РЕЗОНАНСНАЯ ТУННЕЛЬНАЯ СПЕКТРОСКОПИЯ ГЕТЕРОПОЛИСОЕДИНЕНИЙ

Ф. И. Далидчик^{*}, Б. А. Буданов, Н. Н. Колченко, Е. М. Балашов, С. А. Ковалевский

Институт химической физики им. Н. Н. Семенова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 18 мая 2012 г.

В экспериментах с СТМ измерены туннельные спектры фосфорномолибденовой и фосфорномолибденованадиевых кислот. Установлен новый механизм формирования в туннельных наноконтактах отрицательных дифференциальных сопротивлений, общий для всех систем, в которых проявляется эффект локализации Ванье – Штарка. Построена модель двуцентрового неупругого резонансного туннелирования, позволяющая восстанавливать по спектрам значения энергетических параметров, электронных и колебательных.

1. ВВЕДЕНИЕ

Гетерополисоединения (ГПС) — обширный класс неорганических кислот и их солей с десятками и сотнями атомов кислорода и переходных металлов, образующих наноразмерные многозарядные анионы различных архитектур [1]. Давно известные как эффективные катализаторы, эти соединения в последнее десятилетие активно изучаются как новые перспективные наноматериалы [2, 3]. Значительная роль, которая отводится сегодня ГПС в науке, технике и медицине диктует необходимость их изучения на современном «одномолекулярном» уровне.

По основным геометрическим параметрам (размерам и форме) и по ширинам «запрещенных зон», ε_a , (щелям HOMO-LUMO) молекулы ГПС подобны фуллеренам и квантовым точкам. Последние активно изучаются методами СТМ-СТС. Однако результаты туннельного зондирования ГПС оказываются существенно отличными от хорошо известных результатов для других наночастиц. Недавно было обнаружено [4], что вопреки ортодоксальным представлениям физики СТМ при отрицательной полярности сканирования на топографических изображениях молекул ГПС видны не ионы кислорода, а ионы металла с незаполненными (при напряжениях V = 0) орбиталями. Неясными остаются и результаты измерений туннельных спектров ГПС. В работах [5-12] было установлено, что независимо

от химического состава, архитектуры и расположения зондируемых молекул в наноконтакте СТМ (на острие или на токопроводящей поверхности) туннельные спектры ГПС при измерениях на воздухе всегда содержат однотипные особенности — отрицательные дифференциальные сопротивления (ОДС). При этом на *J*-V-зависимостях (ВАХ) наноконтактов, содержащих молекулы ГПС, при некоторых напряжениях V_0 , разных для различных молекул, наблюдаются не ступеньки, характерные для фуллеренов [13] и квантовых точек [14], а одиночные максимумы тока, $J^* = J(V_0)$. Систематические измерения туннельных спектров ГПС различного состава и архитектур продемонстрировали, что при достаточно больших туннельных токах $J^* \sim 100$ нА в диапазоне напряжений от -1.5 В до 1.5 В все ОДС находятся на отрицательной полуоси ($V_0 < 0$) [5–10]. Значения V₀ в пределах точности экспериментов почти не зависят от базовых токов и напряжений, но коррелирует с ε_q и каталитической активностью соответствующих соединений [9, 10]. Для ГПС с меньшими ширинами ε_g и большей активностью значения V_0 меньше. Если оценивать ε_g по краю фотопоглощения, то наблюдается почти линейная зависимость: $V_0 \approx 0.5 \varepsilon_q \ [15, 16].$

Природа этих корреляций, которые были положены в основу метода тонкой подборки ГПС-катализаторов [10, 17], равно как и механизм формирования ОДС в туннельных спектрах этих соединений, представляющий самостоятельный интерес в связи с поисками новых элементов наноэлектроники [18],

^{*}E-mail: domfdal@mail.ru

остаются до сих пор неизвестными. Восстановление энергетических параметров молекул ГПС по результатам их туннельного зондирования, соответственно, невозможно. Неисчерпаемый класс «натуральных» наночастиц — молекул ГПС — методам зондовой туннельной спектроскопии все еще недоступен. Возможный вариант решения стоящих здесь задач предлагается в настоящей работе.

