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We study the expansion method for the gluon distribution function at low x values and calculate the charm struc-
ture functions in the LO and NLO analysis. Our results provide a compact formula for the ratio R° = F} /Fy,
which is approximately independent of = and the details of the parton distribution function at low = values.
This ratio could be a good probe of the charm structure function F3 in the proton deduced from the reduced
charm cross sections at DESY HERA. These results show that the charm structure functions obtained are in
agreement with HERA experimental data and other theoretical models.

1. INTRODUCTION

The low-2 regime of the quantum chromodynamics
(QCD) has been intensely investigated in recent years
for consideration of the heavy quarks [1-5]. Of course,
the notion of the intrinsic charm content of the pro-
ton was introduced over 30 years ago in Ref. [6]. The
study of production mechanisms of heavy quarks pro-
vides us with new tests of QCD. In perturbative QCD
(pQCD), physical quantities can be expanded into the
strong coupling constant ag(p?). Extensions of the u
scale to large values establish the theoretical analysis
that can be described with hard processes. In the case
of heavy quark production, the heavy quarks can be
produced from the boson—gluon fusion (BGF) accord-
ing to Fig. 1. That is, in QCD calculations, the pro-
duction of heavy quarks at HERA proceeds dominantly
via the direct BGF where the photon interacts with a
gluon from the proton by the exchange of a heavy quark
pair.

In this processes all quark flavors lighter than charm
are treated as massless, with the massive charm pro-
duced dynamically in BGF. Charm production con-
tributes at most 30 % to the total deep inelastic scatter-
ing (DIS) cross section at HERA [7]. In the recent mea-
surements of HERA [8], the charm contribution to the
structure function at small x is a large fraction of the
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Fig. 1. The photon—gluon fusion

total. This behavior is directly related to the growth
of the gluon density at small 2, because gluons couple
only through the strong interaction. Consequently, the
gluons are not directly probed in DIS, only contribut-
ing indirectly via the ¢ — ¢@ transition. This involves
the computation of the BGF process v*¢g — ¢¢. This
process can be created when the squared invariant mass
of the hadronic final state is

W2 > 4m?.

In this paper, we apply the expansion of the gluon
distribution at an arbitrary point to the charm struc-
ture functions in deep inelastic scattering. Then we
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present the ratio of the charm structure functions that
is independent of the gluon distribution and is useful
in extracting the charm structure function from the re-
duced charm cross section experimental data.

2. CHARM COMPONENTS OF THE
STRUCTURE FUNCTIONS

In deep inelastic electron—proton scattering, the
heavy-quark contribution to heavy flavor is described
by the reaction

e(l)) + P(p) = e(l2) + Q(p1)Q(p2) + X, (1)

where we neglect the contribution of Z-boson exchange

and omit charged-current interactions. The deep in-

elastic electroproduction cross section for the heavy

quark—antiquark in the final state can be written as
d*c®  2rma’®

_ 2 2 2
drdQ? TQ4(I+ (1—=y) ) Fa(z,Q%,m;) x
y?
-—— R, (2
1+ (1-y)? ®
where R¢ denotes the ratio of the charm structure func-
tions and the kinematic variables are defined by

X |1

Q? Pq
= ) Yy=—"7 Q2 = _q2'
2p-q pl
The deep inelastic charm structure functions

(Fe(z,Q?,m2) for k = 2,L) in cross section (2) is
given by [9]
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where )
m
a=1+4¢, CEQ—Q,

g(z, 1u?) is the gluon density, and the mass factorization
scale i, which has been set equal to the renormalization
scale, is assumed to be either

p?=4m2 or pu®=4m?+ Q>

Here, C7 . is the charm coefficient function in the LO
and NLO analysis:
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in the NLO analysis with
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(ny is the number of active flavors).
In the LO analysis, the coefficient functions BGF
can be found [9] as

Cga(2,0) =
= % ([z2 + (1 — 2)% +42¢(1 — 32) — 8¢%2?] x
« In 1 J_’g 4 B[—1+82(1 — 2) — 42C(1 — z)]> . (6)
and
Cy 1(2,¢) = —42°CIn % +2B2(1—2), (7)
where
fr=1- %.

At the NLO, O(aema?), the contribution of the
photon—gluon component, is usually represented in
terms of the coefficient functions C,; , and ﬁi,g. The
virtual photon—quark(antiquark) fusion subprocesses
can be neglected because their contributions to the
heavy-quark leptoproduction vanish in the LO and are
small in the NLO [1, 10]. In a wide kinematic range, the
contributions to the charm structure functions in the
NLO are not positive due to mass factorization and are
less than 10 %. Therefore, the charm structure func-
tions are dependent on the gluonic observables in the
LO and NLO. The NLO coefficient functions are only
available as computer codes [9,10]. But in the high-
energy regime (( < 1), we can use the compact form
of these coefficients given in Refs. [11,12].

