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We study the accelerated expansion of the universe by exploring the Brans—Dicke parameter in different eras.
For this, we take the FRW universe model with a viscous fluid (without potential) and the Bianchi type-l
universe model with a barotropic fluid (with and without a potential). We evaluate the deceleration parameter
and the Brans—Dicke parameter to explore cosmic acceleration. It is concluded that accelerated expansion of
the universe can also be achieved for higher values of the Brans—Dicke parameter in some cases.

1. INTRODUCTION

The accelerated expansion of the observable uni-
verse is one of the most conspicuous recent achieve-
ments in modern cosmology. This expansion with pos-
itive cosmic acceleration has been confirmed by many
astronomical experiments such as Supernova (Ia) [1, 2],
WMAP [3], SDSS [4], galactic cluster emission of
X-rays [5], large-scale structure [6], weak lensing [7],
etc. These results lead to the conclusion that our uni-
verse is spatially flat.

The positive cosmic acceleration of the universe has
been motivated by a mysterious exotic matter having
large negative pressure, known as dark energy. Al-
though general relativity (GR) is an excellent theory
to explain the gravitational effects, it is unable to de-
scribe the present cosmic acceleration and the reality
of dark energy. To explain the nature of this mysteri-
ous finding, various models including a Chaplygin gas,
phantom, quintessence, cosmological constant, and so
on have been constructed [8,9]. However, none of these
models is very successful.

The exploration of scalar—tensor theories of grav-
ity as modified theories of gravity has received much
attention due to their vast implications in cosmology
[10-14]. The Brans—Dicke (BD) theory of gravity, a spe-
cial case of scalar—tensor theories, is one of the most
viable theories for this purpose. It is the general defor-
mation of GR satisfying the weak equivalence principle,
in which gravity effects are mediated by the metric ten-
sor and a scalar field [15]. This provides a direct cou-

*E-mail: msharif.math@pu.edu.pk
**E-mail: smathematics@hotmail.com

680

pling of the scalar field to geometry. The Brans—Dicke
theory is compatible with both Mach’s principle [16]
and Dirac’s large number hypothesis [17]. One of the
salient features of this theory is that the gravitational
coupling constant, being the inverse of the spacetime
scalar field, varies with time. In order to fulfill the solar
system experiment constraints, the value of the generic
dimensionless BD parameter w should be very large,
w > 40.000 [8,9].

The Brans—Dicke theory is a successful theory that
can tackle many outstanding cosmological problems
like inflation, quintessence, late time behavior of the
universe, the coincidence problem, the cosmic acceler-
ation [11], and so on. There are different versions of
the BD theory available in the literature [20,21]. In
Ref. [22], various BD cosmological models were inves-
tigated and it was shown that the Bianchi models are
very effective in explaining the evolution of the universe
for a perfect fluid. In Ref. [23], different models of the
universe with a constant deceleration parameter based
on the variation law of the Hubble parameter were dis-
cussed. In Ref. [11], it was found that the accelerated
expansion of the universe could be obtained with large
|w| and potential ¢ without considering the positive-
energy condition. In Ref. [24], it was shown that the
dissipative pressure could support the late-time accel-
erated expansion of the universe. In Ref. [12], it was
found that the present accelerated expansion could be
obtained without restoring a cosmological constant or
quintessence matter for Friedmann—Robertson—Walker
(FRW) model.

In Ref. [25], the observed accelerated expansion of
the present universe in this theory for the FRW model
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was explored, and in Ref. [13], exact solutions in differ-
ent eras of the universe were found and also discussed
the possibilities for obtaining cosmic acceleration, in-
flation, and deceleration for these solutions. The role
of a positive power-law potential as regards the acceler-
ated expansion of the universe was investigated in [26].
It was concluded that a self-interacting potential can
derive the accelerated expansion in the perfect fluid
background with small negative values of the BD pa-
rameter. An axially symmetric perfect fluid cosmolog-
ical model of this theory was found in [27]. To in-
vestigate the present accelerated expansion of the uni-
verse and different stages of the cosmic evolution, much
work has been done using Bianchi models in GR and
scalar-tensor theories [28-32]. In a recent paper [14],
cosmic acceleration in this theory for the FRW model
was investigated. It was shown that the accelerated ex-
pansion of the universe with higher values of w can be
achieved only for the closed model.

In this paper, we explore the effect of the BD pa-
rameter on the cosmic acceleration by using spatially
flat models in the presence of different fluids. The pa-
per is organized as follows. In Sec. 2, we formulate the
field equations of the generalized BD theory with a self-
interacting potential. Section 3 provides the field equa-
tions for the FRW model in the presence of a viscous
fluid. We discuss models for both constant and varying
bulk viscosity coefficient there. In Sec. 4, we formulate
the field equations in the presence of a barotropic fluid
for the Bianchi type-I universe model. In that section,
we explore all possible choices of the BD parameter w
and the self-interacting potential V(¢). In Sec. 5, we
investigate the observational limit of the gravitational
constant for the constructed models. Finally, we dis-
cuss the results in the last section.

