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QUANTUM MAGNETO-OPTICS OF THE GRAPHITE FAMILYL. A. Falkovsky *Landau Institute for Theoretial Physis119334, Mosow, RussiaVereshhagin Institute of High Pressure Physis142190, Troitsk, Mosow Region, RussiaReeived May 29, 2012The optial ondutivity of graphene, bilayer graphene, and graphite in quantizing magneti �elds is studied.Both dynamial ondutivities, longitudinal and Hall's, are evaluated analytially. The ondutivity peaks areexplained in terms of eletron transitions. Correspondenes between the transition frequenies and the magneto-optial features are established using the theoretial results. We show that trigonal warping an be onsideredwithin the perturbation theory for strong magneti �elds larger than 1 T. The semilassial approah is appliedfor weak �elds when the Fermi energy is muh larger than the ylotron frequeny. The main optial transi-tions obey the seletion rule with �n = 1 for the Landau number n, but the �n = 2 transitions due to thetrigonal warping are also possible. The Faraday/Kerr rotation and light transmission/re�etion in quantizingmagneti �elds are alulated. Parameters of the Slonzewski�Weiss�MClure model are used in the �t takingthe previous de Haas�van Alphen measurements into aount and orreting some of them in the ase of strongmagneti �elds. Contents1. Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13092. Eletron dispersion in the graphene fami-ly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13102.1. Eletron dispersion in graphene . . . . . . . . . . . 13102.2. Eletron dispersion in bilayer graphene and gra-phite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13103. Optial ondutivity . . . . . . . . . . . . . . . . . . . . 13124. Graphene in magneti �elds . . . . . . . . . . . 13135. Graphene layers with trigonal warping inmagneti �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
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L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012Semiondutors with a gap are needed for eletroniappliations. Investigations of the graphene bilayer andmultilayer are very popular beause the gap appearswhen the bias is applied. We see how physis made airle over half a entury, returning to graphite studies.Slonzewski, Weiss, and MClure (SWMC) should bementioned here beause they have stated the desrip-tion of a layered matter [1℄ with interations that arestrong in the layer and weak between layers.The most aurate investigation of the band stru-ture of metals and semiondutors is a study of theLandau levels through experiments suh as magneto-optis [2�10℄ and magneto-transport [11�15℄. In mag-neti �elds, the lassial and quantum Hall e�ets areobserved, as is the polarization rotation for transmit-ted light (the Faraday rotation) or re�eted light (theKerr rotation). However, the interpretation of the ex-perimental results involves a signi�ant degree of un-ertainty, beause it is not lear how the resonanesan be identi�ed and whih eletron transitions theyorrespond to.The theoretial solution of the band problem inmagneti �elds often annot be found exatly. A typi-al example is presented by graphene layers. For bilayergraphene and graphite, the e�etive Hamiltonian is a4 � 4 matrix giving four energy bands. The trigonalwarping desribed by the e�etive Hamiltonian with arelatively small parameter 3 provides an evident ef-fet. Another important parameter is the gate-tunablebandgap U in bilayer graphene. In this situation, thequantization problem annot be solved within a rigor-ous method. To overome this di�ulty, several meth-ods have been proposed for approximate [9; 16�19℄, nu-merial [20�24℄, and semilassial quantization [25, 26℄.This paper is organized as follows. In Se. 2,we reall the eletron dispersion in graphene, bilayergraphene, and graphite. In Se. 3, the optial ondu-tivity and light transmission are disussed. In Ses. 4and 5, we desribe the quantization in magneti �eldsin detail. In Se. 6, the longitudinal and Hall ondu-tivities and the Faraday/Kerr rotation are desribed.2. ELECTRON DISPERSION IN THEGRAPHENE FAMILY2.1. Eletron dispersion in grapheneThe symmetry of theK point is C3v with a threefoldaxis and re�etion planes. This group has a twofoldrepresentation with the basis funtions transformingone into another under re�etions and aquiring thefators exp (�2�i=3) under rotations. The linear mo-