2. ЭКСПЕРИМЕНТ

В работах [5-10], в которых при зондировании молекул ГПС применялись методы СТМ-СТС, эксперименты ставились на воздухе. Спектроскопические измерения проводились в интервалах напряжений не более 1.5–2 В (по модулю) при характерных значениях тока порядка 100 нА. Наши эксперименты, в основном, были поставлены в условиях ультравысокого вакуума ($P < 10^{-9}$ Topp). Для сравнения с результатами работ [5-10] мы проводили также измерения на воздухе, но в более широких пределах изменений фоновых токов и напряжений. В качестве ГПС использовались анионы фосфорномолибденовой (ФМК) и фосфорномолибденованадиевых (ФМВК) кислот со структурой Кеггина. Анионы осаждались на пиролитический графит (или на острие) из 0.01 молярных водных растворов.

Эксперименты ставились при комнатной температуре на установке, которая включала камеру с VT_STM «Omicron», камеру подготовки образцов к измерениям, а также комплекс оборудования, необходимого для очистки поверхностей и острий методами ионной бомбардировки и прогрева (800 K).

Методика экспериментов, выполнявшихся на воздухе, не отличалась от описанной в работах [5–10]. Методика экспериментов, выполнявшихся в условиях ультравысокого вакуума, была такой же, как в работе [19]. Острия в этом случае изготавливались электролитическим способом из поликристаллической вольфрамовой проволоки. Их очищали ионами аргона и импульсами тока (V = 10 B). Очищенные острия тестировались на бездефектных участках грани (0001) графита. Использовались две взаимодополняющие схемы измерений: «стандартная», при которых молекулы исследуемых соединений осаждались из 0.01 молярного водного раствора на графит, и «обращенная», при которой острия опускались в раствор. Затем в обоих случаях образцы высушивались на воздухе, перемещались в высоковакуумную установку и выдерживались в течение нескольких часов. По первой схеме на выбранных

участках графита, содержащих осажденные молекулы ГПС, осуществлялось топографическое сканирование, во время которого для некоторой сетки точек измерялись J-V-зависимости. При применении «обращенной» схемы острия после сушки на воздухе перемещались в камеру СТМ и после длительной выдержки в ультравысоком вакууме ($P < 10^{-9}$ Topp) проводились многократные измерения кривых J(V) над различными точками совершенного участка графита. Результаты спектроскопических измерений от выбора схемы не зависели.

3. РЕЗУЛЬТАТЫ

Пример характерного спектра, измеренного на воздухе, приведен на рис. 1. (На вставке к этому рисунку приведен спектр молекулы ФМК, полученный в работах [5, 6].) Примеры характерных спектров, полученных нами при измерениях в условиях ультравысокого вакуума (УВВ), приведены на рис. 2–5.

Отметим сходство и различия туннельных спектров кеггиновских структур при измерениях на воздухе с большими (~100 нА [5,6]) и малыми (~5 нА) токами (см. рис. 1). В обоих случаях вблизи V = -1 В спектры содержат выраженные ОДС с отношениями «пик-долина», $K_{NDR} = J_M/J_{PH} \approx 2.5$ $(J_{PH} - фоновый ток, J_M = J(V_0))$. Спектр, измерявшийся при $J_M \approx 100$ нА, иных особенностей не имеет. Полученный нами спектр, который был изме-

Рис. 1. Спектр ФМВК, измеренный на воздухе, при характерных значениях фонового тока $J_{PH} \approx 2$ нА. На вставке приведен спектр ФМК, измеренный в тех же условиях при $J_{PH} \approx 50$ нА [5,6]

Рис. 2. Типичный спектр ФМК, измеренный в условиях УВВ, содержащий два типа ОДС

Рис. 3. Пример туннельного спектра ФМК, содержащего парные симметрично расположенные относительно V = 0 ОДС с аномально большими значениями $K_{NDR} = J_M/J_{PH} \sim 100$ (УВВ-измерения)