2. BRANS-DICKE FIELD EQUATIONS

A scalar—tensor theory known as Brans—Dicke the-
ory of gravity [15] is based on the pioneering work of
Jordan. A modified version of this theory is the general-
ized BD theory in which the BD parameter is no longer
a constant but is a function of the scalar field. The ac-
tion for generalized BD theory with a self-interacting
potential in the Jordan frame [20,21] is given by

S:i/d%wﬁﬁ{¢R—E%Q¢Q¢A—V@@+Lm )
a=0,1,2,3,

where the BD parameter w(¢) is a modified form of
the original BD parameter w, V(¢) denotes the self-
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interacting potential, and L,, is the matter part of the
Lagrangian. Here, we set

&Gy =c=1.

Varying this action with respect to the metric tensor
guv and the scalar field, we obtain the BD field equa-
tions [14]

1
GIW = w(;f) |:¢7u¢71/ - 59uu¢7a¢’a:| +
1 Vv T,
+ 2 b — 900 - S g+ T2 (2
T L av(e)]
D0 = 355000 3420(9) [Ww) L ]
dw(o)
do i
—m¢,u¢“7 (3)
where
T =g"T,

denotes trace of the energy—momentum tensor and O is
the d’Alembertian operator. Equation (3) is called the
wave equation for the scalar field. We note that the
BD theory reduces to GR if w — oo and the scalar
field becomes a constant [33]. However, this is not
true in general. It has been pointed out in [30, 34]
that the BD theory does not always pass into GR in
the limit w — oo in the case of exact solutions. In
this limit, GR can be recovered only if the trace of
the energy—momentum tensor 7™ describing all fields
other than the BD scalar field does not vanish, i.e.,
T £ 0 [34-37]. For T = 0, the BD solutions do
not correspond to respective GR solutions. The Pala-
tini metric f(R) gravity and the metric f(R) gravity
are respectively obtained by substituting w = —3/2 and
w =0 [38].

3. COSMIC ACCELERATION AND THE FRW
MODEL

In this section, we investigate cosmic acceleration
by exploring the BD parameter. For this, we consider
the FRW model with a viscous fluid. In particular, we
discuss two cases according to whether the bulk vis-
cosity is constant or variable. The line element for the
FRW model is given by

dr?
1—Fkr2

ds® = dt>—a>(t) +r2(d6*+sin® 0 dp?) |, (4)
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where a(t) is a scale factor and k = —1, 0, 1 respectively
indicates an open, flat, and closed universe model. We
assume that the universe is filled with a viscous fluid
whose energy—momentum tensor is

(5)

where p is the energy density, u” is the four-vector ve-
locity satisfying the relation u,u” =1, and Pefy is the
effective pressure defined by

Tyw = (p + Pep)uptin — Pepr v,

Peff:PI+Pvis~

Here, P; denotes the isotropic pressure and P,;s is the
pressure due to viscosity. The bulk viscous pressure
is defined by Eckart’s expression in terms of the fluid
expansion scalar and is given by

Pvis = _gu,;u”

(see [39]), where & = &(t,p) is the bulk viscosity co-
efficient. For the FRW model, the viscous pressure is
found to be )
Pmls - _@
a

and hence the effective pressure becomes

Pepp = Pr — 36H, (6)

where H = a/a denotes the Hubble parameter. The
corresponding field equations (2) turn out to be

@tk ap wét _ p (7)
a? ap 6¢2 3¢’
20 a?+k w¢® 2ap &  —Pys
Tt tept e tsT s 0 ©®

where the dot denotes the derivative with respect to
time. The corresponding wave equation becomes

7 . _p—=3Py &9
Hé= -
¢+3H¢ 2wW+3 2w+ 3’ )
where we have set
Vig) =0.

The equation of state provides a relation between
isotropic pressure and energy density and is given by

P =1p, (10)
where ~ is the equation of state parameter. The values

v =-1,0,1/3,1
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respectively represent a vacuum-dominated, dust, ra-
diation-dominated era, and a massless scalar field. The
continuity equation for viscous fluid (5) can be written
as

p+3H(p+ Per) = 0. (11)

We can assume the standard expression & = &yp™ for
the bulk viscosity, where n is a nonnegative constant
and & > 0. Different possible values of n are available
in literature [40-43], among which two choices n = 1
and n = 3/2 respectively correspond to the radiative
and string-dominated fluids. However, more realistic
models can be obtained for 0 < n < 1/2. Here, we
evaluate p by solving continuity equation (11) in the
following two cases.

(i) Constant bulk viscosity, i.e., £ = & (for n = 0).

(ii) Variable bulk viscosity, i.e., & = &(t,p) with
n=1/21.
In both cases, we choose k = 0, i.e., a flat FRW model.