mentum variations from the K point, p� = �ipx � py,transform similarly. The e�etive Hamiltonian is in-variant under the group transformations, and we havea unique possibility to onstrut the invariant Hamil-tonian linear in the momentum asH(p) =  0 vp+vp� 0 ! ; (1)where v is a onstant of the dimension of veloity. Thesame Hamiltonian has been written using the tight-binding model.The eigenvalues of this matrix give two bands,"1;2 = �vqp2x + p2y = �vp;where the sign ��� orresponds to holes and eletrons.The gapless linear spetrum arises as a onsequene ofthe symmetry, and the hemial potential at zero tem-peratures oinides with the band rossing due to thearbon valene. The ylotron mass is given bym(") = 12� dS(")d" = "v2 ;and the arrier onentration at zero temperaturen(�) = �2=�~2v2 is expressed in terms of the hem-ial potential �.By tuning the gate voltage, the linearity of the spe-trum has been examined in the Shubnikov�de Haasstudies [27℄ with the help of the relation m(�)v == �~p�n(�) between the e�etive mass and the ar-rier onentration at the Fermi level. The �onstant�parameter v was found to be no longer onstant; atlow arrier onentrations n � 109 m�2, it exeeds itsusual value v = (1:05� 0:10) � 108 m/s (at onentra-tions n > 1011 m�2) by a fator of 3.This is a result of eletron�eletron interations,whih beome stronger at low arrier onentrations.The logarithmi renormalization of the veloity wasfound by Abrikosov and Beneslavsky in Ref. [28℄ for thethree-dimensional ase and in Refs. [29; 30℄ for two-di-mensional graphene. We note that no phase transitionwas revealed even at the lowest arrier onentration.We an onlude that the Coulomb interations do notreate any gap in the spetrum.2.2. Eletron dispersion in bilayer grapheneand graphiteBilayer graphene has attrated muh interest partlydue to the opening of a tunable gap in its eletroni1310



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-optis of the graphite familyTable. The parameters of the Hamiltonian, Eq. (2), their values in the SWMC model, and the values obtained inexperimental works, all in meVEq. (2) 0 1 2 3 4 5 � "F3050 360 �10:2 270 �150 �1:5 16 �4:1Sa 0 1 22 3 �4 25 �+ 2(2 � 5) 22 + "FMb 3160 390 �20 276 44 38 8 �24D 3120 380 �21 315 120 �3 �2 �DFTd 2598�15 364�20 �14� 8 319�20 177�25 36�13 24�10 �13� 8aSWMC [1℄, bMendez et al. [5℄, Doezema et al. [4℄, dCharlier et al. [41℄."s21HKH H 0K0 12
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Fig. 1. Band struture of graphitespetrum by an external eletrostati �eld. Suh a phe-nomenon was predited in Refs. [31, 32℄ and was ob-served in optial studies ontrolled by applying a gatevoltage [33�40℄.The e�etive Hamiltonian of the SWMC theory anbe written [22, 23℄ near the KH line in graphite as
H(p) = 0BBBBBBBBBBBB�

~5 vp+ ~1 ~4vp�0vp� ~2 ~4vp�0 ~3vp+0~1 ~4vp+0 ~5 vp�~4vp+0 ~3vp�0 vp+ ~2
1CCCCCCCCCCCCA ; (2)

where p� = �ipx� py are the momentum omponentsand ~j are the funtions of the pz momentum in the
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Fig. 2. Band struture of bilayer graphenemajor axis diretion,~2 = 22 os (2pzd0); ~5 = 25 os (2pzd0) + �;~i = 2i os (pzd0); i = 1; 3; 4;with the distane d0 = 3:35Å between layers ingraphite. The nearest-neighbor hopping integral 0 �� 3 eV orresponds with the veloity parameter v == 1:5a00 = 106 m/s and the in-layer inter atomidistane a0 = 1:415Å. Hamiltonian (2) is representedin a somewhat di�erent form than in Ref. [1℄. The rela-tions between the hopping integrals in these forms aregiven in the Table. The reent estimate [35, 36℄ of theparameters agrees with those given in the Table.1311



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012The eletron spetrum of graphite is shown inFig. 1. There are four levels labeled by s = 1; 2; 3; 4from below at any momentum. As a onsequene ofthe axial symmetry, a twofold degeneration "2 = "3exists at px = py = 0, i. e., on the KH line.In bilayer graphene, every layer has only one neigh-boring layer. Therefore, we have to set 2 = 5 = 0and to substitute ~i = i for i = 1; 3; 4 in Hamilto-nian (2). The parameter U an also be inluded inthe bilayer Hamiltonian as a result of the gate voltage.Then the gap appears between "2 and "3, and these
bands aquire the shape of a �mexian hat� (Fig. 2).Importantly, two points, K and K 0, are in the Bril-louin zone and transforming one into another underre�etion. Suh a re�etion hanges the U sign, givingtwo di�erent dispersion laws at the K and K 0 points.3. OPTICAL CONDUCTIVITYWe use the general expression for the ondutivityas a funtion of the eletri �eld frequeny ! and wavevetor k in the form [42, 43℄�ij(!; k) = 2ie2 Xp;m>n� vimmvjmmff0["m(p�)℄� f0["m(p+)℄g["m(p+)� "m(p�)℄[! � "m(p+) + "m(p�)℄ ++ 2!vimnvjnmff0["m(p�)℄� f0["n(p+)℄g["n(p+)� "m(p�)℄f(!+iÆ)2 � ["n(p+)� "m(p�)℄2g� ; (3)valid in the ollisionless limit (!; kv)� ��1, where ��1is the eletron relaxation frequeny, p� = p�k=2, andvimn is the matrix element of the veloity operatorv = �H(p)�p (4)determined by Hamiltonian (1) or (2). Hitherto, wedid not use any peuliarities of the graphene spetrum.The expression aquired only the fator 4 due to sum-mation over spin and over six points of the K type (twoper a Brillouin zone).The �rst term in Eq. (3) orresponds to the intra-band eletron�photon sattering proesses. In the limitof the high arrier onentration (T;EF ) � kv, it o-inides with the usual Drude�Boltzmann ondutivityif the substitution ! ! ! + i��1 is made. The seondterm owes its origin to the interband n ! m tran-sitions with the in�nitesimal Æ determining a bypassaround the pole in integrating over the momentum p.The real part of this ontribution redues to the well-known expression for the absorbed energy due to diretinterband transitions.Optial ondutivity of grapheneFor optial frequenies ! � kv, we an integrateover the angle in Eq. (3) and write the ondutivity as�(!) = e2!i�~ 24 1Z�1 d" j"j!2 df(")d" �� 1Z0 d" f(�")� f(")(! + iÆ)2 � 4"235 (5)

