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COSMIC ACCELERATION AND BRANS�DICKE THEORYM. Sharif *, S. Waheed **Department of Mathematis, University of the Punjab54590, Lahore, PakistanReeived January 16, 2012We study the aelerated expansion of the universe by exploring the Brans�Dike parameter in di�erent eras.For this, we take the FRW universe model with a visous �uid (without potential) and the Bianhi type-Iuniverse model with a barotropi �uid (with and without a potential). We evaluate the deeleration parameterand the Brans�Dike parameter to explore osmi aeleration. It is onluded that aelerated expansion ofthe universe an also be ahieved for higher values of the Brans�Dike parameter in some ases.1. INTRODUCTIONThe aelerated expansion of the observable uni-verse is one of the most onspiuous reent ahieve-ments in modern osmology. This expansion with pos-itive osmi aeleration has been on�rmed by manyastronomial experiments suh as Supernova (Ia) [1; 2℄,WMAP [3℄, SDSS [4℄, galati luster emission ofX-rays [5℄, large-sale struture [6℄, weak lensing [7℄,et. These results lead to the onlusion that our uni-verse is spatially �at.The positive osmi aeleration of the universe hasbeen motivated by a mysterious exoti matter havinglarge negative pressure, known as dark energy. Al-though general relativity (GR) is an exellent theoryto explain the gravitational e�ets, it is unable to de-sribe the present osmi aeleration and the realityof dark energy. To explain the nature of this mysteri-ous �nding, various models inluding a Chaplygin gas,phantom, quintessene, osmologial onstant, and soon have been onstruted [8; 9℄. However, none of thesemodels is very suessful.The exploration of salar�tensor theories of grav-ity as modi�ed theories of gravity has reeived muhattention due to their vast impliations in osmology[10�14℄. The Brans�Dike (BD) theory of gravity, a spe-ial ase of salar�tensor theories, is one of the mostviable theories for this purpose. It is the general defor-mation of GR satisfying the weak equivalene priniple,in whih gravity e�ets are mediated by the metri ten-sor and a salar �eld [15℄. This provides a diret ou-*E-mail: msharif.math�pu.edu.pk**E-mail: smathematis�hotmail.om

pling of the salar �eld to geometry. The Brans�Diketheory is ompatible with both Mah's priniple [16℄and Dira's large number hypothesis [17℄. One of thesalient features of this theory is that the gravitationaloupling onstant, being the inverse of the spaetimesalar �eld, varies with time. In order to ful�ll the solarsystem experiment onstraints, the value of the generidimensionless BD parameter ! should be very large,! � 40:000 [8; 9℄.The Brans�Dike theory is a suessful theory thatan takle many outstanding osmologial problemslike in�ation, quintessene, late time behavior of theuniverse, the oinidene problem, the osmi aeler-ation [11℄, and so on. There are di�erent versions ofthe BD theory available in the literature [20; 21℄. InRef. [22℄, various BD osmologial models were inves-tigated and it was shown that the Bianhi models arevery e�etive in explaining the evolution of the universefor a perfet �uid. In Ref. [23℄, di�erent models of theuniverse with a onstant deeleration parameter basedon the variation law of the Hubble parameter were dis-ussed. In Ref. [11℄, it was found that the aeleratedexpansion of the universe ould be obtained with largej!j and potential �2 without onsidering the positive-energy ondition. In Ref. [24℄, it was shown that thedissipative pressure ould support the late-time ael-erated expansion of the universe. In Ref. [12℄, it wasfound that the present aelerated expansion ould beobtained without restoring a osmologial onstant orquintessene matter for Friedmann�Robertson�Walker(FRW) model.In Ref. [25℄, the observed aelerated expansion ofthe present universe in this theory for the FRW model680