3.1. Constant bulk viscosity coefficient

Energy conservation equation (11), in terms of a
constant bulk viscosity, can be written as

p+3H(L+7)p = 96 H?, (12)

where we use the equation of state given by Eq. (10).
We assume that the scale factor a(t) has the form of
an expanding solution (power-law form)

a(t) = apt®*, o >0, (13)

where ag is the present value of the scale factor. The
deceleration parameter is given by

o=~ (14 4).

We note that the deceleration parameter ¢ suggests
a > 1 for cosmic acceleration. Equation (12) leads
to

H
1+ —

e (14)

—3(14+7) =30 (1+7)

9¢pa® _
p(t) = S0 t~ +poay

= Tit3a(147) (15)

The scalar field can be found from Eq. (9) by setting
w(t) = wp (constant)

as follows:

(1—39)poay

(3 4+ 2wo)(1 — 3ay)[2 — 3a(1 + 7)) *
3¢ (1 — da)t
(3 + 2wo)[1 — 3a(1 +7)]

(1+7)2—3a(147)

o(t) =

+




MITP, Tom 142, Bemn. 4 (10), 2012

Cosmic acceleration and Brans—Dicke theory

This equation suggests that the scalar field can be taken
in a power-law form when the scale factor is given in
the expanding form.

We next discuss the time-dependent BD parameter
w, which satisfies the field equations as well as the wave
equation. For this, we assume a simple power-law form
for the scalar field,

o(t) = ¢ot”, (16)

where ¢g is the present value of the scalar field and
B is any nonzero constant. Field equation (7) can be
rearranged in the form

¢ Q1 | p
555\ Tagr * 35 (17)

a
a
where

Qt) = 2w(o(t)) + 3.
Using Eqs. (13) and (16) in Eq. (17), we obtain

(2a+p6)2 Q)5

plo) = sane? [CE 2D _BOLT g

The comparison of Eqs. (15) and (18) yields

Qt) = i(204 +8)? 364pa” =8

B2  0A?Ba(l+9) - 1]
- 4p0aa3(1+7)t—3a(1+7)—6+2 (19)
$o3?
The corresponding expression for w(t) becomes
—18¢pa?t(1=5)
A0) =) = e -
_ 2poag Al

$o/3?

Here, we consider time-dependent terms only.

To verify the consistency of these solutions with the
wave equation, we substitute these values in (9). This
leads to the two consistency relations

BlA(B—1+43a)+ B(1—3y) +
+2[2-3a(l+7)-p]]=0, (21)

4a(f —1+3a) +a(l —37)5 +
+[Ba(l+7)—1]F+2a(1 - p)=0. (22)

Equation (21) implies that either 5 = 0 or § = —2a,
while Eq. (22) is satisfied for either § = —2a or

a = 1/6. For cosmic acceleration, & = 1/6 is not an in-
teresting value and we therefore ignore it. When g = 0,
the BD parameter yields

w(t) = —o0

and the scalar field becomes a constant, ¢ = ¢g. This
leads to GR, and hence it is not the interesting case.
For 8 = —2a, w takes the form

gfot(1+2a)
2¢0[3a(1 +7) = 1]
=3(14+7) ;2—a(1+37)

_ Polg
2¢00¢2

w(t) =

(23)

The power-law expression for the scalar field turns out
to be

(t) = ot .

In what follows, we evaluate the BD parameter at dif-
ferent epochs of the universe.

In the vacuum-dominated era (y = —1), the BD
parameter is

) (1+2a) £0
£) = 204 _ P
<) =55 2o0c?

In the radiation-dominated era (y = 1/3), the BD pa-
rameter becomes

¢2(1+a) (24)

950 (1+2a) _ p0a54t2(1*a)

W) = 5501 4 2002

(25)
In the matter-dominated era or the dust case (y = 0),
the BD parameter takes the form

w(t) %% 040 poag 1=

D= 350 —30) BT

In the massless scalar field era (v = 1), the BD param-
eter turns out to be
oay St 210)

9o (142a) _ P

D)= 3501 — 6a) 27)

Finally, for the present time, ¢t = ¢y, the BD parameter
can be calculated from the dust case, i. e., matter with
negligible pressure. Equation (26) leads to the present
value of the BD parameter wy given by

1) 1

wo = —m — ﬁ (28)

Here, we normalize the constants as

¢0:a0:t0:1, pOZO, CKZ].,
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Fig.1. w versus ¢ for v = —1 (a) and 1/3 (b) with « = 1.1 and & = 0.0001 (1), 0.15 (2), 0.2 (3), 0.38 (4)

which is consistent with Eq. (17). The minimum value
of wy is

Wp = —T — 5

Clearly, the minimum value of wy depends on the
value of the constant bulk viscosity coefficient &. In
the BD theory, the gravitational coupling constant and
the scalar field density should be positive in the present
universe, which can be achieved for w > —3/2 [12]. In
our case, the bulk viscosity coefficient must be &, < 4/9
with a > 1 for consistency. The present observational
range for the deceleration parameter is

—-1<q <0

(see [1,2]), which restricts a > 1. A more general form
of the model for the present universe can be obtained
by taking & = 1+4¢, € > 0 (for small values of €), which
gives
9£Ot(3+26) t(l—e)
w(t) = - - )

2(24+3¢)  2(1+4¢)?