3. THE METHOD

We calculate the charm structure functions by us-
ing the expansion method for the gluon distribution
function. As can be seen, the dominant contribution
to the charm structure functions comes from the gluon
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density at small z, regardless of the exact shape of the
gluon distribution. We substitute

o

11—z

in Eq. (3) to obtain the more useful form

Y

11—z
2
Py @) = 22298 [ ey (1-2,0) %

1
-3

<G (1t). ®

where G(z) = xg(z) is the gluon distribution function.
The argument z/(1 — z) of the gluon distribution in
Eq. (8) can be expanded at an arbitrary point z = «
as

=1fai{1+%]. 9)

k=1

l_zz:oz

The above series is convergent for |z — a| < 1. Using
this expression, we can rewrite and expand the gluon
distribution as

¢(r=)-6(ra)
w+0(z—a)2. (10)

Retaining terms only up to the first derivative in the
expansion and integrating, we obtain our master for-
mula

+

1_a(z—a)

2
Fg(x,Q2,mz) = 26(2:(18(“ )Ak(x) X

2
By ()
x G (1 -« <1 ot Ak(@)) - (1)
where
11—z
Ap(z) = | Cgp(l—2,0)dz, (12)
1oL
and
1—x

By(r) = / (: = )C (1= 2,()dz, (13)
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where Cf ; is defined in Eq. (4) in the LO and NLO
analysis and a has an arbitrary value 0 < a < 1. Equa-
tion (10) can be rewritten as

Ff(e,Q* m?) =

2
= 263%2(/7: )ﬂkG (1fa(/3k - a)a,lﬂ) - (14)

This result shows that the charm structure functions
F¢(z,Q?%) at x are calculated using the gluon distribu-

tion at
x

g Bk —a).

Therefore, this gluon distribution at (z/(c—a))(Br — )
can be simply extracted from the charm structure func-
tions (Fy and Ff) at low x according to the coefficients
in the limit x — 0 given in Table 1. Moreover, there
is a direct relation between the charm structure func-
tions and gluon distribution via the well known Bethe—
Heitler process v*g — ce.

We define the ratio of the charm structure functions
and use Eq. (14), so we obtain the equation

x
G
pe L (l—a

2 T
G(l—a

We observe that the right-hand side of this ratio is in-
dependent of x and of the gluon distribution input ac-
cording to the coefficients in Table 1. In the low-z
range, we have

(51 a)
(B2 — a)) .

(15)

R~ n—L, (16)
2

which is very useful in extracting the charm structure
function F§(z,Q?) from measurements of the doubly
differential cross section of inclusive deep inelastic scat-
tering at DESY HERA, independent of the gluon dis-
tribution function. Therefore, we can determine the
charm structure function in the reduced cross section
from the double-differential charm cross section as

(2, Q%)

L= e B

F2($7Q27mg) = ) (17)

where R€ is defined in Eq. (16) and Table 1 and 7 is
taken from Ref. [13]. The error bars in our determina-

tion can be described by the expression (Table 1)
2
Y

————— R
dzce 1+ (1—y)?

=l D
l1- ——=R°
1+ (1 -y)?

