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REPLY TO THE COMMENT BY P. MARKO�I. M. Suslov *Kapitza Institute for Physial Problems, Russian Aademy of Sienes119334, Mosow, RussiaReeived May 18, 2012We present another interpretation of the data by P. Marko² and give numerous new illustrations of our onep-tion. All the existing numerial data look perfetly ompatible with preditions of the self-onsistent theory ofloalization.My paper [1℄ presents detailed preditions of theself-onsistent theory of loalization for the quantitiesthat are immediately measured in numerial experi-ments; it allows making a omparison on the level ofthe raw data, avoiding the ambiguous treatment pro-edure. Suh an approah is motivated by the di�erentstatus of numerial results. The raw data are obtainedindependently by di�erent groups and there is a er-tain onsensus in this respet; it is not reasonable toquestion these data. However, it is possible to doubtnumerial algorithms themselves, whih are not basedon a �rm theoretial ground. Suh an approah is in theinterest of numerial researhes as long as their present-day results ontradit both experiment and the gen-eral theoretial priniples. The self-onsistent theoryby Vollhardt and Wöl�e (for the �rst time) allows jus-tifying one of the popular variants of �nite-size salingbased on the onsideration of auxiliary quasi-1D sys-tems [2, 3℄ with a �nite transverse size L. This theoryalso predits essential saling orretions, suh that thesaling parameter behaves as C(L + L0) with L0 > 0in the viinity of the transition, whih an be prati-ally interpreted as CL1=� with � > 1. Analysis of theexisting numerial data shows that there are no seriousontraditions between the self-onsistent theory andthe raw numerial data.Of ourse, this does not prove the validity of theself-onsistent theory: deviations an be small but sig-ni�ant, and a serious analysis is neessary. The analy-sis of this kind is expeted from an expert in numerialresearh suh as P. Marko². In fat, in his omment [4℄,he makes no e�ort to follow my suggestions but is fullysatis�ed with the use of the �standard saling formu-*E-mail: suslov�kapitza.ras.ru

4

3

z1

W = 17

3.41 + 0.09 L0.58

W = 16.6

W = 16.5

3.51 − 0.11 L0.53

W = 16

0 10 20 30 L
L0 = 5Fig. 1. Our interpretation of the 3D data in [4℄las�. First of all, there are no �standard saling formu-las�, sine orretions to saling ertainly exist and noreliable proedure to deal with them is available. Fur-ther, the onventional saling is ertainly invalid fordimensions d > 4; this is a theorem [1℄. Finally, in [1℄,I did not deny the possibility to �t the data by a sim-ple power law dependene but I stressed the ambiguityof suh proedure. From this point of view, Figs. 2�5in [4℄ have no relation to the ritiism of my paper.The 3D system. In this ase, P. Marko² providesnot muh progress: he extends his results to L = 34,while data up to L = 50 were disussed in Ref. [1℄. Ourinterpretation of 3D data is presented in Fig. 1. Thefollowing points should be noted.a) The most interesting question is: does L0 haveessential drift when the range of L is extended? If wetry to retain the estimate L0 = 5 obtained in [1℄ forL � 24, then the data for W = 16:5 and 16:6 are �ttedwell with suh a restrition.1230
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1.4Fig. 2. The same as in Fig. 1, but with smaller L and higher auray (from paper [5℄). For large deviations from theritial point, the dependenes are seen to aquire an essential urvature, while L0 hanges signi�antly. To be omparedwith Fig. 1
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Fig. 3. The 5D data in [4℄ and its omparison withsaling relation (2)b) The data for W = 16 and W = 17 show er-tain deviations from the linear behavior but they arenot very impressive beause the sattering of points israther large.) In fat, the data forW = 16 andW = 17 ontainthe e�et of the W nonlinearity. If we suppose � = 1,then � � 30 for jW �Wj = 0:5 and nonlinear e�etsare essential for L � 30. Figure 1 on�rms this onlu-sion, sine the data for W = 16 and W = 17 are notsymmetri with respet to the urve W = 16:5 1). De-1) In fat, Fig. 1 roughly on�rms that � � 30 beause devi-ations of z1 from its ritial value are of the order of unity (if� = 1:5, then � should be something like 150).