6= 0t™2049, a(t) = aot ).

We now discuss the BD parameter for the vacuum
and matter-dominated eras. In the vacuum-dominated
era, the graphs indicate that w(t) is a decreasing func-
tion starting from zero for 0 < &, < 0.11. For & > 0.11,
the graphs represent functions that first increase and
then, after some particular points, become decreasing
again, as is shown in Fig. 1. Therefore, for this range
of the constant viscosity & with a > 1, it is possible to
achieve the cosmic acceleration with positive values of
w(t). In all other eras of the universe, w(t) is a decreas-
ing function of time with smaller negative values. For

0 < a < 1, in the radiation-dominated era, w(t) is a
decreasing function and the universe undergoes a decel-
erated expansion. Hence the role of & is to control the
time dependence of w(t). In the radiation and matter-
dominated eras, and the massless scalar field era, the
BD parameter approaches —oo for a = 1/6,1/3, and
1/4. For cosmic acceleration, we must have « > 1, and
hence these values are not interesting.

3.2. Variable bulk viscosity coefficient

For simplicity, we set

n=1/2, ie, &tp) =5&p'?).

Using this value of the bulk viscosity coefficient along
with Eq. (13) in (11) yields

3a 90
7(1 + 7) - ;)2

pit) + | | sy <o,

This has the solution

9600(2

2
t—3a(1+'y)/2:| 29
Ballty)—2 7 > (29)

)= |

where pgo is an integration constant. Comparing this
equation with Eq. (18), we obtain

2a + B\ > 412
; ) " %op?t8

" { 9¢oa’
t[3a(l + ) — 2]

Q(t)=3<

2
+ pot—3a(1+'y)/2
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Fig

The corresponding BD parameter becomes

2t?
pPwT >
90>
tB3a(l +7v) — 2]
To verify the consistency of this solution with the wave

equation, we substitute all these values in wave equa-
tion (9), which leads to

w(t) =

2

+ pot—3e(1+7)/2 (30)

a=1/3, f=-2a, y=1
For 8 = —2a, we obtain
2(1+a)
w(t) = ~2gna® X
9¢pa® ?

+ pot—3e(1+7)/2 (31)

1(3a(l +7) — 2)

The choice o = 1/3 is not feasible for obtaining cosmic
acceleration, while v = 1 corresponds to a massless
scalar field, which is discussed below. We now evaluate
the BD parameter in the different eras.

In the vacuum-dominated era, the BD parameter is

[ +p0]2.

In the radiation-dominated era, the BD parameter
turns out to be

t2(1+a)
20002 [t(

In the matter-dominated era the BD parameter is

g

752(1—}-&)
B 2¢UO[2

—960(12
2t

w(t) =

(32)

9600[2

w(t) = da—2)

2
+ pot%‘] : (33)

t2(1+a)
B 2¢00[2

9&) CM2
3a —

w(t) =

2
—3a/2
57 + pot ] . (34)

.2. wversus t for y =0 (a) and 1/3 (b) with a = 1.1 and &
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Fig.3. w versus t for &« = 1.1 and v = —1 with
€0 = 0.0001 (1), 0.01 (2), 0.1 (3), 0.38 (4)

In the massless scalar field era, the BD parameter is
given by
2

t2(1+a)
+ p0t73a

9600[2
t(6c — 2)

- 2¢00¢2

w(t (35)
The expressions for w(t) correspond to a function de-
creasing as —t? for increasing values of the viscosity
coefficient &y and —1 < v < 1 except for the vacuum-
dominated era. This gives rise to accelerated expansion
of the universe for a > 1 as shown in Figs. 2 and 3. For
a =1/2,3/2, and 1/3, the BD parameter approaches
—o0. In the matter-dominated era, a = 3/2 lies in the
range o > 1 allowed for the accelerated expansion of
the universe.

We now discuss the radiative fluid case (n
Here, we take

1).

£(t, p) = &op(t).
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Fig.4. w versus t for « = 1.1 (a) and 0.5 (b) with & = 0.0001 (1), 0.09 (2), 0.38 (3), 1.2 (4)

Consequently, the continuity equation yields

-9 2
p(t) = pot_ga(1+7) exp < ftoa > . (36)
The BD parameter w(t) turns out to be
2
w(t) = _ 2poexp (—925004 /1) 2-3a(147) B
dof
Here, 8 = 0 and f = —2a are the corresponding consis-
tency relations. Choosing 8 = 0 provides no interesting
insights, while f = —2a leads to the expression
po exp (=960 /t) »_n(i43
t) = — t . 37
0 T (37)

For the radiation-dominated era, the BD parameter
takes the form

__Po €xXp (=9&0a’/t) p2(1—a)

w(t) = Sd00?