o cc
Opge = F

4. RESULTS AND DISCUSSION

For the calculation of the charm structure func-
tions (F§¢ and Ff°), we choose A = 0.224 GeV and
m. = 1.5 GeV; we recall that the dominant uncertainty
in QCD calculations arises from the uncertainty in the
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Table 1. The constant values in this analysis at Q2 values in the limit 2z — 0
Q?, GeV? M2 Ons Ba 08, nL . B 08, Re ORe
85 [0.4645|1.95-1072[1.8393|2-10~* 0.0504 |4 -10~* 1.7853|1-10~* |0.1085|4.5-10~*
12 0.5763|3.7-1073 |1.8083|3.5-10~* |0.0730|9-10~* 1.7453|1.5-107*|0.1267|8 - 10~*
15 0.6546 | 5.45- 1072 | 1.7883 |5 -10~* 0.0901|1.45-107%|1.7200(1-10~* |0.1377|1.1-103
20 0.7611[8.45-1072|1.7632|7-10~* 0.1145|2.45-107%|1.6883(2-10~* |0.1505|1.6-103
25 0.8469|0.0114 1.7447|1-107%  ]0.1347]3.6- 1072 |1.6654|2.5-107*]0.1590 | 2.1- 1073
35 0.9795(0.0173 1.7190|1.35-1072|0.1659 | 5.8 - 1073 | 1.6343|3-10~* |0.1693|2.9 1073
45 1.0800 | 0.0227 1.7016|1.65-1072]0.189 |7.9-10~3 |1.6139|3.5-10"*[0.1749|3.6-102
60 1.195310.0300 1.6838(2.05-1072|0.2144|0.0107 1.5936(3.5-107%{0.1793 | 4.45- 1073
120 1.4709 | 0.052 1.65003.1-10~2 |0.2681|0.019 1.5568(3.5-107*{0.1820|6.5- 1073
200 1.6698|0.0718 1.6307|3.85- 1072 | 0.2996 | 0.026 1.5387(3-10~* |0.1791|7.85-1073
300 1.825210.089 1.6187(4.3-10"% |0.3198|0.0316 1.5283(2-10~* |0.1748|8.8-1073
R = f?f/ Fy . . . . . . We now extract F§° from the H1 measurements of
the reduced charm cross section [13] in Eq. (17) with
0.20 T respect to Eq. (16) for Q% > 8.5 GeV2. Our NLO re-
X ¢ { { sults for the charm structure function are presented in
.’ Table 2, where they are compared with the experimen-
0151 = - tal values from H1 data; they are compatible with the
: HVQDIS and CASCADE programs [14,15] as we can
see from Table 11 in Ref. [13] (arXiv:1106.1028v1). The
o0l ° 4 error bars in Table 2 are according to the theoretical
uncertainty related to the freedom in the choice of the
renormalization scales in the ratio of the charm struc-
0.05 L. ) ) ) ) ) ) ture function and the experimental total errors related
0 50 100 150 200 250 300 350 to the results in Ref. [13] according to Eq. (18). A

Q?, GeV?

Fig.2. The ratio R° evaluated as a function of Q@ in

the NLO analysis from Eq. (16). The error bars are the

theoretical uncertainty using the renormalization scales
p? =4m?2 and p? = 4m? + Q?

charm quark mass. Since the contribution of the lon-
gitudinal charm structure function to the DIS charm
cross section (i.e., Eq. (2)) is proportional to 32, it fol-
lows that the F5° term dominates at y < 0.08 and the
relation 6°° = F§¢ holds to a very good approxima-
tion. Hence, the contribution of the second term in the
right-hand Eq. (2) can be significant only at y > 0.08.
Therefore, for y > 0.08, the ratio of the charm structure
functions is very useful. We see from Fig. 2 that this
ratio agrees with the results Refs. [4] and [11] at low 2.
In the NLO analysis, it decreases as @ increases, and
this is familiar from the Callan—Gross ratio. As we can
see in this figure, this ratio has a value 0.1 < R° < 0.2
in a wide region of Q2.

comparison between our obtained values for the charm
structure function and the existing data indicate that
the ratio R¢ can be determined with reasonable preci-
sion at any y value.

To test the validity and correctness of our obtained
charm structure functions with respect to the gluon dis-
tribution function in Eq. (14), we obtained the charm
structure functions from the gluon distribution input,
which is usually taken from NLOGRV [9] or Block [16]
parameterizations. The gluon distribution input is de-
pendent on the point of expansion a. To estimate the
theoretical uncertainty resulting from this, we choose
a =0 and a = 0.8 in the renormalization scale

1 =4me® + Q2.

In Figs. 3-6, we observe that the theoretical uncertainty
related to the freedom in the choice of « is very small
at the renormalization scales. As can be seen from
Figs. 3 and 4, the better choice for the expansion point

483 5%
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Table 2. The charm structure function determined based on the reduced charm cross section data accompanied with
errors