using the variable " = vp.The intraband term an be integrated one more,�intra(!) = 2ie2T�~(! + i��1) ln�2 h �2T � ; (6)where we write ! + i��1 instead of ! to take thesmall relaxation frequeny into aount. This Drude�Boltzmann ondutivity at low temperatures T � �takes the form�intra(!) = ie2j�j�~(! + i��1)In the opposite limit of high temperatures, the intra-band ondutivity (6) beomes�intra(!) = 2ie2T ln 2�~(! + i��1) :The temperature dependene of the relaxation rate ingraphene is disussed theoretially in Ref. [44℄.The interband ontribution in Eq. (5) integrated atzero temperatures gives�inter(!) = e24~ ��(! � 2�)� i2� ln (! + 2�)2(! � 2�)2 � ;where the �-funtion expresses the threshold behaviorof interband eletron transitions at ! = 2�. The tem-perature smooths out all the singularities:�(! � 2�)! 12 + 1� artg ! � 2�2T ;(! � 2�)2 ! (! � 2�)2 + (2T )2:1312



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-optis of the graphite familyThe main issue should be emphasized. In the high-frequeny region ! � (T; �), the interband transitionsmake the main ontribution to the ondutivity�(!) = e24~ ;whih has a universal harater independent of any ma-terial parameters. This frequeny region is boundedabove by the band width of around 3 eV. Using the uni-versal ondutivity, we an alulate the light transmis-sion through graphene [45℄ in the approximation linearin ondutivity,T = 1� 4� Re�(!) os � = 1� � e2~ os �;where � is the inidene angle. The intensity of re-�eted light is quadrati in the �ne struture onstant� = e2=~. In exellent agreement with the theory,for a wide optial range, several experimental groups[46�48℄ observe light transmission through graphene aswell as bilayer graphene where the di�erene from unityis twie as large. It is exeptionally intriguing thatlight transmission involves the �ne struture onstantof quantum eletrodynamis, having really no relationto the graphene physis.For graphite, the value �d = e2=4~d0 plays therole of a universal dynamial ondutivity, where d0is the distane between layers. As is shown experimen-tally [49℄ and theoretially [50℄, the dynamial ondu-tivity of graphite is lose to this universal value in thefrequeny range 0.1�1 eV, having the kink singularityat the interband transition frequeny ! = 21.4. GRAPHENE IN MAGNETIC FIELDSIn the presene of a magneti �eld B, the momen-tum projetions p+ and p� beome operators with theommutation rule fp̂+; p̂�g = �2e~B=. We use therelations vp̂+ = !Ba; vp̂� = !Bayinvolving the reation (ay) and annihilation (a) opera-tors with !B = vp2jej~B=. We write only one of thetwo xy spae oordinates inluding the orrespondingdegeneray proportional to the magneti �eld in the�nal results.For graphene, we seek the eigenfuntion of Hamil-tonian (1) in the form [51, 52℄ �sn(x) = ( C1sn'n�1(x)C2sn'n(x) ; (7)