(38)

We see that the coefficient of viscosity appears only in
the exponential function. In the radiation-dominated
era, for small values of & and o > 1, we have

exp(—9&a/t) = 1,

providing small negative values of w(¢) as shown in
Fig. 4. If £y — oo with a > 1, then

exp(—9&a/t) — 0,

which implies w(t) — 0. Therefore, this model may
correspond to that of the metric f(R) gravity. How-
ever, it is not physically possible. Also in this case, for
0 < a < 1, the values of w(t) are constrained within the
range —3/2 < w(¢) < 0, which shows that the universe
undergoes a transition to the decelerated phase.

4. COSMIC ACCELERATION WITH A
BAROTROPIC FLUID AND THE BIANCHI-I
UNIVERSE MODEL

Here, we investigate expansion of the universe by
using the LRS Bianchi type-I model in the barotropic
fluid background. The line element of the Bianchi
type-I universe model is described by [44]

ds® = dt? — A%(t)da? — B2(t)(dy? + d=?),  (39)

where A and B are scale factors. This model has one
transverse direction z and two equivalent longitudinal
directions y and z. We assume that matter contents of
the universe are described by the perfect fluid with the
energy—momentum tensor

Ty = (p+ P)uyuy — Pgpy. (40)

The corresponding field equations (2) and (3) can be
written as

2iB B2,

w(9) ¢
B B o2 @’

&;ﬂ(gg) o
BB P e @
B ' B? ) 2 @2
—2g§—§+%, (42)
s
+%—<§+§>§i (43)
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The wave equation is

. (A B\._ _p-3P
¢+<z+2§>¢—53515‘
V() —¢dV(@)/dg _ du(@)/ds s
2w(g) + 3 2w(p) +3

For this model, the average scale factor and the mean
Hubble parameter are

The energy conservation equation for the energy-—
momentum tensor in Eq. (40) is

. (A
p+

é‘+2§
A B

1

3(t) = AB?
a”(t) , 3

H(t) =

B
Z+2—

B (45)

> (p+P)=0.
We assume that the universe is filled with a
barotropic fluid. The barotropic equation of state [14]

is given by
P=vp, -1<7y<1

The expansion scalar for Bianchi type-I model is given
by

. A _B
9 = ’U/;a = Z + QE
while the shear scalar is
1 (A B
= B\4AT B

It is known [45] that for a spatially homogeneous met-
ric, the normal congruence to homogeneous expansion
yields a constant ratio /0, i.e., the expansion scalar
@ is proportional to the shear scalar o. This physical
condition leads to the relation

A=B" (46)

between the scale factors, where m # 1 is any positive
constant (for m = 1, it reduces to the flat FRW model).
In the literature [44-49], this condition has been widely
used to find exact cosmological models. Using this as-
sumption in Eq. (45), we obtain

) B
pt+ (1 +7)(m+2)5p(t) =0
whence
p(t) = poB=(1H7(m+2), (47)

We now discuss the various possible choices for w(¢)

and V().

687

4.1. Model without potential, V(¢) =0

We consider the following two cases according to
whether w is constant or w = w(¢).

4.1.1. Case (i)

We first take BD parameter to be a constant,
w(e) wo. For the solution of the field equations,
we consider the power law

B(t) = bot*, a > 0. (48)

Using Eqs. (46) and (48) and the mean Hubble param-
eter H, we can write the deceleration parameter as

q:‘b‘a<3 }

m+2)
We note that ¢ < 0, ¢ = 0, and ¢ > 0 respectively
indicate an accelerated expansion, uniform expansion,
and the decelerating phase of the universe. For the ac-
celerated expansion of the universe, we must have the
following condition on a:

3

a>——
(m +2)

m # 1. (49)
Substituting Eqs. (46) and (48) in (44), we express the
scalar field as

o(t) =

(1— 37)p0ba(m+2)(1+’>’)t2—a(1+7)(m+2)
(3+2wo)[1—ay(m+2)][2—a(1l+y) (m+2)]

(50)

The BD parameter is obtained from field equations
(41)—(43) as

1 (m+3)a(a—1)
(1=7) [2=a(m+2)(1+)P
5 (M24+1)+27(2m+1)  a[m+3+2y(m+2)]

2—a(m+2)(1+7)]> 2—a(m+2)(1+7)
1—a(m+2)(1+7)
2—a(m+2)(1+7)

wo = +

(51)

For a massless scalar field, v = 1, we have w — —o0,
which leads to GR. We have seen that the BD param-
eter depends on the parameters a, v, and m. These
parameters are constrained using some physical condi-
tions. The possible ranges for m are 0 < m < 1 and
m > 1 and 7 is allowed to be in the range —1 <y < 1.
By taking different possible choices for these param-
eters, it can be seen that the BD parameter takes
small negative values as well as positive values for
—1 < v <0, as shown in Figs. 5-7. This gives rise to
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cosmic acceleration for this range of v. We note here
that for ceratin ranges of a allowed for cosmic acceler-
ation and —1 < v < 0, wp can take larger values that
would be compatible with the solar system experiment
constraints.