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Cosmi aeleration and Brans�Dike theorywas explored, and in Ref. [13℄, exat solutions in di�er-ent eras of the universe were found and also disussedthe possibilities for obtaining osmi aeleration, in-�ation, and deeleration for these solutions. The roleof a positive power-law potential as regards the aeler-ated expansion of the universe was investigated in [26℄.It was onluded that a self-interating potential anderive the aelerated expansion in the perfet �uidbakground with small negative values of the BD pa-rameter. An axially symmetri perfet �uid osmolog-ial model of this theory was found in [27℄. To in-vestigate the present aelerated expansion of the uni-verse and di�erent stages of the osmi evolution, muhwork has been done using Bianhi models in GR andsalar-tensor theories [28�32℄. In a reent paper [14℄,osmi aeleration in this theory for the FRW modelwas investigated. It was shown that the aelerated ex-pansion of the universe with higher values of ! an beahieved only for the losed model.In this paper, we explore the e�et of the BD pa-rameter on the osmi aeleration by using spatially�at models in the presene of di�erent �uids. The pa-per is organized as follows. In Se. 2, we formulate the�eld equations of the generalized BD theory with a self-interating potential. Setion 3 provides the �eld equa-tions for the FRW model in the presene of a visous�uid. We disuss models for both onstant and varyingbulk visosity oe�ient there. In Se. 4, we formulatethe �eld equations in the presene of a barotropi �uidfor the Bianhi type-I universe model. In that setion,we explore all possible hoies of the BD parameter !and the self-interating potential V (�). In Se. 5, weinvestigate the observational limit of the gravitationalonstant for the onstruted models. Finally, we dis-uss the results in the last setion.2. BRANS�DICKE FIELD EQUATIONSA salar�tensor theory known as Brans�Dike the-ory of gravity [15℄ is based on the pioneering work ofJordan. A modi�ed version of this theory is the general-ized BD theory in whih the BD parameter is no longera onstant but is a funtion of the salar �eld. The a-tion for generalized BD theory with a self-interatingpotential in the Jordan frame [20; 21℄ is given byS = Z d4xp�g ��R�!(�)� �;��;��V (�)+Lm� ;� = 0; 1; 2; 3; (1)where the BD parameter !(�) is a modi�ed form ofthe original BD parameter !; V (�) denotes the self-

interating potential, and Lm is the matter part of theLagrangian. Here, we set8�G0 =  = 1:Varying this ation with respet to the metri tensorg�� and the salar �eld, we obtain the BD �eld equa-tions [14℄G�� = !(�)�2 ��;��;� � 12g���;��;��++ 1� [�;�;� � g����℄� V (�)2� g�� + T��� ; (2)�� = T3+2!(�)� 13+2!(�) �2V (�)��dV (�)d� ��� d!(�)d�3 + 2!(�)�;��;�; (3)where T = g��T��denotes trae of the energy�momentum tensor and � isthe d'Alembertian operator. Equation (3) is alled thewave equation for the salar �eld. We note that theBD theory redues to GR if ! ! 1 and the salar�eld beomes a onstant [33℄. However, this is nottrue in general. It has been pointed out in [30; 34℄that the BD theory does not always pass into GR inthe limit ! ! 1 in the ase of exat solutions. Inthis limit, GR an be reovered only if the trae ofthe energy�momentum tensor T (m) desribing all �eldsother than the BD salar �eld does not vanish, i. e.,T (m) 6= 0 [34�37℄. For T (m) = 0, the BD solutions donot orrespond to respetive GR solutions. The Pala-tini metri f(R) gravity and the metri f(R) gravityare respetively obtained by substituting ! = �3=2 and! = 0 [38℄.3. COSMIC ACCELERATION AND THE FRWMODELIn this setion, we investigate osmi aelerationby exploring the BD parameter. For this, we onsiderthe FRW model with a visous �uid. In partiular, wedisuss two ases aording to whether the bulk vis-osity is onstant or variable. The line element for theFRW model is given byds2 = dt2�a2(t) � dr21�kr2+r2(d�2+sin2 � d�2)� ; (4)681