where 'n(x) are orthonormal Hermite funtions withthe Landau number n � 0. Eliminating the Hermitefuntions from the equations, we obtain a system oflinear equations for the eigenvetor Csn, �" !Bpn!Bpn �" !�( C1snC2sn = 0;whih gives the eigenvalues"sn = �!Bpn (8)with s = 1; 2 and n = 0; 1; 2; : : : For n = 0, there isonly one level "10 = 0 with C10 = 0 and C20 = 1, asfollows from Eq. (7). The wave funtion olumns areC1snC2sn = 1p2 ( 1�1 and 11for s = 1 and s = 2 and n = 1; 2; : : :5. GRAPHENE LAYERS WITH TRIGONALWARPING IN MAGNETIC FIELDSWe seek eigenfuntion of Hamiltonian (2) as a ol-umn  �sn(x) =8>>>><>>>>: C1sn'n�1(x)C2sn'n(x)C3sn'n�1(x)C4sn'n�2(x) : (9)We see the every row in Hamiltonian (2) beomesproportional to a de�nite Hermite funtion if the termswith 3 are omitted. We show that the terms propor-tional to 3=0 an be onsidered within the perturba-tion theory or the semilassial approximation.Eliminating the Hermite funtions from the equa-tions, we obtain a system of linear equations for theeigenvetor Csn,0BBBB� ~5 � " !Bpn ~1 !4pn� 1!Bpn ~2 � " !4pn 0~1 !4pn ~5 � " !Bpn� 1!4pn� 1 0 !Bpn� 1 ~2 � " 1CCCCA��8>>>><>>>>: C1snC2snC3snC4sn = 0 ; (10)15 ÆÝÒÔ, âûï. 6 (12) 1313



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012B = 7 T
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Fig. 3. Landau levels in graphite "sn for n from 0 to 4 in four bands s = 1; 2; 3, and 4 (in dotted, solid, dashed, anddash-dotted lines, orrespondingly) as funtions of the wave vetor kz along the KH line in the Brillouin zone (K = 0,H = �=2d0) in the magneti �eld B = 7 T with the SWMC model parameters given in the Table. The main eletrontransitions shown in the right panel below 100 meV our between the levels with the seletion rule �n = 1where the band number s = 1; 2; 3; 4 labels the solu-tions at a given n from the bottom, !B = vp2jej~B=,and !4 = ~4!B=0.The eigenvalues of the matrix in Eq. (10) are easyto �nd; they are shown in Fig. 3 as funtions of themomentum pz. For eah Landau number n � 2 andmomentum pz, there are four eigenvalues "s(n) andfour orresponding eigenvetors, Eq. (9), labeled by theband subsript s. We use the notation jsni for levels.In addition, there are four levels. One of them is"1(n = 0) = ~2 (11)for n = 0 with the eigenvetor C0 = (0; 1; 0; 0), as isevident from Eq. (9). This level intersets the Fermilevel and belongs to the eletron (hole) band near theK (H) point. The other three levels labeled by n = 1

and s = 1; 2; 3 are determined by the �rst three equa-tions of system (10) with C4s1 = 0.The j21i level is lose to the j10i level. In the re-gion pz, 1= os(2pzd0) � 2, where the eletrons areloated, this level has the energy"2(n = 1) = ~2 � 2!2B~4~10 :In the same region, the two losest bands (s = 2; 3)with n � 2 are written as"2;3(n) = ~2 � !2B~4~10 (2n� 1)�!2B~1 pn(n� 1) (12)with the auray of (~4=0)2.1314



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-optis of the graphite family5.1. Perturbation theory for the matrixHamiltonianDue to the double degeneray existing on the KHline, the e�et of trigonal warping beomes essential.The simplest way to evaluate the orretions resultingfrom the warping 3 is to onsider the Green's funtionhaving the poles at the eletron levels.The Green's funtion of the unperturbed Hamilto-nian is given byG��0 ("; x; x0) =Xsn  �sn(x) ��sn (x0)"� "sn ; (13)whih involves the funtions in Eq. (9). The orretionsto the levels an be found by iterations,Gm+1(x; x0) = Z d2x00G0(x; x00)V(x00)Gm(x00; x0);where V(x) has only two matrix elements V 42 == !B ~3a+=0 and V 24 = V 42� in Hamiltonian (2).At the seond iteration, we obtain the orretionsZ d2x1d2x2G�40 (x; x1)V 42(x1)G220 (x1; x2)�� V 24(x2)G4�0 (x2; x0)and a similar term with the supersript substitution2$ 4. The matrix elements of the perturbation V areeasily alulated with respet to the Hermite funtionsin Eqs. (13) and (9), and we obtain�!B~30 �2 ��Xs0sn (n� 2)jC4snC2s0;n�3j2 �sn(x) ��sn (x0)("� "sn)("� "s0;n�3)("� "sn) ; (14)for the diagram shown in the upper part of Fig. 4. Thisorretion plays an important role near the poles of theGreen's funtion. For this reason, for " lose to "sn, the" value in the seond fator of the denominator an bereplaed by "sn. Thus, the total Green's funtion (withthe orretion) has the struture1"� "sn + Æ("� "sn)2 ;whih an be rewritten up to seond-order terms in Æas 1"� "sn � Æ :