рен при существенно меньших токах ($J_M \approx 2$ нА), более содержателен. На нем отчетливо видна вторая резонансная особенность (при $V_0 \approx 1.3$ В) и пара сателлитов, примыкающих к основному пику ОДС (вблизи $V_0 = -1.25$ В) со стороны меньших (по модулю) напряжений. В целом, эти особенности образуют серию почти эквидистантно расположенных ОДС: $V_{0,n} = -1.25$ В – $n\delta V$, $\delta V \approx 0.25$ В, n = 0, 1, 2, которым можно сопоставить резонансные электронные переходы, упругие (при n = 0) и неупругие

Рис.4. Туннельный спектр, содержащий две группы эквидистантно расположенных ОДС, с большими $\delta V_1 \approx 0.5$ В и малыми $\delta V_2 \approx 0.2$ В расстояниями между линиями. (Спектроскопический «портрет» комплекса гидроксил-анион Кеггина ФМК). УВВ-измерения

Рис.5. Колебательная серия ОДС, восстановленная по результатам безвакуумных измерений туннельных спектров соли фосфоромолибденовой кислоты. (На вставке — исходный спектр, приведенный в работе [9].) 1 — пик основного ОДС, соответствующий упругому туннелированию; 2 — пик первого колебательного сателлита, соответствующий туннелированию с возбуждением одноквантового колебательного перехода; 3 — пик второго колебательного сателлита, соответствующий двуквантовому колебательному переходу; 4 — огибающая, воспроизводящая экспериментальную зависимость (после вычитания фона)

(при *n* = 1,2), сопровождающиеся колебательным возбуждением ионной решетки.

Различие туннельных спектров, измерявшихся на воздухе при малых и больших туннельных токах, можно понять, если учесть, что в случае безвакуумных измерений при малых расстояниях между поверхностью и острием наноконтакты замыкаются водяными мостиками [19]. Поляризация воды, которую в простейшем приближении можно учесть, вводя диэлектрическую постоянную ($\varepsilon_{\rm H_2O} \approx 81$), меняет поле сил, определяющих траектории туннелирующих электронов. При соизмеримых размерах зондируемой молекулы ($D \approx 1$ нм) и протяженности мостика (z < 1 нм) основная часть падения напряжения (с точностью до нескольких процентов) будет приходиться, очевидно, на молекулу. Пренебрежимо слабая зависимость V₀ от базовых значений напряжения и тока, которая затрудняет решение спектроскопических задач, но позволяет выявлять отмеченные выше корреляции, в этих условиях достаточно очевидна. При малых токах, которые использовались нами, мостики, видимо, разрушаются. В контакте появляется зазор между молекулой и острием, на котором падает заметная часть полного напряжения. Смещение V_0 в сторону больших по модулю значений V подтверждает это предположение. Это смещение, а также «удвоение» ОДС (появление ОДС на положительной полуоси) и формирование в спектрах колебательных сателлитов можно рассматривать как косвенные указания на определяющую роль сильного поля в туннельном транспорте электронов в рассматриваемых наноструктурах. Дополнительные указания на эту роль можно найти, анализируя результаты аналогичных экспериментов, поставленных в условиях УВВ (см. рис. 2-5). В этих условиях, когда шумы и нестабильности оказываются менее существенными, спектроскопические измерения удается проводить в более широких интервалах изменений токов и напряжений, соответственно от 0.1 нА до 50 нА и от -3 В до 3 В.