Solving Eq. (51) for a, we obtain the quadratic
equation

a®[(m +2)*(1+7)?[(y = Dwo — 2] = (m + 3) —
— M+ 142y2m+ )] + (m +2)(1 + ) x
x [m+3+2y(m+2)]]+a[(m+2)(1+7) x
X [=4(y — Dwo + 6](m + 3) —
—2[m+3+2y(m+2)]] +4wo(y—1)—1] =0 (52)

which has two roots. These values for m = 1/2 and
~v = 0 (the present universe) are given by
_23/2+ 10wo £ /—15/4 — 6wy

= 17 + 25/2w0 (53)

Because —2 < wp < —3/2 is the observed range for
cosmic acceleration, the choice of wy = —5/3 leads to
following values of a:

] = 16/23, gy = 2.

Here, a; gives ¢ > 0, and we hence leave it, while
oy = 2 yields ¢ < 0, leading to accelerating expansion.
Also, it yields ¢(t) = t=3, which provides a positive
coupling constant. In our case, ¢(t) is decreasing more
rapidly than ¢(t) = t2 [11] and ¢(t) = t~°/2 [12], and
it therefore corresponds to a greater rate of the accel-
erated expansion of the universe.

4.1.2. Case (ii)

In this case, the BD parameter is not constant, but
is a function of ¢. Using Eqs. (13), (46), (41)-(43),
and (48), we can write the BD parameter as

w(¢)=ﬂ—12 [(3m_?2_2)a2+ (m;?’)a +
+ W_BQ-I-B] —
1

_@ [pobg(m“)(””)(1+7)¢(‘°‘(m+2)(1+7)—B+2)/B «
o8] (g

Substituting this value in Eq. (44), we obtain the con-
sistency relation
(m+2)a(l +7)

b= m#L (55)

This shows that § remains negative for all

3

0<m<1, —,
m+ 2

m>1, o> 1<y <1

The consistency of this solution with the dynamical
equations (the requirement that each term in the dy-
namical equations have the same time dependence), re-

sults in another constraint given by

Using this value of 8 in Eq. (55), it can be seen that
the parameter [ is restricted to —2. We now discuss
the BD parameter and cosmic acceleration in differ-
ent phases of the universe by using this value of 3.
The expressions for the BD parameter in matter and
radiation-dominated eras with § = -2, a« > 6/5, and
m = 1/2 turn out to be

1 302 «a 1 —245a/4
o) = |+ § 0] et
1] 30 « L oisas3
“’<¢>—1{‘T+rﬁ]‘§¢ '

By taking different choices for these parameters, we
see that for all phases of the universe, the BD parame-
ter w(¢) has small negative values and lies in the range
w < —3/2, as shown in Figs. 8 and 9, which corresponds
to an accelerated expansion of universe. This result is
in agreement with [14] for a spatially flat model.

4.2. Model with potential V(¢) # 0

Again, we discuss two cases depending on the value
of the BD parameter w.

4.2.1. Case (i)

First, we discuss the case of a constant BD param-
eter, w(¢) = wg. We then consider the power-law form
of the scalar field in terms of the scale factor B(t)

¢ = ¢OBQ7

Using this value of ¢ in field equations (41)—(43) leads
to

a>0. (56)

.. .\ 2
B B
Z1AlZ2) = —gBo+)(m+2)
pea(p) - ,

where

A_oz2—3a—2+2m2+ozm—2m+w0a2
B 3a +2m ’
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Fig.7. wo versus a for m = 3/2 (a), 4/5 (b), and v = —9/10. The corresponding ranges for a are « > 6/7 and
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= (L+7)po
do(3ac+2m)’

The expression for B(t) can be written as

20700 gy a1 (me2)/2
bo

x [(Ba+2m)[(1+7)(m+2) + (a —2)] —
—20%4+6a+4—4m> —2ma+4m—2wya’] /2,

B(t) =

which yields

B(#) = A/2/lo+ (147 (m2)]

where
A = | PO
2¢0
x [(Ba+2m)[(1+7)(m+2)+ (a—2)] —
—2a% +6a + 4 — 4m?>—2ma + 4m —
1/[a+(1+7) (m+2)]

[+ (1+7)(m+2)P(1+7) x

— 2wpa®]™! (59)
The value of the scale factor A(t) can be obtained using
value of B(t) in Eq. (46).