V 42 V 24

V 42

V 42

а

bFig. 4. Diagrams for the seond iteration of the pertur-bation theory; (a) orretions to the Green's funtion,(b) orretions to the vertex in ondutivityTherefore, we an represent [16℄ the orretion as a shiftÆ"sn of the poles ("� "sn � Æ"sn)�1 withÆ"s(n) = �!B~30 �2Xs0 ((n� 2)jC4snC2s0;n�3j2"s(n)� "s0(n� 3) ++ (n+ 1)jC2snC4s0;n+3j2"s(n)� "s0(n+ 3) ) ; (15)where the �rst term should be omitted for n � 3 < 0.In fat, our illustration is nothing but a alulation ofthe eletron self-energy and the naive expansion of thedenominator an indeed be replaed by summing theorresponding diagrams.The orreted j10i level is given by"1(n = 0) = ~2 +�!B~30 �2Xs0 jC4s03j2~2 � "s0(3) : (16)The j21i level is very lose to the level with n = 0,Eq. (16).Comparing the orretions, Eq. (15), with the lead-ing ontribution in Eq. (12), we �nd, �rst, that theperturbation theory is valid when the expansion pa-rameter (~3~1=0!B)2 beomes small, i. e., for strongmagneti �elds B > 1 T. Seond, the e�et of 4 islinear, whereas that of 3 is quadrati in these on-stants. Therefore, the 4 onstant is more essential forthe eletron levels in magneti �elds.Comparison shows that Eqs. (15) and (16) for le-vels give the same results as the numerial method oftrunating the in�nite-rank matrix in Ref. [21℄.1315 15*



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012We note that the derived expressions are also appli-able to bilayer graphene if we inlude the �eld U andset 2 = 5 = 0 and ~i = i for i = 1; 3; 4. In the sim-plest approah, when only the main parameters 1 andU are retained, the magneti levels "sn are determinedby the equation[(U � "sn)2 � !2Bn℄[(U + "sn)2 � !2B(n+ 1)℄ ++ 21(U2 � "2sn) = 0:5.2. Berry phase, semilassial quantization,and Landau levelsAlternatively, semilassial quantization an beused for relatively weak magneti �elds when the y-lotron frequeny is small ompared with the Fermi en-ergy. We an then use the Bohr�Sommerfeld onditionin the form e~BS(") = 2� �ns + T4 + Æ(")� ; (17)where S(") is the ross-setional area of the eletron or-bit in the pxpy spae for the energy " and the onstantmomentum projetion pz on the magneti �eld, ns isan integer supposed to be large. The integer T is thenumber of smooth turning points on the eletron orbit.There are two smooth turning points for the Landaulevels and only one for skipping eletrons re�eted bythe hard edge.We use the semilassial approah for the mag-neti �eld normal to the layered system when only thein-layer momentum omponents px and py are quan-tized and the size of the Fermi surfae is small om-pared with the Brillouin zone size. We note that theÆ(") phase depends on the energy. If the spin is ne-gleted, Æ = 0 and T = 2 for the Landau levels, andÆ = 1=2 and T = 2 for monolayer graphene. In thesetwo ases, the semilassial result oinides with therigorous quantization and it is losely onneted withthe topologial Berry phase [53℄. This Æ-phase was eval-uated for bismuth in Ref. [25℄, preeding Berry's workby almost two deades, and it was onsidered again forbismuth in Ref. [54℄. For graphite, semilassial quanti-zation was applied in Ref. [26℄. However, in the generalase, the evaluation of the Æ-phase still attrats muhinterest [55�61℄.The problem under onsideration is desribed bythe Hamiltonian in Eq. (1) or (2) rewritten in the form(V � ~p+ �� ")	 = 0; (18)where ~p and V are the respetive two-dimensional ve-tor and matrix, with the in-layer omponents x and y.

The olumn 	 is labeled by the band subsript whihwe omit together with the matrix subsripts on � andV, summation over them is implied in Eq. (18). Thematries � and V are the �rst two terms (of zero and�rst orders) in a series expansion of the Hamiltonian inpowers of quasi-momenta px and py.In the magneti �eld, the momentum operator ~p de-pends on the vetor potentialA by means of the Peierlssubstitution, ~p = �i~r� eA=;providing the gauge invariane of the theory. The mag-neti �eld an also enter expliitly, desribing the mag-neti interation with the spin of partiles. However,for the graphene family, the magneti interation isweak and omitted here.It is onvenient to hoose the vetor potential inthe Landau gauge Ax = �By, Ay = Az = 0 in suha way that the Hamiltonian is independent of the xoordinate. We seek the funtion 	 in the form	 = �exp (is=~);where the funtion s is assumed to be ommon for allomponent of the olumn 	.The funtion � is expanded in series in ~=i:� = 1Xm=0�~i�m 'm:Colleting the terms with the same powers of ~ inEq. (18), we have(V � p+ �� ")'m = �Vr'm�1: (19)For m = 0, we obtain a homogeneous system of alge-brai equations for the wave funtion olumn '0,(V � p+ �� ")'0 = 0; (20)whih has a solution under the onditionDet(V � p+ �� ") = 0: (21)This equation determines the lassial eletron orbit,"(px; py) = ", at a given eletron energy " in preseneof the magneti �eld. On the other hand, the equationoinides with the dispersion equation sine it does notontain the magneti �eld. In the three-dimensionalase, as in graphite, the dispersion also depends on themomentum projetion pz on the magneti �eld. There-fore, our sheme does not require the expansion in po-wers of pz.Equations (19) with m = 0; 1 give the wave fun-tion in the semilassial approximation [25℄. The quan-tization ondition an be written, as usual, from the1316