Сопоставляя характерные особенности спектров, измеренных при различных значениях токов и напряжений, можно установить существование в туннельных спектрах ГПС особенностей двух типов (см. рис. 2). Одни особенности, парные или одиночные, регулярно появляются при $|V_0| < 2$ В, вторые — при $|V_0| > 2$ В. Масштабы ОДС второго типа были обычно много бо́льшими, чем первого. Здесь часто наблюдались пики, в том числе парные, с $K_{NDR} = J_M/J_{PH} \approx 30$ -40. В отдельных случаях отношение K_{NDR} достигало значений порядка 10^2 (рис. 3). Для ОДС обоих типов были найдены примеры серий эквидистантно расположенных пиков. Среди них примеры комбинированных серий, в которых просматривались группы пиков, разделенных интервалами $\delta V_1 \approx 0.5$ В, к которым примыкали группы пиков с $\delta V_2 \approx 0.2$ В. Все линии, когда они были достаточно хорошо разрешены по напряжению, имели симметричную форму, близкую к лоренцевской. Их положение зависело от фонового тока. Снижение J_{PH} , т.е. увеличение z, приводило к смещению V_0 в сторону больших (по модулю) напряжений $(d|V_0|/dJ_{PH} \approx 0.05$ В/нА). Отметим, наконец, что в варианте ток-высотной спектроскопии на зависимостях J-z при выборе $V \approx V_0$ возможно было наблюдение резонансных максимумов с отношениями «пик-долина» до 10^2 и полуширинами $\delta z \approx 1-3$ Å.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ (ЛОКАЛИЗАЦИЯ ВАНЬЕ-ШТАРКА И АДСОРБЦИЯ ГИДРОКСИЛА)

Причины появления в туннельных спектрах ОДС активно обсуждаются в последнее десятилетие в связи с активными поисками нелинейных элементов наноэлектроники [18]. Один из наиболее часто встречающихся, легко опознаваемый по лоренцевской форме линии механизм формирования ОДС связан с эффектом просветления потенциальных барьеров при резонансном двуцентровом туннелировании. Этот эффект, предсказанный еще в работе [20], в последнее десятилетие стал часто привлекаться для интерпретации экспериментов с СТМ, в которых наблюдались ОДС (см., например, [21, 22]). При малых вероятностях актов отрыва и захвата электронов на отдельных центрах, которым соответствуют большие длительности пребывания электронов, ($\omega \tau > 1$, τ — время пребывания, ω — частота колебаний), если параметр Хуанга-Рисса $\alpha \neq 0$, процессы резонансного тупнелирования, в том числе двуцентрового, должны сопровождаться колебательными переходами [23, 24]. Последние обычно проявляются эквидистантными сериями пиков на кривых dJ/dV-V, по которым восстанавливаются колебательные кванты [14]. Для этих случаев способ восстановления электронно-колебательных уровней по положению резонансных пиков известен [25]. Для ГПС, как это видно из примеров, приведенных на рис. 1-5, колебательные серии формируются непосредственно на кривых Ј-V. Способ восстановления электронно-колебательных уровней в этом случае может быть сформулирован лишь после идентификации электронных состояний, участвующих в двуцентровом (трехэтапном) переходе.

Существование двух типов ОДС указывает на возможное участие в процессе по крайней мере трех различных электронных состояний. Последние должны быть локализованы в различных областях и иметь уровни, энергии которых зависят от распределения поля в наноконтакте, т. е. от напряжения и взаимного расположения острия и молекулы.

Для ОДС первого типа (для которых $|V_0| < 2$ В), коррелирующих с каталитической активностью и запрещенными зонами, по крайней мере одно из двух состояний должно быть локализовано внутри ГПС. В роли второго состояния могут выступать состояния электронов, захваченных гидроксильными группами. Последние, как было установлено недавно [26], адсорбируются на анионах Кеггина вблизи мостиковых ионов кислорода. Вопрос о существовании на гидроксильных группах локализованных состояний, уровни которых попадают в середину запрещенной зоны, на что указывают корреляции с оптическими спектрами, до настоящей работы оставался открытым.

Природа других состояний, участвующих в резонансном переносе электронов, должна быть, очевидно, иной. Она может быть установлена, если учесть, во-первых, общие особенности электронного и атомного строения всех ГПС, в которых наблюдались ОДС, и, во-вторых, принципиально важную и общую особенность спектроскопических измерений с применением СТМ. Последние всегда проводятся в условиях действия сильных электрических полей, $F \sim 10^7$ В/см, достаточных для перестройки состояний зон НОМО-LUMO по механизму локализации Ванье – Штарка [19].

