—
Nordstrom black hole in the de Sitter or anti-de Sitter
spacetime according to the sign of the cosmological con-
stant for » — 0o. This black hole solution reduces to a
black hole solution with
2mr? 2 Ar?
23
near the origin, which is the de Sitter or anti-de Sitter
spacetime depending on the sign of

6m 3

Gl
Accordingly, the inequality (15) yields
2mi? 72 AR 2

St >
q3 q2 3 32

(21)

4. CONCLUSIONS

We have derived a general condition (15) for wave
propagation with a NPV in regular black holes. For
the first type of regular black holes, we deduce that
the NPV propagation is not possible outside the event
horizon. For ¢ =0, Eq. (17) reduces to

=2
r 22
which is the NPV condition for the Schwarzschild black
hole [5]. This does not support the NPV wave propa-
gation outside the event horizon. For a regular black
hole with a cosmological constant coupled to nonlinear
electrodynamics, we have seen that the region outside
the event horizon does not support NPV wave prop-
agation. Also, the positive value of the cosmological
constant does not support NPV wave propagation in
contrast to the Schwarzschild—de Sitter and de Sitter
spacetimes [4, 5]. For A = 0, it reduces to a regular
black hole coupled to nonlinear electrodynamics [16]
and NPV condition (19) becomes

(22)

2mi? q> 72

(72 + q2)3/2 (72 + ¢2)2 > 320
by the same reasoning as in the previous cases, this im-
plies that NPV wave propagation is not possible in the
region outside the event horizon. Moreover, if ¢ = A =
= 0, the inequality reduces to (22) and if m = ¢ = 0,
then Eq. (19) yields

1

<z

w| =

(833

which is the NPV condition for the cosmological space-
time with ¢ = 1 and is invalid for A < 0.

It is obvious that nobody can see the inside of a
black hole because the light is not allowed to escape or
reflect back from the region inside the event horizon due
to the high gravitational field. However, based on some
mathematical calculations, one can try to guess some
possible phenomena for the region inside the event hori-
zon of a regular black hole, because it has no singula-
rity. Consequently, there is a possibility of implication
of some physical law.

We conclude that the possibility of NPV wave prop-
agation in the region inside the event horizon of regular
black holes is given by (17) and (20). Consequently,
many new unusual phenomena may occur, such as ne-
gative refraction, which occurs when light passes from
a PPV (positive phase velocity) medium to an NPV
medium and there is a chance of negative electromag-
netic energy density [2]. This would help investigate
the interior of black holes via the NPV analysis.
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