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COMMENT ON THE PAPER �FINITE-SIZE SCALING FROM THESELF-CONSISTENT THEORY OF LOCALIZATION�BY I. M. SUSLOVP. Marko² *Department of Physi
s FEI, Slovak University of Te
hnology81219 Bratislava, SlovakiaRe
eived May 3, 2012In the re
ent paper [1℄, a new s
aling theory of ele
tron lo
alization was proposed. We show that numeri
aldata for the quasi-one-dimensional Anderson model do not support predi
tions of this theory.1. INTRODUCTIONIn the re
ent paper [1℄, the s
aling theory of ele
-tron lo
alization is dis
ussed. It is argued that thestandard interpretation of numeri
al data based on the�nite-size s
aling analysis [2�4℄ is not 
orre
t. For thequasi-one-dimensional Anderson model, a new formula-tion of the s
aling, based on the analyti
 self-
onsistenttheory, is presented. The theory gives the 
riti
al ex-ponent � = 1 for the three dimensional (3D) Andersonmodel, in agreement with the original self-
onsistenttheory of Anderson lo
alization [5℄. New s
aling rela-tions have been proposed for higher dimension d > 4.In this 
omment, we show that the theory in [1℄ isnot 
onsistent with the present numeri
al data for the3D and 5D Anderson model.We 
onsider the Anderson model [6℄ with diagonaldisorder W de�ned on the quasi-one-dimensional sys-tem of the size Ld�1 � Lz; Lz � L (1)(d is the dimension of the model) and 
al
ulate thesmallest Lyapunov exponent z1(W;L). It is related tothe lo
alization length �1D asz1 = 2L=�1D (2)and determines the exponential de
rease of the wavefun
tion, j	j2 / exp[�z1Lz=L℄ [4℄. For the 3D model,Lz = 2L="2 is su�
ient to a
hieve the relative nume-ri
al a

ura
y " [7℄. The size L varies from L = 8 toL = 34 for d = 3 and is L � 8 for d = 5.*E-mail: peter.markos�stuba.sk

2. THE 3D SYSTEMSuslov's theory predi
ts [1℄ that in the vi
inity ofthe 
riti
al point (� = W �W
 � 1), the lo
alizationlength follows the s
aling behavior�1D=L = y� +A�(L+ L0) (3)with a new additional length s
ale L0 not 
onsideredin the standard s
aling analysis (y� is the size-indepen-dent 
riti
al value). This predi
tion is in varian
e withthe standard s
aling formulaz1 = 2L=�1D = z1
 +A�L1=� ; (4)used in the �nite-size s
aling analysis of numeri
aldata [2, 3℄.To support the result (3), Suslov used numeri
aldata for the parameter z1 published in [4℄ and foundthat L0 � 5 (Fig. 6, left in [1℄). In Fig. 1, we show thesame �gure with additional data for 24 � L � 34. Thepower �t z1(L) = a + bL� 
al
ulated for W = 16 andW = 17 supports the validity of the relation (4).Before testing the validity of Eq. (3), we have tonoti
e the relation (2) between the lo
alization lengthexpressed in Eq. (3) and the parameter z1 shown inFig. 1. We �t our data for z1 to the fun
tion� = 1a0 + a1L (5)shown by dotted lines in Fig. 1. Comparing withEq. (3) and using y� = z�11
 = 3:48�1 (Fig. 2), we ob-tain L0 � 8:6 from theW = 16 data, but a signi�
antlydi�erent value L0 � 17 for W = 17.1226
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Fig. 1. The 3D Anderson model: the parameter z1(L)for di�erent disorder. Solid lines are power �ts forW = 16 and W = 17. Contrary to [1℄, �ts are notlinear in L. Note that z1 de
reases for W = 16:5and in
reases for W = 16:6. Therefore, we expe
tthat 16:5 < W
 < 16:6. S
aling analysis gives W
 �� 16:55. Dotted lines are �ts (5) with a0 = 0:302and a1 = 0:0017 (W = 16) and with a0 = 0:267 anda1 = �0:00108 (W = 17)
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 � 3:48
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Fig. 3. The L-dependen
e of the slope s(L) / L1=� .The 
riti
al exponent is � = 1:566. The dashed lineshows the linear L-dependen
e predi
ted by Eq. (3)Although the power �t in (4) is 
learly better thanthe one in (5), Fig. 1 shows that the estimation of trues
aling behavior might be di�
ult sin
e various ana-lyti
 fun
tions seem to �t numeri
al data with su�
ienta