Все ГПС — с молекулярными размерами от единиц до нескольких десятков нанометров — имеют одинаковые «блоки», металлооксидные полиэдры, которые в зависимости от структуры соединяются между собой вершинами, ребрами или гранями [1]. Их электронные спектры также подобны — они имеют щели $\varepsilon_g \approx 2-3$ эВ, краям которых в первом приближении соответствуют заполненные и не заполненные орбитали соответственно атомов кислорода и металла. При V = 0 все состояния делокализованы по эквивалентным атомам. Обменные интегралы (g), определяющие обменное расщепление состояний, локализованных на разных центрах, не превышают 0.1 эВ. Ясно, что в сильных электрических полях (при F > g/D, D — характерный размер аниона) обменные связи должны быть разорванными, т. е. все состояния периферийных атомов должны быть в той или иной степени локализованными. Энергетические уровни этих состояний, $\varepsilon_i^n(V, \mathbf{R}_i)$ оказываются зависящими от поля. Таким образом, в системе электронных уровней ГПС формируются две лестницы Штарка, разделенные энергетическим интервалом $\Delta \approx \varepsilon_g$. При некоторых напряжениях $V_0(z, \mathbf{R}_1, \mathbf{R}_2)$, зависящих от вакуумного зазора z и координат центров локализации \mathbf{R}_1 и \mathbf{R}_2 , в системе электронных уровней появляются пересечения:

$$\varepsilon_i^n(V_0, \mathbf{R}_1) = \varepsilon_i^n(V_0, \mathbf{R}_2) \tag{1}$$

(*п* — индекс лестницы, т. е. типа иона, кислорода или металла, *i* — индекс уровня), открывающие каналы двуцентрового резонансного туннелирования, просветляющие наноконтакт и формирующие ОДС [20].

В случае ОДС, которым соответствуют пересечения электронных состояний, относящихся к лестницам Штарка, уравнение (1) может иметь решения лишь в области $V > \varepsilon_g$ ($e = m = \hbar = 1$). Для анионов ФМК ($\varepsilon_g \approx 2$ эВ) отсюда следует ограничение $|V_0| > 2$ В, что соответствует условиям формирования ОДС второго типа. В этом случае резонансные переходы электронов осуществляются в результате трех последовательных актов: перехода электрона из контакта с отрицательным потенциалом на ближайший ион кислорода (с вероятностью Γ_{in}), последующего перехода электрона на ближайший к противоположному контакту ион металла (с вероятностью $w_{ij} \sim g^2$) и заключительного перехода электрона на контакт, несущий положительный потенциал (с вероятностью Γ_{out}). Особенности топографических изображений [4] становятся в этом случае очевидными.

Форма особенности в случае двуцентрового резонансного туннелирования описывается выражением [19]

$$J = \operatorname{const} \cdot g^2 \frac{\Gamma_{in} + \Gamma_{out}}{\left(\varepsilon_1(V) - \varepsilon_2(V)\right)^2 + \left(\Gamma_{in} + \Gamma_{out}\right)^2}.$$
 (2)

Отсюда видно, что «качество» ОДС, если его оценивать по величине K_{NDR} , с увеличением z должно возрастать. Действительно, ток резонансно туннелирующих электронов J_r при $V = V_0(z)$

$$J_r(V_0(z)) \sim (\Gamma_{in} + \Gamma_{out})^{-1},$$

поэтому при любой полярности одна из вероятностей Γ_{in} или Γ_{out} , которая соответствует туннелированию через вакуумный зазор, с ростом z уменьшается. Ток резонансных электронов, соответственно, возрастает. Фоновый ток, т.е. суммарный ток нерезонансных электронов, напротив, с ростом z экспоненциально уменьшается, так что по мере роста вакуумного зазора «качество» ОДС должно возрастать. Аномально большие значения $K_{NDR} \sim 10^2$, обнаруженные в наших экспериментах при малых фоновых токах (см. рис. 3), согласуются с этим выводом.