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-optis of the graphite familyrequirement that the wave funtion be single valued.Making the bypass in the omplex plane around theturning points to obtain dereasing solutions in thelassially inaessible region, we obtain, �rst, T = 2and, seond, the Æ-phase as a ontour integral along thelassial orbitÆ(") = 12� Im I dpx'�0'0vy'�0Vy d'0dpx ; (22)where vy = �"(px; py)=�py. Using the Hamiltonianhermitiity, after the simple algebra (see Ref. [25℄),Eq. (22) an be rewritten in the gauge-invariant formÆ(") = 14� Im I dp'�0'0v'�0 �V � ddp�z '0; (23)where v = qv2x + v2y and the integrand is alled theBerry onnetion (or urvature). Everywhere, the sum-mation over the band subsript is implied.We emphasize that Eqs. (22) and (23) yield jÆ(")j == 1=2 for monolayer graphene, whih, together withT = 2, gives the same Landau levels as the exat quan-tization (8).We now alulate the Æ-phase for bilayer graphene.In the simplest ase, omitting 3 and 4, the e�etiveHamiltonian an be written asH(p) = 0BBBB� U q+ 1 0q� U 0 01 0 �U q�0 0 q+ �U 1CCCCA ; (24)where the parameter U desribes the tunable gap dueto the gate voltage and 1 is the interlayer nearest-neighbor hopping integral energy. The onstant ve-loity parameter v is inorporated in the notationq� = vp�. The band struture is shown in Fig. 2. Theminimal value of the upper energy "4 ispU2 + 21 , andthe "3 band takes the maximal value jU j at q = 0. Here,the orbit is the irle de�ned by Eq. (21), written in theform[(U+")2�q2℄[(U�")2�q2℄�21("2�U2) = 0: (25)The eigenfuntion '0 of Hamiltonian (24) an be takenas '0 = 0BBBB� (U � ")[("+ U)2 � q2℄q�[q2 � ("+ U)2℄1(U2 � "2)1q+(U � ") 1CCCCA ; (26)with the norm squared

3 = 4 = 03 = 270 meV, 4 = �150 meVU = 40 meV1 = 360 meV
40 60 80 100 120"; meV�0:5�0:4�0:3�0:2�0:1Æ

Fig. 5. Semilassial phase vs energy in the ondu-tion band of bilayer graphene without trigonal warping(solid line) and with the warping (dashed line)'�0'0 = [("+ U)2 � q2℄2[("� U)2 + q2℄ ++ 21("� U)2[("+ U)2 + q2℄: (27)The derivatives for Eq. (22) are alulated along thetrajetory where the energy " and, onsequently, thetrajetory radius q are onstant.If the onditions jU j < j"j <pU2 + 21 are ful�lled,Eq. (25) has only one solution for the radius squaredq2 = U2 + "2 +q4U2"2 + ("2 � U2)21 :The matrix Vy = �H=�py in Eq. (22) has four nonzeroelements, V 12y = V 21y = V 34y = V 43y = �1.Using Eqs. (25) and (26), we �ndIm'�0Vy d'0dpx = 4U"(U � ")[("+ U)2 � q2℄: (28)This expression is onstant on the trajetory, as is'�0'0, Eq. (27). Therefore, in order to �nd Æ in Eq. (22),we have to integrate along the trajetoryI dpxvy :This integral equals �dS(")=d", where S(") = �q2 isthe ross-setional area, Eq. (17), withdS(")d" = �"2(q2 + U2 � "2) + 21q2 � U2 � "2 : (29)We now have to substitute Eqs. (27)�(29) inEq. (22). Thus, we �nd the Berry phaseÆ(") = � "Uq2�"2�U2 = � "Up4U2"2+("2�U2)21 (30)1317