ura
y. In the present 
ase, the problem lies in thenonzero 
riti
al value z1
. To avoid the ambiguity inthe 
hoi
e of the �tting fun
tion, we have to extra
t the
riti
al value from numeri
al data [8℄. When the datafor z1 are plotted as a fun
tion of the disorder (Fig. 2),we 
an �t them by a quadrati
 polynomialz1(W;L) = z1
 + �s(L) + �2t(L) (6)and 
al
ulate the L-dependen
e of the slope s(L). FromEq. (3), we see that s(L) should be a linear fun
-tion of L, while Eq. (4) predi
ts a power-law behaviors(L) / L1=� . Figure 3 shows s(L) as a fun
tion of L.The �t 
on�rms the power-law dependen
e s(L) / L1=�with the 
riti
al exponent � � 1:56, as obtained byother methods [2℄.3. THE 5D MODELFor higher dimensions, the following size depen-den
e of the lo
alization length at the 
riti
al point(� = 0) was derived:�1D=L = �La�(d�4)=3 : (7)1227
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Fig. 4. The parameter z1(W ) for di�erent system sizes.For W < 57:5, z1 de
reases as L in
reases. Thereis no indi
ation of the 
riti
al behavior des
ribed byEq. (9)In parti
ular, for d = 5, Eq. (7) givesz1(� = 0) / L�1=3; (8)whi
h means that the 
riti
al value of z1 is not size in-dependent but de
reases to zero as L ! 1. Sin
e thelo
alization length is �nite for � > 0, the � -dependen
eof z1(L; �) for a �xed L must exhibit an in�nite dis
on-tinuity at � = 0:z1(�) / ( L�1=3; � = 0L; � > 0 : (9)We test the size and disorder dependen
e of z1 numeri-
ally. We show in Figs. 4 and 5 the disorder dependen
eof z1 for �xed L. Our data in Fig. 4 do not indi
ate anydis
ontinuity in the L dependen
e. On the 
ontrary, z1is a smooth analyti
 fun
tion of both parameters, Wand L.For smaller disorder, z1 is always a de
reasing fun
-tion of L. This is typi
al for the metalli
 regime. How-ever, z1 does not depend on the size L when W = 57:5.This is 
onsistent with s
aling equation (4). The in-sulating regime, where z1 in
reases with the size L, isobserved only when W > 57:5 (Fig. 5).
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Fig. 5. The 5D Anderson model: the parameter z1 asa fun
tion of disorder W for L = 4; 5; 6; 7 and L == 8. The data indi
ate that z1 does not depend onthe size L when W � 57:5. This value is 
onsid-ered as a 
riti
al disorder W
 in the �standard� �nite-size s
aling theory. Solid lines are �ts z1(L) = z1 ++ s(L)(W �W
). The inset shows the L-dependen
eof the slope s(L) / L1:0413 . The original �gure waspublished in [4℄ but new data for L = 8 are addedWe note that z1 � 7 for disorder W � 57:5. There-fore, the lo
alization length�1D = 2z1L (10)is mu
h smaller than the size of the system and we donot expe
t that �nite-size e�e
ts play a signi�
ant role,although the size L is mu
h smaller than in 3D system.A s
aling analysis similar to that for the 3D modelallows �nding the 
riti
al exponent, �5D � 0:96.4. CONCLUSIONWe showed that numeri
al data for the parameter z1do not agree with the predi
tions of the theory in [1℄.Both z1 and the lo
alization length are analyti
 
on-tinuous fun
tions of the disorder W and the size of thesystem L.For the 3D system, we presented additional numer-i
al data for larger system size L � 24 up to L = 34.These new data 
on�rm the previous estimation of the
riti
al exponent � = 1:56 [3, 8℄. It is worth mention-1228
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riti
al exponent wasobtained already 20 years ago with the use of numer-i
al data for L � 12 only [9℄. We also note that thesame value of the 
riti
al exponent was obtained fromnumeri
al analysis of other physi
al quantities: mean
ondu
tan
e, 
ondu
tan
e distribution, inverse parti
-ipation ratio [4℄ and also for 
riti
al points outside theband 
enter [4, 10℄. This value of the 
riti
al exponentwas re
ently veri�ed experimentally [11℄ and 
al
ulatedanalyti
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