Здесь следует отметить, что в настоящее время к молекулярным системам, обладающим свойствами ОДС, проявляется повышенный интерес. Современные поиски нужных систем нацелены на случаи крупномасштабных множественных ОДС, которые не требуют низких температур и допускают подборку основных параметров. Туннельный наноконтакт, содержащий молекулу ГПС, представляет собой пример системы, в которой сочетаются все упомянутые функционально значимые свойства.

Установив природу состояний, участвующих в формировании ОДС различных типов, нетрудно сформулировать способ восстановления по сателлитам колебательных квантов $\hbar\omega$ и соответствующих им параметров Хуанга–Рисса (параметров электронно-колебательных взаимодействий). Для этого нужно учесть частичное падение потенциала на зазоре между острием и наночастицей. Для ОДС второго типа можно воспользоваться результатами оптических измерений, которые определяют значения $\varepsilon_g \approx 2$ эВ [16]. Для спектра ФМК, приведенного на рис. 3, содержащего ОДС второго типа, имеем

$$\hbar\omega_1 \approx (\varepsilon_q/V_0)\delta V_2 \approx 0.13 \text{ sB}.$$

что близко к кванту колебаний кислорода, который хорошо известен из результатов ИК-измерений [7]. (Рассматривался случай $V_0 = 3$ B, $\delta V_2 = 0.22$ B.)

Аналогичным образом можно определить и кванты колебаний, соответствующих эквидистантным сериям на спектрах, содержащих ОДС первого типа. При этом следует учесть, что этим сериям, согласно предлагаемой модели, соответствуют пересечения уровня гидроксила ε_0 с ближайшим к нему уровнем одной из лестниц Штарка. В зависимости от полярности приложенного напряжения и от расположения ОН в контакте вторым уровнем может быть либо верхний уровень лестницы Штарка от заполненных состояний, либо нижний уровень лестницы от незаполненных (металлических) состояний. Учитывая, что $\varepsilon_0 \approx (1/2)\varepsilon_g$, как это следует из корреляций ОДС с оптическими измерениями [10], при $\delta V_2 \approx 0.22$ В (см. рис. 1), для колебательного кванта в этом случае имеем $\hbar\omega_1 = 0.12$ эВ, что близко к значениям квантов колебаний мостикового кислорода ФМК.

Нужно отметить, что в тех случаях, когда падением напряжения вне зондируемого комплекса можно пренебречь (это, как отмечалось выше, оправдано при больших фоновых токах, т.е. в контактах с водяными мостиками) значения ε_0 и $\hbar\omega_1$ могут быть найдены по спектрам непосредственно:

$$\varepsilon_0 \approx 2V_0, \quad \hbar\omega_1 \approx \delta V_2.$$
 (3)

Продемонстрируем эту возможность на примере аниона соли $AgCs(9:1)_3PMo_{12}O_{40}$, безвакуумный спектр которого приведен на рис. 8 работы [9]. Аппроксимируя вклад резонансных электронов в полный ток тремя слагаемыми лоренцевской формы (см. рис. 5 настоящей работы), получаем: $\varepsilon_0 \approx 1.4$ эВ, $\hbar\omega_1 \approx 0.13-0.14$ эВ, что с точностью до нескольких процентов соответствует результатам УВВ-экспериментов. Аппроксимируя огибающую этой серии фактором Франка-Кодона [14], определим значение параметра Хуанга-Рисса $\alpha \approx 0.6$.

Установленная нами связь между параметрами ОДС второго типа, которые наблюдаются в безвакуумных экспериментах с большими токами (~ 100 нА) [5–10], и ширинами запрещенных щелей (3) дает простое объяснение корреляциям оптических и туннельных спектров [10, 16]. Поскольку хорошо известно, что для оксидных катализаторов ширины запрещенных зон коррелируют с каталитической активностью (см., например, [27]), становятся понятными и корреляции V_0 с каталитической активностью этих соединений.

