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COSMIC ACCELERATION AND BRANS�DICKE THEORYM. Sharif *, S. Waheed **Department of Mathemati
s, University of the Punjab54590, Lahore, PakistanRe
eived January 16, 2012We study the a

elerated expansion of the universe by exploring the Brans�Di
ke parameter in di�erent eras.For this, we take the FRW universe model with a vis
ous �uid (without potential) and the Bian
hi type-Iuniverse model with a barotropi
 �uid (with and without a potential). We evaluate the de
eleration parameterand the Brans�Di
ke parameter to explore 
osmi
 a

eleration. It is 
on
luded that a

elerated expansion ofthe universe 
an also be a
hieved for higher values of the Brans�Di
ke parameter in some 
ases.1. INTRODUCTIONThe a

elerated expansion of the observable uni-verse is one of the most 
onspi
uous re
ent a
hieve-ments in modern 
osmology. This expansion with pos-itive 
osmi
 a

eleration has been 
on�rmed by manyastronomi
al experiments su
h as Supernova (Ia) [1; 2℄,WMAP [3℄, SDSS [4℄, gala
ti
 
luster emission ofX-rays [5℄, large-s
ale stru
ture [6℄, weak lensing [7℄,et
. These results lead to the 
on
lusion that our uni-verse is spatially �at.The positive 
osmi
 a

eleration of the universe hasbeen motivated by a mysterious exoti
 matter havinglarge negative pressure, known as dark energy. Al-though general relativity (GR) is an ex
ellent theoryto explain the gravitational e�e
ts, it is unable to de-s
ribe the present 
osmi
 a

eleration and the realityof dark energy. To explain the nature of this mysteri-ous �nding, various models in
luding a Chaplygin gas,phantom, quintessen
e, 
osmologi
al 
onstant, and soon have been 
onstru
ted [8; 9℄. However, none of thesemodels is very su

essful.The exploration of s
alar�tensor theories of grav-ity as modi�ed theories of gravity has re
eived mu
hattention due to their vast impli
ations in 
osmology[10�14℄. The Brans�Di
ke (BD) theory of gravity, a spe-
ial 
ase of s
alar�tensor theories, is one of the mostviable theories for this purpose. It is the general defor-mation of GR satisfying the weak equivalen
e prin
iple,in whi
h gravity e�e
ts are mediated by the metri
 ten-sor and a s
alar �eld [15℄. This provides a dire
t 
ou-*E-mail: msharif.math�pu.edu.pk**E-mail: smathemati
s�hotmail.
om

pling of the s
alar �eld to geometry. The Brans�Di
ketheory is 
ompatible with both Ma
h's prin
iple [16℄and Dira
's large number hypothesis [17℄. One of thesalient features of this theory is that the gravitational
oupling 
onstant, being the inverse of the spa
etimes
alar �eld, varies with time. In order to ful�ll the solarsystem experiment 
onstraints, the value of the generi
dimensionless BD parameter ! should be very large,! � 40:000 [8; 9℄.The Brans�Di
ke theory is a su

essful theory that
an ta
kle many outstanding 
osmologi
al problemslike in�ation, quintessen
e, late time behavior of theuniverse, the 
oin
iden
e problem, the 
osmi
 a

eler-ation [11℄, and so on. There are di�erent versions ofthe BD theory available in the literature [20; 21℄. InRef. [22℄, various BD 
osmologi
al models were inves-tigated and it was shown that the Bian
hi models arevery e�e
tive in explaining the evolution of the universefor a perfe
t �uid. In Ref. [23℄, di�erent models of theuniverse with a 
onstant de
eleration parameter basedon the variation law of the Hubble parameter were dis-
ussed. In Ref. [11℄, it was found that the a

eleratedexpansion of the universe 
ould be obtained with largej!j and potential �2 without 
onsidering the positive-energy 
ondition. In Ref. [24℄, it was shown that thedissipative pressure 
ould support the late-time a

el-erated expansion of the universe. In Ref. [12℄, it wasfound that the present a

elerated expansion 
ould beobtained without restoring a 
osmologi
al 
onstant orquintessen
e matter for Friedmann�Robertson�Walker(FRW) model.In Ref. [25℄, the observed a

elerated expansion ofthe present universe in this theory for the FRW model680
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 a

eleration and Brans�Di
ke theorywas explored, and in Ref. [13℄, exa
t solutions in di�er-ent eras of the universe were found and also dis
ussedthe possibilities for obtaining 
osmi
 a

eleration, in-�ation, and de
eleration for these solutions. The roleof a positive power-law potential as regards the a

eler-ated expansion of the universe was investigated in [26℄.It was 
on
luded that a self-intera
ting potential 
anderive the a

elerated expansion in the perfe
t �uidba
kground with small negative values of the BD pa-rameter. An axially symmetri
 perfe
t �uid 
osmolog-i
al model of this theory was found in [27℄. To in-vestigate the present a

elerated expansion of the uni-verse and di�erent stages of the 
osmi
 evolution, mu
hwork has been done using Bian
hi models in GR ands
alar-tensor theories [28�32℄. In a re
ent paper [14℄,
osmi
 a

eleration in this theory for the FRW modelwas investigated. It was shown that the a

elerated ex-pansion of the universe with higher values of ! 
an bea
hieved only for the 
losed model.In this paper, we explore the e�e
t of the BD pa-rameter on the 
osmi
 a