viations from the linear behavior are on the same levelas symmetry violation. It looks rather probable thatfor the a narrower interval (like W = 16:25�16.75), �t-ting by a linear dependene will be satisfatory 2). Thisargument is supported by other numerial data (Fig. 2).Marko² has an illusion that a more ompliated pro-edure allows obtaining a higher auray. In partiu-lar, in the treatment of the W dependene, he relies onthe quadrati expansion in W�W. In fat, one annotexlude possibility that the oe�ient of the quadratiterm is small and higher-order orretions are essen-tial. If di�erent nonlinear funtions are allowed, theunertainty will be the same as for a simple linear �tin a narrower interval. In the latter ase, it is impos-sible to obtain a nonlinear behavior for the derivatives(L) = [z1(L)℄0� from the apparently linear dependen-ies z1(L) (Fig. 2). With a nonlinear treatment, Marko²was able to do it (see Fig. 3 in [4℄).The omparison in Fig. 3 in [4℄ is not honest, be-ause the dashed line does not orrespond to predi-tions of Ref. [1℄. The predited dependene is C(L+L0)and not CL, and hene the straight line with the unitslope is irrelevant. In fat, our onept works exel-lently in the range L � 20 (Fig. 2), where Marko² showsdisastrous deviations.The 5D model. In this setion we read:�Our data in Fig. 4 do not indiate any disontinuityin the L dependene. On the ontrary, z1 is a smoothanalyti funtion of both parameters, W and L�.2) It is lear from Fig. 2 in [4℄ that the author has the inter-mediate data for Fig. 1. Why does he not show them?1231
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Fig. 5. Data for the inverse partiipation ratio Iq withq = 5 [8℄ and their �tting by the dependene C(L+L0).We an see an essential hange in L0 for large devia-tions from the ritial pointI do not predit any disontinuity, it is a fantasy ofMarko². It is easy to see from Eq. (45) in [1℄,��d�2 = 1Ld�2 12mL � m2�d�4;thatmL � z1 is a regular funtion of L and � = W�W.A singularity is developed only in the thermodynamilimit L ! 1, as in all saling theories. Modi�ationssuggested for d > 4 orrespond to the usual salingonstrutions, but in di�erent variablesy = �1DL � aL�(d�4)=3 ; x = �L � aL�(d�4)=3 : (1)The saling relation is found in the analyti form� 1x2 = y � 1y2 ; (2)

where the proper sales for �1D and � are hosen. Fig-ure 3 shows the quantity z1L1=3 � 1=y as a funtionof L. Its dependene on 1=x / L4=3 has the sameform but the logarithmi sale should be hanged bythe fator 4=3. The solid lines orrespond to the sal-ing relation (2).Conlusion. After repeating the legend on dis-ontinuities, the author provides additional argumen-tation:�We also note that the same value of the ritial ex-ponent was obtained from numerial analysis of otherphysial quantities: mean ondutane, ondutanedistribution, inverse partiipation ratio : : : �In fat, two variants of saling, (a) quasi-1D sys-tems and (b) level statistis, were disussed in Ref. [1℄.The third variant, () mean ondutane, is disussedin reent paper [6℄. The next two variants, (d) on-dutane distribution [7℄ and (e) inverse partiipationratio [8℄ are illustrated in Figs. 4 and 5.The �nal arguments are also not serious:�This value of the ritial exponent was reentlyveri�ed experimentally [11℄ and alulated analyti-ally [12℄�.Papers [11℄ deal with a quasiperiodi kiked rotor,whose equivalene to the 3D Anderson model is onlya hypothesis essentially based on questionable numer-ial data 3). The real experiments on disordered sys-tems [10�12℄ support the results of the self-onsistenttheory.The �analyti� result is the relation s = �(d � 2),whih is aepted by all serious theoretiians. Its viola-3) In fat, loalization in quasiperiodial systems has an essen-tial spei�ity in omparison with random systems [9℄.1232
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