M. Sharif, S. Waheed ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012where a(t) is a sale fator and k = �1; 0; 1 respetivelyindiates an open, �at, and losed universe model. Weassume that the universe is �lled with a visous �uidwhose energy�momentum tensor isT�� = (�+ Peff )u�u� � Peff g�� ; (5)where � is the energy density, u� is the four-vetor ve-loity satisfying the relation u�u� = 1, and Peff is thee�etive pressure de�ned byPeff = PI + Pvis:Here, PI denotes the isotropi pressure and Pvis is thepressure due to visosity. The bulk visous pressureis de�ned by Ekart's expression in terms of the �uidexpansion salar and is given byPvis = ��u�;�(see [39℄), where � = �(t; �) is the bulk visosity o-e�ient. For the FRW model, the visous pressure isfound to be Pvis = �3� _aaand hene the e�etive pressure beomesPeff = PI � 3�H; (6)where H = _a=a denotes the Hubble parameter. Theorresponding �eld equations (2) turn out to be_a2 + ka2 + _a _�a� � !6 _�2�2 = �3�; (7)2�aa + _a2 + ka2 + !2 _�2�2 + 2_a _�a� + ��� = �Peff� ; (8)where the dot denotes the derivative with respet totime. The orresponding wave equation beomes��+ 3H _� = �� 3Peff2! + 3 � _! _�2! + 3 ; (9)where we have set V (�) = 0:The equation of state provides a relation betweenisotropi pressure and energy density and is given byP = �; (10)where  is the equation of state parameter. The values = �1; 0; 1=3; 1

respetively represent a vauum-dominated, dust, ra-diation-dominated era, and a massless salar �eld. Theontinuity equation for visous �uid (5) an be writtenas _�+ 3H(�+ Peff ) = 0: (11)We an assume the standard expression � = �0�n forthe bulk visosity, where n is a nonnegative onstantand �0 > 0. Di�erent possible values of n are availablein literature [40�43℄, among whih two hoies n = 1and n = 3=2 respetively orrespond to the radiativeand string-dominated �uids. However, more realistimodels an be obtained for 0 � n � 1=2. Here, weevaluate � by solving ontinuity equation (11) in thefollowing two ases.(i) Constant bulk visosity, i. e., � = �0 (for n = 0).(ii) Variable bulk visosity, i. e., � = �(t; �) withn = 1=2; 1.In both ases, we hoose k = 0, i. e., a �at FRW model.3.1. Constant bulk visosity oe�ientEnergy onservation equation (11), in terms of aonstant bulk visosity, an be written as_�+ 3H(1 + )� = 9�0H2; (12)where we use the equation of state given by Eq. (10).We assume that the sale fator a(t) has the form ofan expanding solution (power-law form)a(t) = a0t�; � > 0; (13)where a0 is the present value of the sale fator. Thedeeleration parameter is given byq = � 1 + _HH2! : (14)We note that the deeleration parameter q suggests� > 1 for osmi aeleration. Equation (12) leadsto�(t) = 9�0�2�1+3�(1+) t�1+�0a�3(1+)0 t�3�(1+): (15)The salar �eld an be found from Eq. (9) by setting!(t) = !0 (onstant)as follows:�(t) = (1� 3)�0a�3(1+)0 t2�3�(1+)(3 + 2!0)(1� 3�)[2� 3�(1 + )℄ ++ 3�0(1� 4�)t(3 + 2!0)[1� 3�(1 + )℄ :682



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Cosmi aeleration and Brans�Dike theoryThis equation suggests that the salar �eld an be takenin a power-law form when the sale fator is given inthe expanding form.We next disuss the time-dependent BD parameter!, whih satis�es the �eld equations as well as the waveequation. For this, we assume a simple power-law formfor the salar �eld, �(t) = �0t� ; (16)where �0 is the present value of the salar �eld and� is any nonzero onstant. Field equation (7) an berearranged in the form_aa = � _�2� �s
(t) _�212�2 + �3�; (17)where 