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012j34ij33ij32ij21ij10ij22ij23ij24ij25ij27i0 10 20 30 40 50B; T�300�200�1000100200300"; meV j35iU = 40 meV1 = 360 meVj37i j36i
j26iFig. 6. Energy levels "sn for the K valley in magneti�elds for bilayer graphene within the perturbation ap-proximation (solid lines) and in the semilassial ap-proah (dash-dotted lines); in the notation jsni, n isthe Landau number and s = 1; 2; 3; 4 is the band num-ber; only two nearest bands (s = 2; 3) are shown atgiven n from 0 to 7. There is only one level, j10i,with n = 0 and three levels (s = 1; 2; 3) with n = 1.The levels for the K0 valley an be obtained by mirrorre�etion with respet to the " = 0 axisshown in Fig. 5, where the Æ-phase of bilayer graphenewith trigonal warping is also shown; the detailed al-ulations will be published elsewhere. For the ungapedbilayer, U = 0, the Berry phase Æ(") = 0. The Berryphase depends on the energy and Æ = �1=2 at " = �U .At large energies, "� U , the Berry phase Æ ! �U=1.Substituting Eq. (30) in the semilassial quanti-zation ondition, Eq. (17), and solving the equationobtained for ", we obtain the energy levels as funtionsof the magneti �eld. We have to note that the Lan-dau numbers n listed in Fig. 6 do not oinide with thenumbers ns in semilassial ondition (17). The rig-orous quantization shows that there are only one Lan-dau level with n = 0 and three Landau levels withn = 1 [16℄. These levels are not orretly desribedwithin the semilassial approah. However, for n � 2,there are levels in all four bands s (two nearest bandswith s = 2; 3 are shown in Fig. 6). They orrespond tothe semilassial number ns = n�1, and the semilas-sial levels for larger n are in exellent agreement withthe levels obtained in the perturbation approximation.6. MAGNETO-OPTICS EFFECTS INGRAPHENE LAYERSAn important peuliarity of ondutivities in thepresene of magneti �elds is the appearane of the

Hall omponent �xy(!). The Hall ondutivity vio-lates the rotational symmetry of graphene around themajor axis. This implies rotation of the linearly polar-ized eletromagneti wave, i. e., the Faraday and Kerre�ets for transmitted and re�eted waves, orrespond-ingly. First of all, the eletron transitions are possiblebetween the levels with the neighboring Landau num-bers n and di�erent bands s, and therefore the reso-nane denominators �ss0n = "sn � "s0;n+1 arise in theondutivity tensor.Calulations [16℄ give the ondutivities for graphitein the ollisionless limit when the eletron ollision fre-queny � is muh less than the level splitting:�xx(!)i�xy(!) ) = i�d 4!2B�2 Xn;s;s0 �=2Z0 dz�fss0n�ss0n jdss0nj2 �� �(! + i� +�ss0n)�1 � (! + i���ss0n)�1� ; (31)where the integration is taken over the redued Bril-louin zone, 0 < z < �=2. Suh an integration is absentfor graphene and a bilayer. Here, �fss0n = f("s0n+1)�� f("sn) is the di�erene of the Fermi funtions anddss0n = C2snC1s0n+1 + C3snC4s0n+1 ++ (~4=0)(C1snC4s0n+1 + C2snC3s0n+1)is the dipole matrix element expressed in terms of wavefuntions (9). These transitions are most intensive.They obey the seletion rule�n = 1;and are referred to as strong lines. The ondutivityunits �d = e24~d0have the simple meaning of the graphene universal on-dutivity e2=4~ times the number 1=d0 of layers withinthe distane unit in the major axis diretion.Besides, we have to take the renormalization of thedipole moments due to trigonal warping into aount.This additional eletron�photon vertex results in weaklines with the seletion rule�n = 2:We obtain this ontribution by substitutingdss0n = (~3=0)C2snC4s0n+2instead of the matrix element in Eq. (31) and repla-ing the subsript n + 1 ! n + 2. We have to note1318
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Fig. 7. Transmission spetra of gapped bilayergraphene without and with trigonal warping (dashedand solid lines, orrespondingly) at B = 10 Tand U = 30 meV; the band parameters used arev = 1 � 108 m/s, 1 = 360 meV, 4 = �150 meV,"F = 30 meV, and others are listed in the �gure. Therelaxation frequeny is assumed to be � = 5 meVthat the 4 orretions give a linear ontribution (inthe small parameter 4=0) to the ondutivities at themain eletron transitions with �n = 1. The 3 orre-tions are quadrati, but they result in the appearaneof new resonant transitions with �n = 2.There are also small so-alled vertex orretions tothe self-energy shown at the bottom of Fig. 4. Theyresult from the quartet of the oupled Landau levels,whih interfere while the seletion rules �n = 1 and�n = 2 are allowed.6.1. Gapped bilayer grapheneGraphene and bilayer graphene a�et the trans-mission and the Faraday rotation in a linear orderin the �ne struture onstant, whereas the re�etedlight intensity is quadrati in �. We therefore disussthe harateristis of light transmitted through bilayergraphene where the e�ets have a maximum value. Inthis ase, Eq. (31) is valid without the integration overthe z momentum omponent. The ondutivity unitsshould be taken now as �0 = e2=4~. In the approxi-mation linear in ondutivities, the transmission oef-�ient T and the Faraday angle for the free standingbilayer are given by1� T = 4� Re�xx; �F = 2� Re�xy: (32)
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Fig. 8. Faraday rotation in gapped bilayer graphene;the parameters used are the same as in Fig. 7Results of alulations are shown in Figs. 7 and 8.The peaks in absorption, Fig. 7, orrespond to the ele-tron transitions. There is the series of seven lines inthe 0.1�0.4 eV interval. They are doublets exited bythe eletron transitions of the type j2ni ! j3; n + 1iand j3ni ! j2; n + 1i for n from 2 to 8. Two weakerlines at 350 and 380 meV respetively result from thej10i ! j31i and j21i ! j42i transitions. There is thestrongest line at 24 meV exited by the j21i ! j32itransition. All these lines obey the seletion rule�n = 1.The very weak lines at 51 and 78 meV owe theirappearane to the �n = 2 transitions j21i ! j33i andj10i ! j22i.In general, the e�et of the small onstants 3 and4 is more onspiuous on the low levels j10i and j21i.The transition frequenies in the Faraday rotation,Fig. 7, are determined by the derivative of the maxi-mum values. 6.2. GraphiteUsing the ondutivities in Eqs. (31), we �nd theomplex bulk dieletri funtion "ij = Æij + 4�i�ij=!and the re�etion oe�ient and the Kerr rotation (see,e.g., [62℄),R = 12(jr+j2 + jr�j2); �K = 12 arg(r�r�+);where r� = (1 � p"� )=(1 + p"� ) are the re�etionFresnel oe�ients for two irular polarizations with"� = "xx � "xy.1319
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68-meV doublet appears as the splitting of the j24i !! j33i (65 meV) and j23i ! j34i (69 meV) transitionsdue to the eletron�hole asymmetry at the K point ofthe Brillouin zone.The 89-meV line is more ompliated. First, thereare the eletron transitions j24i ! j35i (89 meV) andj25i ! j34i (90 meV) near the K point. Besides, thetransitions j11i ! j10i (95 meV) near the H pointmake a ontribution as well. All these lines obeyingthe seletion rule �n = 1 are strong. There are twoweak lines in the frequeny range. One (j24i ! j32i)is seen at 55 meV as a shoulder on the theoretialurve. The other, at 31 meV, results from the tran-sitions j10i ! j32i near the K point.1321



