
ÆÝÒÔ, 2012, òîì 142, âûï. 6 (12), ñòð. 1226�1229  2012
COMMENT ON THE PAPER �FINITE-SIZE SCALING FROM THESELF-CONSISTENT THEORY OF LOCALIZATION�BY I. M. SUSLOVP. Marko² *Department of Physis FEI, Slovak University of Tehnology81219 Bratislava, SlovakiaReeived May 3, 2012In the reent paper [1℄, a new saling theory of eletron loalization was proposed. We show that numerialdata for the quasi-one-dimensional Anderson model do not support preditions of this theory.1. INTRODUCTIONIn the reent paper [1℄, the saling theory of ele-tron loalization is disussed. It is argued that thestandard interpretation of numerial data based on the�nite-size saling analysis [2�4℄ is not orret. For thequasi-one-dimensional Anderson model, a new formula-tion of the saling, based on the analyti self-onsistenttheory, is presented. The theory gives the ritial ex-ponent � = 1 for the three dimensional (3D) Andersonmodel, in agreement with the original self-onsistenttheory of Anderson loalization [5℄. New saling rela-tions have been proposed for higher dimension d > 4.In this omment, we show that the theory in [1℄ isnot onsistent with the present numerial data for the3D and 5D Anderson model.We onsider the Anderson model [6℄ with diagonaldisorder W de�ned on the quasi-one-dimensional sys-tem of the size Ld�1 � Lz; Lz � L (1)(d is the dimension of the model) and alulate thesmallest Lyapunov exponent z1(W;L). It is related tothe loalization length �1D asz1 = 2L=�1D (2)and determines the exponential derease of the wavefuntion, j	j2 / exp[�z1Lz=L℄ [4℄. For the 3D model,Lz = 2L="2 is su�ient to ahieve the relative nume-rial auray " [7℄. The size L varies from L = 8 toL = 34 for d = 3 and is L � 8 for d = 5.*E-mail: peter.markos�stuba.sk

2. THE 3D SYSTEMSuslov's theory predits [1℄ that in the viinity ofthe ritial point (� = W �W � 1), the loalizationlength follows the saling behavior�1D=L = y� +A�(L+ L0) (3)with a new additional length sale L0 not onsideredin the standard saling analysis (y� is the size-indepen-dent ritial value). This predition is in variane withthe standard saling formulaz1 = 2L=�1D = z1 +A�L1=� ; (4)used in the �nite-size saling analysis of numerialdata [2, 3℄.To support the result (3), Suslov used numerialdata for the parameter z1 published in [4℄ and foundthat L0 � 5 (Fig. 6, left in [1℄). In Fig. 1, we show thesame �gure with additional data for 24 � L � 34. Thepower �t z1(L) = a + bL� alulated for W = 16 andW = 17 supports the validity of the relation (4).Before testing the validity of Eq. (3), we have tonotie the relation (2) between the loalization lengthexpressed in Eq. (3) and the parameter z1 shown inFig. 1. We �t our data for z1 to the funtion� = 1a0 + a1L (5)shown by dotted lines in Fig. 1. Comparing withEq. (3) and using y� = z�11 = 3:48�1 (Fig. 2), we ob-tain L0 � 8:6 from theW = 16 data, but a signi�antlydi�erent value L0 � 17 for W = 17.1226
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Fig. 1. The 3D Anderson model: the parameter z1(L)for di�erent disorder. Solid lines are power �ts forW = 16 and W = 17. Contrary to [1℄, �ts are notlinear in L. Note that z1 dereases for W = 16:5and inreases for W = 16:6. Therefore, we expetthat 16:5 < W < 16:6. Saling analysis gives W �� 16:55. Dotted lines are �ts (5) with a0 = 0:302and a1 = 0:0017 (W = 16) and with a0 = 0:267 anda1 = �0:00108 (W = 17)
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Fig. 3. The L-dependene of the slope s(L) / L1=� .The ritial exponent is � = 1:566. The dashed lineshows the linear L-dependene predited by Eq. (3)Although the power �t in (4) is learly better thanthe one in (5), Fig. 1 shows that the estimation of truesaling behavior might be di�ult sine various ana-lyti funtions seem to �t numerial data with su�ientauray. In the present ase, the problem lies in thenonzero ritial value z1. To avoid the ambiguity inthe hoie of the �tting funtion, we have to extrat theritial value from numerial data [8℄. When the datafor z1 are plotted as a funtion of the disorder (Fig. 2),we an �t them by a quadrati polynomialz1(W;L) = z1 + �s(L) + �2t(L) (6)and alulate the L-dependene of the slope s(L). FromEq. (3), we see that s(L) should be a linear fun-tion of L, while Eq. (4) predits a power-law behaviors(L) / L1=� . Figure 3 shows s(L) as a funtion of L.The �t on�rms the power-law dependene s(L) / L1=�with the ritial exponent � � 1:56, as obtained byother methods [2℄.3. THE 5D MODELFor higher dimensions, the following size depen-dene of the loalization length at the ritial point(� = 0) was derived:�1D=L = �La�(d�4)=3 : (7)1227
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Fig. 4. The parameter z1(W ) for di�erent system sizes.For W < 57:5, z1 dereases as L inreases. Thereis no indiation of the ritial behavior desribed byEq. (9)In partiular, for d = 5, Eq. (7) givesz1(� = 0) / L�1=3; (8)whih means that the ritial value of z1 is not size in-dependent but dereases to zero as L ! 1. Sine theloalization length is �nite for � > 0, the � -dependeneof z1(L; �) for a �xed L must exhibit an in�nite dison-tinuity at � = 0:z1(�) / ( L�1=3; � = 0L; � > 0 : (9)We test the size and disorder dependene of z1 numeri-ally. We show in Figs. 4 and 5 the disorder dependeneof z1 for �xed L. Our data in Fig. 4 do not indiate anydisontinuity in the L dependene. On the ontrary, z1is a smooth analyti funtion of both parameters, Wand L.For smaller disorder, z1 is always a dereasing fun-tion of L. This is typial for the metalli regime. How-ever, z1 does not depend on the size L when W = 57:5.This is onsistent with saling equation (4). The in-sulating regime, where z1 inreases with the size L, isobserved only when W > 57:5 (Fig. 5).
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Fig. 5. The 5D Anderson model: the parameter z1 asa funtion of disorder W for L = 4; 5; 6; 7 and L == 8. The data indiate that z1 does not depend onthe size L when W � 57:5. This value is onsid-ered as a ritial disorder W in the �standard� �nite-size saling theory. Solid lines are �ts z1(L) = z1 ++ s(L)(W �W). The inset shows the L-dependeneof the slope s(L) / L1:0413 . The original �gure waspublished in [4℄ but new data for L = 8 are addedWe note that z1 � 7 for disorder W � 57:5. There-fore, the loalization length�1D = 2z1L (10)is muh smaller than the size of the system and we donot expet that �nite-size e�ets play a signi�ant role,although the size L is muh smaller than in 3D system.A saling analysis similar to that for the 3D modelallows �nding the ritial exponent, �5D � 0:96.4. CONCLUSIONWe showed that numerial data for the parameter z1do not agree with the preditions of the theory in [1℄.Both z1 and the loalization length are analyti on-tinuous funtions of the disorder W and the size of thesystem L.For the 3D system, we presented additional numer-ial data for larger system size L � 24 up to L = 34.These new data on�rm the previous estimation of theritial exponent � = 1:56 [3, 8℄. It is worth mention-1228
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