(t) = 2!(�(t)) + 3:Using Eqs. (13) and (16) in Eq. (17), we obtain�(t) = 3�0t� �(2�+ �)24t2 � 
(t)�212t2 � : (18)The omparison of Eqs. (15) and (18) yields
(t) = 3�2 (2�+ �)2 � 36�0�2�0�2[3�(1 + )� 1℄t(1��) �� 4�0a�3(1+)0 t�3�(1+)��+2�0�2 : (19)The orresponding expression for !(t) beomes!(�(t)) � !(t) = �18�0�2t(1��)�0�2[3�(1 + )� 1℄ �� 2�0a�3(1+)0 t2���3�(1+)�0�2 : (20)Here, we onsider time-dependent terms only.To verify the onsisteny of these solutions with thewave equation, we substitute these values in (9). Thisleads to the two onsisteny relations�[4(� � 1 + 3�) + �(1� 3) ++ 2[2� 3�(1 + )� �℄℄ = 0; (21)4�(� � 1 + 3�) + �(1� 3)� ++ [3�(1 + )� 1℄� + 2�(1� �) = 0: (22)Equation (21) implies that either � = 0 or � = �2�,while Eq. (22) is satis�ed for either � = �2� or

� = 1=6. For osmi aeleration, � = 1=6 is not an in-teresting value and we therefore ignore it. When � = 0,the BD parameter yields!(t)! �1and the salar �eld beomes a onstant, � = �0. Thisleads to GR, and hene it is not the interesting ase.For � = �2�; ! takes the form!(t) = � 9�0t(1+2�)2�0[3�(1 + )� 1℄ �� �0a�3(1+)0 t2��(1+3)2�0�2 : (23)The power-law expression for the salar �eld turns outto be �(t) = �0t�2�:In what follows, we evaluate the BD parameter at dif-ferent epohs of the universe.In the vauum-dominated era ( = �1), the BDparameter is!(t) = 9�02�0 t(1+2�) � �02�0�2 t2(1+�): (24)In the radiation-dominated era ( = 1=3), the BD pa-rameter beomes!(t) = 9�02�0(1� 4�) t(1+2�) � �0a�40 t2(1��)2�0�2 : (25)In the matter-dominated era or the dust ase ( = 0),the BD parameter takes the form!(t) = 9�02�0(1� 3�) t(1+2�) � �0a�30 t(2��)2�0�2 : (26)In the massless salar �eld era ( = 1), the BD param-eter turns out to be!(t) = 9�02�0(1� 6�) t(1+2�) � �0a�60 t(2�4�)2�0�2 : (27)Finally, for the present time, t = t0, the BD parameteran be alulated from the dust ase, i. e., matter withnegligible pressure. Equation (26) leads to the presentvalue of the BD parameter !0 given by!0 = � 9�02(3�� 1) � 12�2 : (28)Here, we normalize the onstants as�0 = a0 = t0 = 1; �0 = 0; � � 1;683
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Fig. 1. ! versus t for  = �1 (a) and 1=3 (b) with � = 1:1 and �0 = 0:0001 (1 ), 0:15 (2 ), 0:2 (3 ), 0:38 (4 )whih is onsistent with Eq. (17). The minimum valueof !0 is !0 = �9�04 � 12 :Clearly, the minimum value of !0 depends on thevalue of the onstant bulk visosity oe�ient �0. Inthe BD theory, the gravitational oupling onstant andthe salar �eld density should be positive in the presentuniverse, whih an be ahieved for ! > �3=2 [12℄. Inour ase, the bulk visosity oe�ient must be �0 < 4=9with � > 1 for onsisteny. The present observationalrange for the deeleration parameter is�1 < q0 < 0(see [1; 2℄), whih restrits � > 1. A more general formof the model for the present universe an be obtainedby taking � = 1+ �, � > 0 (for small values of �), whihgives !(t) = �9�0t(3+2�)2(2 + 3�) � t(1��)2(1 + �)2 ;� = �0t�2(1+�); a(t) = a0t(1+�):We now disuss the BD parameter for the vauumand matter-dominated eras. In the vauum-dominatedera, the graphs indiate that !(t) is a dereasing fun-tion starting from zero for 0 < �0 � 0:11. For �0 > 0:11,the graphs represent funtions that �rst inrease andthen, after some partiular points, beome dereasingagain, as is shown in Fig. 1. Therefore, for this rangeof the onstant visosity �0 with � > 1, it is possible toahieve the osmi aeleration with positive values of!(t). In all other eras of the universe, !(t) is a dereas-ing funtion of time with smaller negative values. For