Предположение о связи ОДС второго типа с комплексами ОН-анион Кеггина (в общем случае с комплексами ОН-анион ГПС), позволяющее интерпретировать результаты ультравысоковакуумных и безвакуумных экспериментов, нуждается, естественно, в обосновании. Прямое подтверждение этого важного предположения дают примеры УВВ-спектров, содержащих эквидистантные серии ОДС с большими $\delta V_2 \approx 0.5$ В (см. рис. 4). При этом $\delta V_1 \approx 0.2$ В. ИК-спектр гидроксильных групп известен [26]. Используя значение $\hbar\omega_{\rm OH} = 3330$ см⁻¹ как реперное, находим:

$$\hbar\omega_1 = \frac{\delta V_1}{\delta V_2} \hbar\omega_{\rm OH} \approx 0.08 \ \mathrm{sB} = 650 \ \mathrm{cm}^{-1},$$

что близко к линии ИК-спектра, соответствующей колебаниям мостикового кислорода ФМК [7]. При этом, в соответствии со сделанным выше предположением о присутствии в спектре зондируемого комплекса уровня состояния, локализованного на гидроксиле, значение ε_0 оказывается равным примерно половине ширины запрещенной зоны ($\varepsilon_0 \approx 0.75$ эВ).

С целью сопоставления результатов спектроскопических измерений, которые указывают на при-

Рис. 6. Плотности электронных состояний аниона $PMo_{12}O_{40}^{-3}$ (пунктирная линия) и комплекса $OHPMo_{12}O_{41}^{-3}$ (гидроксил-анион Кеггина ФМК) (сплошная линия), рассчитанные методом функционала плотности. (Пояснения в тексте)

сутствие на поверхности ГПС гидроксила, с теоретическими мы провели расчеты электронного строения анионов $PMo_{12}O_{40}^{-3}$, $PW_{12}O_{40}^{-3}$ и комплексов OHPMo_{12}O_{41}^{-3}, OHPW_ $12}O_{41}^{-3}$ в приближении функционала электронной плотности. (Расчеты осуществлялись с помощью пакета OpenMX версии 3.6 в приближении базиса численных атомно-центрированных орбиталей [28] и удвоенного минимального размера с включением поляризационных орбиталей.) Псевдопотенциалы были построены по схеме [29]. Обменно-корреляционный функционал PBE-типа [30] использовался в приближении локальной электронной плотности (LDA) без учета спин-поляризации.

Полученные результаты показали, что в обоих случаях при образовании комплексов ГПС–гидроксил (связанный с мостиковым кислородом [25]) в электронном спектре рассчитываемых систем появляются уровни, расположенные почти посередине запрещенной щели и соответствующие состояниям, локализованным на кислороде гидроксила (см. рис. 6).

5. ЗАКЛЮЧЕНИЕ

Суммируем в заключение основные результаты работы.

1. Показано, что в сильных электрических полях, типичных для экспериментов с CTM, туннельный транспорт электронов сквозь единичные молекулы ГПС осуществляется в условиях локализации Ванье-Штарка, которая проявляется формированием на кривых *J*-*V* резонансных пиков (ОДС).

2. В безвакуумных и в ультравысоковакуумных экспериментах обнаружены примеры туннельных спектров ГПС (для молекул $H_3PMo_{12}O_{40}$ и $H_5PMo_{10}V_2O_{40}$), содержащих эквидистантные (колебательные) серии ОДС. Показано, что по положению и форме этих серий могут быть восстановлены три основные параметра зондируемых молекул — ширины ε_g «запрещенных» зон, колебательные кванты $\hbar\omega$ участвующих в переносе электрона мод и соответствующие им параметры Хуанга – Рисса α . Для молекул $H_3PMo_{12}O_{40}$ и $H_5PMo_{10}V_2O_{40}$ эти параметры оказываются приблизительно равными соответственно 2 эВ, 0.1 эВ и 0.3–0.5.