The corresponding expression for the scalar field is

(57)
B(t) = By o0, (60)
where
o = g A'*.
Equation (58) yields the following constraint on «:
(58) 3a < —(143y)(m+2). (61)
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The deceleration parameter ¢ turns out to be

a4+ (14+v)(m+2)]

-1
1 + 2(m + 2)

It can be easily seen that for all positive constant m
(m#1),a>1,and —1 < v < 1, the deceleration pa-
rameter remains negative, ¢ < 0. Hence, the universe
is in the state of accelerated expansion. From wave
equation (44), the potential can be written as

BI

Vi(g) = PE=Cyes (62)

where

— a2/ o) )
(L+7)(m+2)[a+ (1 +7)(m +2)]?

x [4(1+7)(m + 2)(woax — m — 2) —
— 8(m + 2)awp + 16m + 8m? + 24 — 4ma — 8al.

!

4.2.2. Case (ii)

We take the BD parameter as a function of the
scalar field ¢, i.e, w(¢). We consider the power-law
forms of the scalar field and the scale factor given
by (48) and (13). Using field equations (41)—(43), we
express the scalar potential as

V(o) = g/ gu-nie [ AO

2

3m +7
5B —(1-7)x

(m+2)(14) - a(m+2) (147)/8

_@+B2_B+

X poba
% ¢8‘(m+2)(1+7)/ﬁh (63)

The BD parameter turns out to be the same as in (54).
Substituting these values in Eq. (44), we obtain the
consistency relations
a
B=0, B==2 B=-T(m+3)
B=1—a(m+2).

(64)

The consistency of this solution with the dynamical
equation implies that

f=2—am+2)(1+7).

We now discuss the behavior of the self-interaction
potential V' (¢) for these values of 3 in different eras of
the universe. The choice = 0 is not, feasible, and we

therefore neglect it. For f = —2, the self-interaction
potential can be written as

m?+5m+6
Vo = (220 1
_ (mT“’) a+6—(3m+7)a] (1= gRlm (1) /2,

where m # 1 is a positive constant and

o > 3
m+2
For
f=-9a/4, m=3/2, «a>6/7,
we obtain
V(6) = 6100 (<30%) — (1 = )¢+,
For
m=2, «a>3/4, B=-5a/2,

the potential turns out to be
V(9) = —(1=)¢*+7/5,

where —1 < v < 1. The expression for the self-inter-
action potential for the radiation-dominated era with

f=2(1-5a/3), a>6/5, m=1/2
is given by
9502 13a 4
_ _ 0 2\ (5a/3)/(1—5a/3)
V(o) ( = T 3) ¢ :

The self interaction potential for the matter-dominated
era with

B=2-5a/2, a>6/5 m=1/2

takes the form
3a —5a —5a
V(g) = <1_ Z) P~50/2(2=50/2)

For the first three consistency relations for [ in
Eq. (64), we see that V(¢) is a decreasing function
starting from zero with the increasing values for ¢ ex-
cept in the case § = —2. In that case, only v = —1 and
v =1 with a > 1.3 provide a positive potential energy
because for these ranges, they are increasing functions
of ¢ as shown in Figs. 10, 11, 13. Figure 12a shows
that V(@) attains negative values starting from zero,
but at larger values of a, it is an increasing function
with positive values. Figure 12b shows that V(¢) at-
tains positive increasing values for a > 6/5. Therefore,
we conclude that these cases provide positive potential
energy because they result in increasing functions of ¢
for particular values of «.
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Fig.10. o — V versus ¢ for m = 1/2, o = 1.3, 8 = —Ta/4,
m=3/2, a =13, 8 =—-9a/4, and vy =

—10

—20 L

v
100

and v =1/3 (1), =1 (2), 0 (3). b — V versus ¢ for
1/3 (1), -1 (2),0(3),1(4)

50 +

—50 b

—100

Fig.11. a — V versus ¢ for m = 1/2, v =1/3, 8 =1 —5a/2, and a« = 1.5 (1), 2 (2), 1.3 (3). b — V versus ¢ for
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Fig.12. o — V versus ¢ for m =1/2, v =1/3, 8 = 2(1 — 5/3), and a = 1.5 (1), 2 (2), 1.3 (3). b — V versus ¢ for

m=1/2,7v=08=2-5a/2 and a =15 (1), 2 (2), 1.3 (3)
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Fig.13. V versus ¢ for m = 1/2, 3 = =2, and a =

=15, vy=1/3(1); a=13,v=1/3(2); a = 1.5,

y==-13);a=13,y=-14);a=15v=1(5);
a=13v=1(6)

5. VARIATION FOR THE NEWTON’S
GRAVITATIONAL CONSTANT IN THE
GENERALIZED BD THEORY

A well-known fact about the BD theory of gravity
is that it provides very small variations for the gravi-
tational constant. However, the generalized BD theory
suggests various possibilities for variation of G. In the
generalized BD theory, the expression for G is found to
be [20]

4+ 2w(9)
¢(3 +2w(9))

The present rate of variation of the gravitational con-
stant is given by

G(t) =

G _ ¢ 2(wo)
(5)0 T (5)0 (34 2wo) (4 + 2wp) (65)

Here, the subscript indicates the present values of the
corresponding parameters. Using Eq. (23),

f=-20, a>1, & =0.0001

and the estimated age of the universe o = 14 + 2
Gyrs, we obtain the rate of variation of (G/G)g to be
1.5714 - 10~ yrs. It lies clearly within the allowed
range of variation of GG for cosmic acceleration, that is,

(G/G)o < 4-10710 yrs

(see [11,12]).
For the Bianchi type-I model, by using expression
for w(¢) given by Eq. (54) in Eq. (65) along with values

p=-2, a>6/5a v=0,

to=14+2 Gyrs, m=1/2,

we obtain
(G/G)o = 1.4287 - 10710 yrs.