0 < � < 1, in the radiation-dominated era, !(t) is adereasing funtion and the universe undergoes a deel-erated expansion. Hene the role of �0 is to ontrol thetime dependene of !(t). In the radiation and matter-dominated eras, and the massless salar �eld era, theBD parameter approahes �1 for � = 1=6; 1=3, and1=4. For osmi aeleration, we must have � > 1, andhene these values are not interesting.3.2. Variable bulk visosity oe�ientFor simpliity, we setn = 1=2; i. e.; �(t; �) = �0�1=2(t):Using this value of the bulk visosity oe�ient alongwith Eq. (13) in (11) yields_�(t) + �3�t (1 + )� 9�0�2t2 � �(t)1=2 = 0:This has the solution�(t) = � 9�0�2t[3�(1 + )� 2℄ + �0t�3�(1+)=2�2 ; (29)where �0 is an integration onstant. Comparing thisequation with Eq. (18), we obtain
(t) = 3�2�+ �� �2 � 4t2�0�2t� �� � 9�0�2t[3�(1 + )� 2℄ + �0t�3�(1+)=2�2 :684
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Fig. 2. ! versus t for  = 0 (a) and 1=3 (b) with � = 1:1 and �0 = 0:0001 (1 ), 0:01 (2 ), 0:1 (3 ), 0:38 (4 )The orresponding BD parameter beomes!(t) = � 2t2�0�2t� �� � 9�0�2t[3�(1 + )� 2℄ + �0t�3�(1+)=2�2 : (30)To verify the onsisteny of this solution with the waveequation, we substitute all these values in wave equa-tion (9), whih leads to� = 1=3; � = �2�;  = 1:For � = �2�, we obtain!(t) = � t2(1+�)2�0�2 �� � 9�0�2t(3�(1 + )� 2) + �0t�3�(1+)=2�2 : (31)The hoie � = 1=3 is not feasible for obtaining osmiaeleration, while  = 1 orresponds to a masslesssalar �eld, whih is disussed below. We now evaluatethe BD parameter in the di�erent eras.In the vauum-dominated era, the BD parameter is!(t) = � t2(1+�)2�0�2 ��9�0�22t + �0�2 : (32)In the radiation-dominated era, the BD parameterturns out to be!(t) = � t2(1+�)2�0�2 � 9�0�2t(4�� 2) + �0t�2��2 : (33)In the matter-dominated era the BD parameter is!(t) = � t2(1+�)2�0�2 � 9�0�2t(3�� 2) + �0t�3�=2�2 : (34)
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4. COSMIC ACCELERATION WITH ABAROTROPIC FLUID AND THE BIANCHI-IUNIVERSE MODELHere, we investigate expansion of the universe byusing the LRS Bianhi type-I model in the barotropi�uid bakground. The line element of the Bianhitype-I universe model is desribed by [44℄ds2 = dt2 �A2(t) dx2 �B2(t)(dy2 + dz2); (39)where A and B are sale fators. This model has onetransverse diretion x and two equivalent longitudinaldiretions y and z. We assume that matter ontents ofthe universe are desribed by the perfet �uid with theenergy�momentum tensorT�� = (�+ P )u�u� � Pg�� : (40)The orresponding �eld equations (2) and (3) an bewritten as2 _A _BAB + _B2B2 = �� + !(�)2 _�2�2 ++ V (�)2� � _AA + 2 _BB! _��; (41)2 �BB + _B2B2 = �P� � !(�)2 _�2�2 �� 2 _BB _�� � ��� + V (�)2� ; (42)�BB + �AA + _A _BAB = �P� � !(�)2 _�2�2 � ��� ++ V (�)2� � _AA + _BB! _��: (43)686



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Cosmi aeleration and Brans�Dike theoryThe wave equation is��+ _AA + 2 _BB! _� = �� 3P2!(�) + 3 �� 2V (�)� �dV (�)=d�2!(�) + 3 � _�2d!(�)=d�2!(�) + 3 : (44)For this model, the average sale fator and the meanHubble parameter area3(t) = AB2; H(t) = 13  _AA + 2 _BB! :The energy onservation equation for the energy�momentum tensor in Eq. (40) is_�+ _AA + 2 _BB! (�+ P ) = 0: (45)We assume that the universe is �lled with abarotropi �uid. The barotropi equation of state [14℄is given by P = �; �1 �  � 1:The expansion salar for Bianhi type-I model is givenby � = ua;a = _AA + 2 _BBwhile the shear salar is� = 1p3  _AA � _BB! :It is known [45℄ that for a spatially homogeneous met-ri, the normal ongruene to homogeneous expansionyields a onstant ratio �=�, i. e., the expansion salar� is proportional to the shear salar �. This physialondition leads to the relationA = Bm (46)between the sale fators, where m 6= 1 is any positiveonstant (form = 1, it redues to the �at FRW model).In the literature [44�49℄, this ondition has been widelyused to �nd exat osmologial models. Using this as-sumption in Eq. (45), we obtain_�+ (1 + )(m+ 2) _BB�(t) = 0whene �(t) = �0B�(1+)(m+2): (47)We now disuss the various possible hoies for !(�)and V (�).