3. По спектрам, содержащим электронно-колебательные линии с $\hbar\omega \approx 0.4$ эВ, идентифицированы гидроксильные группы, образующие с ГПС комплексы со слабыми водородными связями. В туннельных спектрах обнаруженные комплексы проявляются формированием ОДС с $V_0 \approx -1.25$ эВ. Восстановленное по спектрам значение энергии электронного уровня гидроксила, $\varepsilon_0 \approx 0.75$ эВ, расположенного над верхним уровнем заполненных состояний аниона Кеггина, хорошо согласуется с результатами проведенных в работе расчетов *ab initio* и объясняет корреляции туннельных спектров ГПС с оптическими спектрами и каталитическими свойствами этих соединений.

4. Установлены условия, при которых туннельные наноконтакты, содержащие молекулы ГПС, обладают свойствами управляемых множественных ОДС с аномально большими (до 10²) отношениями «пик-долина» при комнатных температурах.

Работа выполнена при финансовой поддержке РФФИ (грант №11-03-00494-а). Численные расчеты выполнены с использованием ресурсов МСЦ РАН.

ЛИТЕРАТУРА

- 1. М. С. Поп, Гетерополи- и изополиметаллаты, Наука, Новосибирск (1990).
- N. Casañ-Pastor and P. Gómez-Romero, Frontiers in Biosci. 9, 1759 (2004).
- D.-L. Long and L. Cronin, Chem. Europ. J. 12, 3698 (2006).
- M. Ruben, J. M. Lehn, and P. Muller, Chem. Soc. Rev. 35, 1 (2006).

- I. K. Song and M. A. Barteau, Langmuir 20, 1850 (2004).
- I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 17528 (1996).
- I. K. Song, M. S. Kaba, and M. A. Barteau, J. Phys. Chem. 100, 19577 (1996).
- I. K. Song, J. R. Kitchin, and M. A. Barteau, Proc. Nat. Acad. Sci. 99, 6471 (2002).
- M. Kinne and M. A. Barteau, Surface Sci. 447, 105 (2000).
- I. K. Song, J. E. Lyons, and M. A. Barteau, Catal. Today 81, 137 (2003).
- **11**. А. М. Дыхне, С. Ю. Васильев, О. А. Петрий и др., ДАН **368**, 467 (1999).
- 12. I. Kovács, J. Phys.: Conf. Ser. 61, 623 (2007).
- M. Grobis, A. Wachowiak, R. Yamachika et al., Appl. Phys. Lett. 86, 204102 (2005).
- 14. Z. Sun, I. Swart, Ch. Delerue et al., Phys. Rev. Lett. 92, 196401 (2009).
- 15. I. K. Song and M. A. Barteau, J. Mol. Catal. A 185, 182 (2002).
- 16. M. H. Youn, D. R. Park, J. C. Jung et al., Korean J. Chem. Eng. 24(1), 51 (2007).
- J. H. Choi, D. R. Park, S. Park et al., Catal. Lett. 141, 826 (2011).

- Introduction to Molecular Electronics, ed. by G. Cuniberti, G. Fagas, and K. Richter, Springer, Berlin (2005).
- 19. Ф. И. Далидчик, Е. М. Балашов, Б. А. Буданов и др., Хим. физика 29(11), 21 (2010).
- **20**. Ф. И. Далидчик, В. З. Слоним, ЖЭТФ **70**, 47 (1976).
- 21. W. Lyo and P. Avouris, Science 245, 1369 (1989).
- 22. Y. Xue, S. Datta, S. Hong et al., Phys. Rev. B 59, R7852 (1999).
- 23. Ф. И. Далидчик, ЖЭТФ 87, 1384 (1984).
- 24. Ф. И. Далидчик, Б. Р. Шуб, Российские нанотехнологии 1(1-2), 82 (2006).
- 25. Н. И. Сушко, О. Н. Третинников, Ж. прикл. спектр.
 77, 556 (2010).
- 26. Ф. И. Далидчик, Е. М. Балашов, С. А. Ковалевский, Российские нанотехнологии 4(7-8), 87 (2009).
- 27. О. В. Крылов, *Гетерогенный катализ*, Академкнига, Москва (2004).
- 28. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
- 29. I. Morrison, D. M. Bylander, and L. Kleinman, Phys. Rev. B 47, 6728 (1993).
- 30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).