Q?, GeV? x y 7 | Oz, % | F5° (Ref. [13]) | dpez, % | F5° (Our Results) | dpe
8.5 0.00050 | 0.167 | 0.176 14.8 0.176 1.0 0.1763 14.8
8.5 0.00032 | 0.262 | 0.186 15.5 0.187 1.0 0.1869 15.6
12 0.00130 | 0.091 | 0.150 18.7 0.150 1.0 0.1501 18.7
12 0.00080 | 0.148 | 0.177 15.9 0.177 1.1 0.1773 15.9
12 0.00050 | 0.236 | 0.240 11.2 0.242 1.0 0.2441 11.4
12 0.00032 | 0.369 | 0.273 13.8 0.277 1.1 0.2764 14.0
20 0.00200 | 0.098 | 0.187 12.7 0.188 1.1 0.1871 12.7
20 0.00130 | 0.151 | 0.219 11.9 0.219 1.1 0.2194 11.9
20 0.00080 | 0.246 | 0.274 10.2 0.276 1.0 0.2756 10.3
20 0.00050 | 0.394 | 0.281 13.8 0.287 1.1 0.2859 14.0
35 0.00320 | 0.108 | 0.200 12.7 0.200 1.1 0.2002 12.7
35 0.00200 | 0.172 | 0.220 11.8 0.220 1.0 0.2206 11.8
35 0.00130 | 0.265 | 0.295 9.70 0.297 1.0 0.2973 9.8
35 0.00080 | 0.431 | 0.349 12.7 0.360 1.1 0.3575 13.0
60 0.00500 | 0.118 | 0.198 10.8 0.199 1.1 0.1983 10.8
60 0.00320 | 0.185 | 0.263 8.40 0.264 1.0 0.2640 8.5
60 0.00200 | 0.295 | 0.335 8.80 0.339 1.0 0.3385 8.9
60 0.00130 | 0.454 | 0.296 15.1 0.307 1.0 0.3047 15.6
120 0.01300 | 0.091 | 0.133 14.1 0.133 1.2 0.1331 14.1
120 0.00500 | 0.236 | 0.218 11.1 0.220 1.1 0.2194 11.2
120 0.00200 | 0.591 | 0.351 12.8 0.375 2.9 0.3712 13.6
200 0.01300 | 0.151 | 0.161 11.9 0.160 2.7 0.1604 11.9
200 0.00500 | 0.394 | 0.237 13.5 0.243 2.9 0.2419 13.8
300 0.02000 | 0.148 | 0.117 18.5 0.117 2.9 0.1173 18.5
300 0.00800 | 0.369 | 0.273 12.7 0.278 2.9 0.2777 12.9

for the charm structure function Fj is a ~ 0.5 be-
cause this point is favored by the current data. This
means that in this kinematic region, the longitudinal
momentum of the gluon z, is more than three times
the value of the longitudinal momentum of the probed
charm quark—antiquark in the BGF process. We com-
pared our results for the charm structure function to
the DL model [17-19], H1 data [13], and the color
dipole model [20]. In Figs. 5 and 6, the better choice of
the expansion point for the longitudinal charm struc-
ture function F} is o > 0.8, as compared only to the
color dipole model [20]. As can be seen from these
figures, the increase in the charm structure functions
F(z,Q%) toward low z is consistent and compatible
with the experimental data and theoretical models.
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5. CONCLUSION

In summary, we have used the expansion method
for the low-z gluon distribution and derived a compact
formula for the ratio R® = F§°/F5° of the charm struc-
ture functions in the NLO analysis. We observed that
this ratio is independent of x and of the parton distri-
bution function input, and is also useful in extracting
the charm structure function from the reduced charm
cross section. Based on the reduced charm cross sec-
tion in the low-z region, an approximate method for
the calculation of the charm structure function Fs° is
presented. Careful investigation of our results shows a
good agreement with the recent published charm struc-
ture functions F§° and other theoretical models within
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Fig.3. The charm structure function (F5°) obtained
at Q% = 20 GeV? with respect to the input gluon distri-
bution NLO-GRV parameterization [9]. The solid line
corresponds to the expansion point @ = 0 and the dash-
dotted line corresponds to the expansion point o« = 0.8.
These are compared with the DL fit [17-19] (dotted
line), the color dipole model [20] (dashed line), and H1
data [13] (squares) accompanied with total errors at
the renormalization scale p? = 4m? + Q*

Fi(z,Q%
03 T T

Ry
L Bl N

0.01 0.1
T

Fig.5. The longitudinal charm structure function (F5°)
obtained at Q% = 20 GeV? with respect to the in-
put gluon distribution NLO-GRV parameterization [9].
The solid line corresponds to the expansion point o« = 0
and the dash-dotted line corresponds to the expansion
point &« = 0.8. These are compared with the color
dipole model [20] (dashed line) at the renormalization
scale p? = 4m? + Q?
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Fig.4. The charm structure function (F35°) obtained
at Q% = 20 GeV? with respect to the input gluon dis-
tribution Block fit [16]. The solid line corresponds to
the expansion point « = 0 and the dash-dotted line
corresponds to the expansion point a = 0.8. These
are compared with the DL fit [17-19] (dotted line), the
color dipole model [20] (dashed line), and H1 data [13]
(squares) accompanied with total errors at the renor-
malization scale p? = 4m?2 + Q?

Fi(z, Q%)
0.3 : :

Fig.6. The longitudinal charm structure function (F5°)
obtained at Q% = 20 GeV? with respect to the in-
put gluon distribution Block fit [16]. The solid line
corresponds to the expansion point @« = 0 and the
dash-dotted line corresponds to the expanding point
a = 0.8. These are compared with the color dipole
model [20] (dashed line) at the renormalization scale
p?=4m? + Q*
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