4.1. Model without potential, V (�) = 0We onsider the following two ases aording towhether ! is onstant or ! = !(�).4.1.1. Case (i)We �rst take BD parameter to be a onstant,!(�) = !0. For the solution of the �eld equations,we onsider the power lawB(t) = b0t�; � � 0: (48)Using Eqs. (46) and (48) and the mean Hubble param-eter H , we an write the deeleration parameter asq = � �1� 3�(m+ 2)� :We note that q < 0, q = 0, and q > 0 respetivelyindiate an aelerated expansion, uniform expansion,and the deelerating phase of the universe. For the a-elerated expansion of the universe, we must have thefollowing ondition on �:� > 3(m+ 2) ; m 6= 1: (49)Substituting Eqs. (46) and (48) in (44), we express thesalar �eld as�(t) == (1� 3)�0b�(m+2)(1+)0 t2��(1+)(m+2)(3+2!0)[1��(m+2)℄[2��(1+)(m+2)℄ : (50)The BD parameter is obtained from �eld equations(41)�(43) as!0 = � 1(1� ) � (m+ 3)�(�� 1)[2� �(m+ 2)(1 + )℄2 ++ �2 (m2+1)+2(2m+1)[2��(m+2)(1+)℄2 + �[m+3+2(m+2)℄2��(m+2)(1+) ++ 1� �(m+ 2)(1 + )2� �(m+ 2)(1 + )� : (51)For a massless salar �eld,  = 1, we have ! ! �1,whih leads to GR. We have seen that the BD param-eter depends on the parameters �, , and m. Theseparameters are onstrained using some physial ondi-tions. The possible ranges for m are 0 < m < 1 andm > 1 and  is allowed to be in the range �1 �  � 1.By taking di�erent possible hoies for these param-eters, it an be seen that the BD parameter takessmall negative values as well as positive values for�1 �  < 0, as shown in Figs. 5�7. This gives rise to687



M. Sharif, S. Waheed ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012osmi aeleration for this range of . We note herethat for eratin ranges of � allowed for osmi aeler-ation and �1 �  < 0; !0 an take larger values thatwould be ompatible with the solar system experimentonstraints.Solving Eq. (51) for �, we obtain the quadratiequation�2[(m+ 2)2(1 + )2[( � 1)!0 � 2℄� (m+ 3)�� [m2 + 1 + 2(2m+ 1)℄ + (m+ 2)(1 + )�� [m+ 3 + 2(m+ 2)℄℄ + �[(m+ 2)(1 + )�� [�4( � 1)!0 + 6℄(m+ 3)�� 2[m+ 3 + 2(m+ 2)℄℄ + 4[!0( � 1)� 1℄ = 0 (52)whih has two roots. These values for m = 1=2 and = 0 (the present universe) are given by� = 23=2+ 10!0 �p�15=4� 6!017 + 25=2!0 : (53)Beause �2 � !0 � �3=2 is the observed range forosmi aeleration, the hoie of !0 = �5=3 leads tofollowing values of �:�1 = 16=23; �2 = 2:Here, �1 gives q > 0, and we hene leave it, while�2 = 2 yields q < 0, leading to aelerating expansion.Also, it yields �(t) = t�3, whih provides a positiveoupling onstant. In our ase, �(t) is dereasing morerapidly than �(t) = t�2 [11℄ and �(t) = t�5=2 [12℄, andit therefore orresponds to a greater rate of the ael-erated expansion of the universe.4.1.2. Case (ii)In this ase, the BD parameter is not onstant, butis a funtion of �. Using Eqs. (13), (46), (41)�(43),and (48), we an write the BD parameter as!(�) = 1�2 � (3m�m2 � 2)2 �2 + (m+ 3)�2 ++ (m+ 1)��2 � �2 + ���� 1�2 h�0b�(m+2)(1+)0 (1+)�(��(m+2)(1+)��+2)=� �� �(��(m+2)(1+)�2)=�0 i : (54)Substituting this value in Eq. (44), we obtain the on-sisteny relation� = � (m+ 2)�(1 + )2 ; m 6= 1: (55)

This shows that � remains negative for all0 < m < 1; m > 1; � > 3m+ 2 ; �1 �  � 1:The onsisteny of this solution with the dynamialequations (the requirement that eah term in the dy-namial equations have the same time dependene), re-sults in another onstraint given by� = 2� �(m+ 2)(1 + ):Using this value of � in Eq. (55), it an be seen thatthe parameter � is restrited to �2. We now disussthe BD parameter and osmi aeleration in di�er-ent phases of the universe by using this value of �.The expressions for the BD parameter in matter andradiation-dominated eras with � = �2, � > 6=5, andm = 1=2 turn out to be!(�) = 14 ��3�28 + �4 � 6�� 14��2+5�=4;!(�) = 14 ��3�28 + �4 � 6�� 13��2+5�=3:By taking di�erent hoies for these parameters, wesee that for all phases of the universe, the BD parame-ter !(�) has small negative values and lies in the range! � �3=2, as shown in Figs. 8 and 9, whih orrespondsto an aelerated expansion of universe. This result isin agreement with [14℄ for a spatially �at model.4.2. Model with potential V (�) 6= 0Again, we disuss two ases depending on the valueof the BD parameter !.4.2.1. Case (i)First, we disuss the ase of a onstant BD param-eter, !(�) = !0. We then onsider the power-law formof the salar �eld in terms of the sale fator B(t)� = �0B�; � > 0: (56)Using this value of � in �eld equations (41)�(43) leadsto �BB +A _BB!2 = �CB��(1+)(m+2);whereA = �2 � 3�� 2 + 2m2 + �m� 2m+ !0�23�+ 2m ;688
