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In the recent paper [1], a new scaling theory of electron localization was proposed. We show that numerical
data for the quasi-one-dimensional Anderson model do not support predictions of this theory.

1. INTRODUCTION

In the recent paper [1], the scaling theory of elec-
tron localization is discussed. It is argued that the
standard interpretation of numerical data based on the
finite-size scaling analysis [2-4] is not correct. For the
quasi-one-dimensional Anderson model, a new formula-
tion of the scaling, based on the analytic self-consistent
theory, is presented. The theory gives the critical ex-
ponent v = 1 for the three dimensional (3D) Anderson
model, in agreement with the original self-consistent
theory of Anderson localization [5]. New scaling rela-
tions have been proposed for higher dimension d > 4.

In this comment, we show that the theory in [1] is
not consistent with the present numerical data for the
3D and 5D Anderson model.

We consider the Anderson model [6] with diagonal
disorder W defined on the quasi-one-dimensional sys-
tem of the size

L¥='x L., L.>L (1)

(d is the dimension of the model) and calculate the
smallest Lyapunov exponent z; (W, L). It is related to
the localization length ¢ p as

21 = 2L/€1D (2)

and determines the exponential decrease of the wave
function, |¥|? o exp[—=21L,/L] [4]. For the 3D model,
L, = 2L/e? is sufficient to achieve the relative nume-
rical accuracy € [7]. The size L varies from L = 8 to
L =34 ford=3andis L <8 ford=>5.
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2. THE 3D SYSTEM

Suslov’s theory predicts [1] that in the vicinity of
the critical point (1 = W — W, < 1), the localization
length follows the scaling behavior

§ip/L=y"+ Ar(L + Lo) (3)

with a new additional length scale Ly not considered
in the standard scaling analysis (y* is the size-indepen-
dent critical value). This prediction is in variance with
the standard scaling formula

21 =2L/&p = 210 + ATLYY, (4)

used in the finite-size scaling analysis of numerical
data [2, 3].

To support the result (3), Suslov used numerical
data for the parameter z; published in [4] and found
that Lo ~ 5 (Fig. 6, left in [1]). In Fig. 1, we show the
same figure with additional data for 24 < L < 34. The
power fit z;(L) = a + bL" calculated for W = 16 and
W = 17 supports the validity of the relation (4).

Before testing the validity of Eq. (3), we have to
notice the relation (2) between the localization length
expressed in Eq. (3) and the parameter z; shown in
Fig. 1. We fit our data for z; to the function

1
=— 5
= ral (5)
shown by dotted lines in Fig. 1. Comparing with
Eq. (3) and using y* = z;,' = 3.48~" (Fig. 2), we ob-
tain Lo &~ 8.6 from the W = 16 data, but a significantly
different value Lg ~ 17 for W = 17.
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Fig.1. The 3D Anderson model: the parameter z;(L)
for different disorder. Solid lines are power fits for
W = 16 and W = 17. Contrary to [1], fits are not
linear in L. Note that z; decreases for W = 16.5
and increases for W = 16.6. Therefore, we expect
that 16.5 < W, < 16.6. Scaling analysis gives W, ~
~ 16.55. Dotted lines are fits (5) with ap = 0.302
and a1 = 0.0017 (W = 16) and with ap = 0.267 and
a1 = —0.00108 (W = 17)
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Fig.2. Quadratic fit (6) of z (W — W,) for four
values of the size L. The cross section determines
Zle R 3.48
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Fig.3. The L-dependence of the slope s(L) o L'/”.
The critical exponent is v = 1.566. The dashed line
shows the linear L-dependence predicted by Eq. (3)

Although the power fit in (4) is clearly better than
the one in (5), Fig. 1 shows that the estimation of true
scaling behavior might be difficult since various ana-
lytic functions seem to fit numerical data with sufficient
accuracy. In the present case, the problem lies in the
nonzero critical value z;.. To avoid the ambiguity in
the choice of the fitting function, we have to extract the
critical value from numerical data [8]. When the data
for z; are plotted as a function of the disorder (Fig. 2),
we can fit them by a quadratic polynomial

21(W,L) = 210 + 7s(L) + 7°t(L) (6)

and calculate the L-dependence of the slope s(L). From
Eq. (3), we see that s(L) should be a linear func-
tion of L, while Eq. (4) predicts a power-law behavior
s(L) o< L'¥. Figure 3 shows s(L) as a function of L.
The fit confirms the power-law dependence s(L) oc L'/
with the critical exponent v ~ 1.56, as obtained by
other methods [2].

3. THE 5D MODEL

For higher dimensions, the following size depen-
dence of the localization length at the critical point
(1 = 0) was derived:

(d—4)/3
L) . )

§&ip/L = <E
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Fig. 4. The parameter z1 (W) for different system sizes.
For W < 57.5, z1 decreases as L increases. There
is no indication of the critical behavior described by

Eq. (9)

In particular, for d = 5, Eq. (7) gives
21(r=0) o L7V3, (])

which means that the critical value of z; is not size in-
dependent but decreases to zero as L — oo. Since the
localization length is finite for 7 > 0, the 7-dependence
of z1(L, 7) for a fixed L must exhibit an infinite discon-
tinuity at 7 = 0:

L=1/3 =0
21 (1) { _

: 9
L, T>0 ©)

We test the size and disorder dependence of z; numeri-
cally. We show in Figs. 4 and 5 the disorder dependence
of z; for fixed L. Our data in Fig. 4 do not indicate any
discontinuity in the L dependence. On the contrary, z;
is a smooth analytic function of both parameters, W
and L.

For smaller disorder, z; is always a decreasing func-
tion of L. This is typical for the metallic regime. How-
ever, z; does not depend on the size L when W = 57.5.
This is consistent with scaling equation (4). The in-
sulating regime, where z; increases with the size L, is
observed only when W > 57.5 (Fig. 5).

Fig.5. The 5D Anderson model: the parameter z; as
a function of disorder W for L = 4,5,6,7 and L =
= 8. The data indicate that z; does not depend on
the size L when W =~ 57.5. This value is consid-
ered as a critical disorder W, in the “standard” finite-
size scaling theory. Solid lines are fits z;(L) = z; +
+ s(L)(W — W.). The inset shows the L-dependence
of the slope s(L) oc L***'*, The original figure was
published in [4] but new data for L = 8 are added

We note that z; ~ 7 for disorder W =~ 57.5. There-
fore, the localization length

§ip = z_21L (10)

is much smaller than the size of the system and we do
not expect that finite-size effects play a significant role,
although the size L is much smaller than in 3D system.
A scaling analysis similar to that for the 3D model
allows finding the critical exponent, vsp = 0.96.

4. CONCLUSION

We showed that numerical data for the parameter z;
do not agree with the predictions of the theory in [1].
Both z; and the localization length are analytic con-
tinuous functions of the disorder W and the size of the
system L.

For the 3D system, we presented additional numer-
ical data for larger system size L > 24 up to L = 34.
These new data confirm the previous estimation of the
critical exponent v = 1.56 [3, 8]. It is worth mention-

1228



MITP, Tom 142, Bem. 6 (12), 2012

Comment on the paper ...

ing that the same value of the critical exponent was
obtained already 20 years ago with the use of numer-
ical data for L < 12 only [9]. We also note that the
same value of the critical exponent was obtained from
numerical analysis of other physical quantities: mean
conductance, conductance distribution, inverse partic-
ipation ratio [4] and also for critical points outside the
band center [4, 10]. This value of the critical exponent
was recently verified experimentally [11] and calculated
analytically [12].
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