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012The positions of the lines for �elds in the range 10�30 T agree with observations in Refs. [8, 18℄.The optial Hall ondutivity �xy(!) in the aregime is shown in Figs. 9a and 9b. The ondutivi-ties �xx(!) and �xy(!) allow alulating the Kerr rota-tion and the re�etivity as funtions of frequeny (seeFigs. 9 and 9d). It is evident that the interpretation ofthe Kerr rotation governed by the ondutivity �xy(!)is muh more ompliated in omparison with the lon-gitudinal ondutivity. The Kerr angle and re�etiv-ity shown in Fig. 10 for the di�erent magneti �eldsdemonstrate a strong �eld dependene of the magneto-opti phenomena.7. SUMMARY AND CONCLUSIONSWe have evaluated the perturbation theory for thematrix Hamiltonian, whih permits alulating theorretions to eigenvalues resulting from the small ma-trix elements, partiularly from the trigonal warping.The trigonal warping in graphite an be onsideredwithin the perturbation theory at strong magneti�elds larger than approximately 1 T. For weak mag-neti �elds, when the Fermi energy is muh larger thanthe ylotron frequeny, the semilassial quantizationwith the Berry phase inluded an be applied. We havefound that the prinipal eletron transitions obey theseletion rule�n = 1 for the Landau number n, but the�n = 2 transitions due to the trigonal warping witha small probability are also essential. In graphite, theeletron transitions at the K and H points as well as atintersetions of the Landau levels with the Fermi levelmake ontributions to ondutivity. The good agree-ment between the alulations and the measured Kerrrotation and re�etivity in graphite in the quantizingmagneti �elds is ahieved. The SWMC parametersare used in the �t taking their values from the previ-ous de Haas�van Alphen measurements and inreasingthe Fermi energy value in the ase of strong magneti�elds.We aknowledge the useful disussions with A. Kuz-menko and J. Levallois. This work was supported bythe RFBR (grant No. 10-02-00193-a) and the SCOPES(grant IZ73Z0_128026).REFERENCES1. J. C. Slonhewski and P. R. Weiss, Phys. Rev. 109, 272(1958); J. W. MClure, Phys. Rev. 108, 612 (1957).
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