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ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Cosmi aeleration and Brans�Dike theoryThe deeleration parameter q turns out to beq = �1 + 3[�+ (1 + )(m+ 2)℄2(m+ 2) :It an be easily seen that for all positive onstant m(m 6= 1), � > 1, and �1 �  � 1, the deeleration pa-rameter remains negative, q < 0. Hene, the universeis in the state of aelerated expansion. From waveequation (44), the potential an be written asV (�) = B0�(1+)(m+2)=� ; (62)whereB0 = ���2=(�p)0(1 + )(m+ 2)[�+ (1 + )(m+ 2)℄2 �� [4(1 + )(m+ 2)(!0��m� 2)�� 8(m+ 2)�!0 + 16m+ 8m2 + 24� 4m�� 8�℄:4.2.2. Case (ii)We take the BD parameter as a funtion of thesalar �eld �, i.e, !(�). We onsider the power-lawforms of the salar �eld and the sale fator givenby (48) and (13). Using �eld equations (41)�(43), weexpress the salar potential asV (�) = �2=�0 �(��2)=� �(m2 + 5m+ 6)�22 �� (m+ 3)�2 + �2 � � + 3m+ 72 ���� (1� )�� �0b�(m+2)(1+)0 ���(m+2)(1+)=� �� ��(m+2)(1+)=�0 : (63)The BD parameter turns out to be the same as in (54).Substituting these values in Eq. (44), we obtain theonsisteny relations� = 0; � = �2 � = ��2 (m+ 3);� = 1� �(m+ 2): (64)The onsisteny of this solution with the dynamialequation implies that� = 2� �(m+ 2)(1 + ):We now disuss the behavior of the self-interationpotential V (�) for these values of � in di�erent eras ofthe universe. The hoie � = 0 is not feasible, and we

therefore neglet it. For � = �2, the self-interationpotential an be written asV (�) = �2 ��m2 + 5m+ 62 ��2 �� �m+32 ��+6�(3m+7)���(1�)��(m+2)(1+)=2;where m 6= 1 is a positive onstant and� > 3m+ 2 :For � = �9�=4; m = 3=2; � > 6=7;we obtainV (�) = �1+8=9�(�3�2)� (1� )�14(1+)=9:For m = 2; � > 3=4; � = �5�=2;the potential turns out to beV (�) = �(1� )�8(1+)=5;where �1 �  � 1. The expression for the self-inter-ation potential for the radiation-dominated era with� = 2(1� 5�=3); � > 6=5; m = 1=2is given byV (�) = �95�272 � 13�4 + 43��(�5�=3)=(1�5�=3):The self interation potential for the matter-dominatedera with � = 2� 5�=2; � > 6=5; m = 1=2takes the formV (�) = �1� 3�4 ���5�=2(2�5�=2):For the �rst three onsisteny relations for � inEq. (64), we see that V (�) is a dereasing funtionstarting from zero with the inreasing values for � ex-ept in the ase � = �2. In that ase, only  = �1 and = 1 with � � 1:3 provide a positive potential energybeause for these ranges, they are inreasing funtionsof � as shown in Figs. 10, 11, 13. Figure 12a showsthat V (�) attains negative values starting from zero,but at larger values of �, it is an inreasing funtionwith positive values. Figure 12b shows that V (�) at-tains positive inreasing values for � > 6=5. Therefore,we onlude that these ases provide positive potentialenergy beause they result in inreasing funtions of �for partiular values of �.691 5*
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t0 = 14� 2 Gyrs; m = 1=2;we obtain ( _G=G)0 = 1:4287 � 10�10 yrs:This also safely lies within the allowed range of varia-tion of G for osmi aeleration. Hene, our obtainedmodels satisfy the observational limit of G for osmiaeleration.6. SUMMARY AND DISCUSSIONWe have investigated the possibility of obtainingosmi aeleration by using the role of the BD para-meter in the presene of visous and barotropi �uids.For this purpose, we onsidered the FRW and Bianhitype-I universe models. The onstruted models en-tirely depend on the values of the parameters �, �,, and m. First, we disussed the FRW model in thepresene of a visous �uid. We have seen that the totale�etive pressure ontains a negative fator assoiatedwith bulk visosity, whih leads to negative e�etivepressure. Consequently, the �uid ats as a dark energyandidate and an explain many aspets of evolution ofthe universe. The deeleration parameter onstraintsthe parameter � for osmi aeleration, i. e., � > 1.For a onstant bulk visosity oe�ient, we obtain� = 0 and � = �2�. The �rst ase leads to GR, whilefor the seond hoie, in all eras of the universe exeptthe vauum-dominated era, the BD parameter !(t) isa dereasing funtion of time with small negative val-ues. In the vauum-dominated era, we see that for thevisosity greater than 0:11, it is possible to ahieve os-mi aeleration with positive values of !(t). For thevariable bulk visosity oe�ient with n = 1=2, !(t)orresponds to a funtion dereasing as �t2 with smallnegative values for di�erent small values of the visos-ity oe�ient �0 and �1 �  � 1. This gives rise toaelerated expansion of the universe for � > 1. Forthe radiative �uid, we have found that the visosity o-e�ient appears in the exponential funtion. In thatase, !(t) is a dereasing funtion with negative valuesfor both the aelerated and deelerated phases of theuniverse (�3=2 � ! � 0).Seond, we have taken the Bianhi type-I uni-verse model in the presene of a perfet �uid with abarotropi equation of state. Here, we onsidered twoases: V (�) = 0 and V (�) 6= 0. In the �rst ase, when!(�) = !0, by taking di�erent possible hoies for theparameters, we have seen that the BD parameter takessmall negative as well as positive values for �1 �  < 0693



M. Sharif, S. Waheed ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012and ertain ranges of �. It follows that osmi aelera-tion an be ahieved for positive larger values of ! withdi�erent values of �. Also, for the present universe with!0 = �5=3 (taken from the negative observed range forosmi aeleration �2 � !0 � �3=2), we have found�(t) / t�3:In this ase, the aeleration rate of the universe ishigher than in [11℄, �(t) / t�2;and in [12℄, �(t) / t�5=2:When ! = !(�), taking di�erent values of the param-eters, we have seen that for all phases of the universe,the BD parameter !(�) takes small negative values andlies in the range ! � �3=2, whih orresponds to os-mi aeleration and agrees with the already found re-sults [14℄.For V (�) 6= 0 and !(�) = !0, we have evaluatedthe values of sale fators A and B, the salar �eld,and V (�). We have found that in all phases of the uni-verse, these values of sale fators A(t) and B(t) leadto q < 0 for all positive onstant m with m 6= 1 and� > 1, whih orresponds to osmi aeleration. Fi-nally, for V (�) 6= 0 and ! = !(�), we see that V (�) is adereasing funtion starting from zero with inreasing� exept for the hoie � = �2 with partiular valuesof  and � � 1:3. These values provide positive po-tential energy and result in an inreasing funtion of �.However, for the onstraint� = 2� �(m+ 2)(1 + );it is possible to have a positive potential energy forlarger values of � in the matter-dominated era and forsmaller values of � in the radiation-dominated era.It is worthwhile to mention that all models dis-ussed here satisfy the observational onstraints for thevariation of Newton's gravitational onstant availablein literature [11; 12℄, whih supports our results. Ineah ase, we have explained the phenomenon of os-mi aeleration for di�erent ranges of the orrespond-ing parameters. But these ranges of the BD parameter,exept a few ases, are inompatible with solar sys-tem onstraints, whih require ! � 40:000. This is thegeneri problem noted in the ontext of salar�tensortheories. It would be of great interest to see whetherthis problem an be resolved using other Bianhi mo-dels.In order to hek the viability of dark energy modelsbased on modi�ed theories of gravity, the evolution of
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