This also safely lies within the allowed range of varia-
tion of G for cosmic acceleration. Hence, our obtained
models satisfy the observational limit of G for cosmic
acceleration.

6. SUMMARY AND DISCUSSION

We have investigated the possibility of obtaining
cosmic acceleration by using the role of the BD para-
meter in the presence of viscous and barotropic fluids.
For this purpose, we considered the FRW and Bianchi
type-I universe models. The constructed models en-
tirely depend on the values of the parameters a, f3,
v, and m. First, we discussed the FRW model in the
presence of a viscous fluid. We have seen that the total
effective pressure contains a negative factor associated
with bulk viscosity, which leads to negative effective
pressure. Consequently, the fluid acts as a dark energy
candidate and can explain many aspects of evolution of
the universe. The deceleration parameter constraints
the parameter « for cosmic acceleration, i.e., a > 1.

For a constant bulk viscosity coefficient, we obtain
B =0 and = —2a. The first case leads to GR, while
for the second choice, in all eras of the universe except
the vacuum-dominated era, the BD parameter w(t) is
a decreasing function of time with small negative val-
ues. In the vacuum-dominated era, we see that for the
viscosity greater than 0.11, it is possible to achieve cos-
mic acceleration with positive values of w(t). For the
variable bulk viscosity coefficient with n = 1/2, w(t)
corresponds to a function decreasing as —t> with small
negative values for different small values of the viscos-
ity coefficient & and —1 < 4 < 1. This gives rise to
accelerated expansion of the universe for a« > 1. For
the radiative fluid, we have found that the viscosity co-
efficient appears in the exponential function. In that
case, w(t) is a decreasing function with negative values
for both the accelerated and decelerated phases of the
universe (—3/2 <w <0).

Second, we have taken the Bianchi type-I uni-
verse model in the presence of a perfect fluid with a
barotropic equation of state. Here, we considered two
cases: V(¢) =0 and V(¢) # 0. In the first case, when
w(¢) = wop, by taking different possible choices for the
parameters, we have seen that the BD parameter takes
small negative as well as positive values for —1 <y <0
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and certain ranges of a.. It follows that cosmic accelera-
tion can be achieved for positive larger values of w with
different values of «e. Also, for the present universe with

wo = —5/3 (taken from the negative observed range for
cosmic acceleration —2 < wg < —3/2), we have found
B(t) o< t73.

In this case, the acceleration rate of the universe is
higher than in [11],

o(t) o t72,

and in [12],
o(t) o /2.

When w = w(¢), taking different values of the param-
eters, we have seen that for all phases of the universe,
the BD parameter w(¢) takes small negative values and
lies in the range w < —3/2, which corresponds to cos-
mic acceleration and agrees with the already found re-
sults [14].

For V(¢) # 0 and w(¢) = wp, we have evaluated
the values of scale factors A and B, the scalar field,
and V(¢). We have found that in all phases of the uni-
verse, these values of scale factors A(t) and B(t) lead
to ¢ < 0 for all positive constant m with m # 1 and
a > 1, which corresponds to cosmic acceleration. Fi-
nally, for V(¢) # 0 and w = w(¢), we see that V' (¢) is a
decreasing function starting from zero with increasing
¢ except for the choice f = —2 with particular values
of v and o > 1.3. These values provide positive po-
tential energy and result in an increasing function of ¢.
However, for the constraint

f=2—am+2)(1+7),

it is possible to have a positive potential energy for
larger values of a in the matter-dominated era and for
smaller values of « in the radiation-dominated era.

It is worthwhile to mention that all models dis-
cussed here satisfy the observational constraints for the
variation of Newton’s gravitational constant available
in literature [11,12], which supports our results. In
each case, we have explained the phenomenon of cos-
mic acceleration for different ranges of the correspond-
ing parameters. But these ranges of the BD parameter,
except a few cases, are incompatible with solar sys-
tem constraints, which require w > 40.000. This is the
generic problem noted in the context of scalar—tensor
theories. It would be of great interest to see whether
this problem can be resolved using other Bianchi mo-
dels.

In order to check the viability of dark energy models
based on modified theories of gravity, the evolution of

cosmological perturbations and the background expan-
sion history of the universe may be studied. This can
be done using the Chameleon and Vainshtein mech-
anisms, which suppress the propagation of the fifth
force and provide consistency with local gravity exper-
iments [50, 51]. These procedures can be used to check
the viability of above-discussed models.
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