eleration by using spatially�at models in the presen
e of di�erent �uids. The pa-per is organized as follows. In Se
. 2, we formulate the�eld equations of the generalized BD theory with a self-intera
ting potential. Se
tion 3 provides the �eld equa-tions for the FRW model in the presen
e of a vis
ous�uid. We dis
uss models for both 
onstant and varyingbulk vis
osity 
oe�
ient there. In Se
. 4, we formulatethe �eld equations in the presen
e of a barotropi
 �uidfor the Bian
hi type-I universe model. In that se
tion,we explore all possible 
hoi
es of the BD parameter !and the self-intera
ting potential V (�). In Se
. 5, weinvestigate the observational limit of the gravitational
onstant for the 
onstru
ted models. Finally, we dis-
uss the results in the last se
tion.2. BRANS�DICKE FIELD EQUATIONSA s
alar�tensor theory known as Brans�Di
ke the-ory of gravity [15℄ is based on the pioneering work ofJordan. A modi�ed version of this theory is the general-ized BD theory in whi
h the BD parameter is no longera 
onstant but is a fun
tion of the s
alar �eld. The a
-tion for generalized BD theory with a self-intera
tingpotential in the Jordan frame [20; 21℄ is given byS = Z d4xp�g ��R�!(�)� �;��;��V (�)+Lm� ;� = 0; 1; 2; 3; (1)where the BD parameter !(�) is a modi�ed form ofthe original BD parameter !; V (�) denotes the self-

intera
ting potential, and Lm is the matter part of theLagrangian. Here, we set8�G0 = 
 = 1:Varying this a
tion with respe
t to the metri
 tensorg�� and the s
alar �eld, we obtain the BD �eld equa-tions [14℄G�� = !(�)�2 ��;��;� � 12g���;��;��++ 1� [�;�;� � g����℄� V (�)2� g�� + T��� ; (2)�� = T3+2!(�)� 13+2!(�) �2V (�)��dV (�)d� ��� d!(�)d�3 + 2!(�)�;��;�; (3)where T = g��T��denotes tra
e of the energy�momentum tensor and � isthe d'Alembertian operator. Equation (3) is 
alled thewave equation for the s
alar �eld. We note that theBD theory redu
es to GR if ! ! 1 and the s
alar�eld be
omes a 
onstant [33℄. However, this is nottrue in general. It has been pointed out in [30; 34℄that the BD theory does not always pass into GR inthe limit ! ! 1 in the 
ase of exa
t solutions. Inthis limit, GR 
an be re
overed only if the tra
e ofthe energy�momentum tensor T (m) des
ribing all �eldsother than the BD s
alar �eld does not vanish, i. e.,T (m) 6= 0 [34�37℄. For T (m) = 0, the BD solutions donot 
orrespond to respe
tive GR solutions. The Pala-tini metri
 f(R) gravity and the metri
 f(R) gravityare respe
tively obtained by substituting ! = �3=2 and! = 0 [38℄.3. COSMIC ACCELERATION AND THE FRWMODELIn this se
tion, we investigate 
osmi
 a

elerationby exploring the BD parameter. For this, we 
onsiderthe FRW model with a vis
ous �uid. In parti
ular, wedis
uss two 
ases a

ording to whether the bulk vis-
osity is 
onstant or variable. The line element for theFRW model is given byds2 = dt2�a2(t) � dr21�kr2+r2(d�2+sin2 � d�2)� ; (4)681
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ale fa
tor and k = �1; 0; 1 respe
tivelyindi
ates an open, �at, and 
losed universe model. Weassume that the universe is �lled with a vis
ous �uidwhose energy�momentum tensor isT�� = (�+ Peff )u�u� � Peff g�� ; (5)where � is the energy density, u� is the four-ve
tor ve-lo
ity satisfying the relation u�u� = 1, and Peff is thee�e
tive pressure de�ned byPeff = PI + Pvis:Here, PI denotes the isotropi
 pressure and Pvis is thepressure due to vis
osity. The bulk vis
ous pressureis de�ned by E
kart's expression in terms of the �uidexpansion s
alar and is given byPvis = ��u�;�(see [39℄), where � = �(t; �) is the bulk vis
osity 
o-e�
ient. For the FRW model, the vis
ous pressure isfound to be Pvis = �3� _aaand hen
e the e�e
tive pressure be
omesPeff = PI � 3�H; (6)where H = _a=a denotes the Hubble parameter. The
orresponding �eld equations (2) turn out to be_a2 + ka2 + _a _�a� � !6 _�2�2 = �3�; (7)2�aa + _a2 + ka2 + !2 _�2�2 + 2_a _�a� + ��� = �Peff� ; (8)where the dot denotes the derivative with respe
t totime. The 
orresponding wave equation be
omes��+ 3H _� = �� 3Peff2! + 3 � _! _�2! + 3 ; (9)where we have set V (�) = 0:The equation of state provides a relation betweenisotropi
 pressure and energy density and is given byP = 
�; (10)where 
 is the equation of state parameter. The values
 = �1; 0; 1=3; 1

respe
tively represent a va
uum-dominated, dust, ra-diation-dominated era, and a massless s
alar �eld. The
ontinuity equation for vis
ous �uid (5) 
an be writtenas _�+ 3H(�+ Peff ) = 0: (11)We 
an assume the standard expression � = �0�n forthe bulk vis
osity, where n is a nonnegative 
onstantand �0 > 0. Di�erent possible values of n are availablein literature [40�43℄, among whi
h two 
hoi
es n = 1and n = 3=2 respe
tively 
orrespond to the radiativeand string-dominated �uids. However, more realisti
models 
an be obtained for 0 � n � 1=2. Here, weevaluate � by solving 
ontinuity equation (11) in thefollowing two 
ases.(i) Constant bulk vis
osity, i. e., � = �0 (for n = 0).(ii) Variable bulk vis
osity, i. e., � = �(t; �) withn = 1=2; 1.In both 
ases, we 
hoose k = 0, i. e., a �at FRW model.3.1. Constant bulk vis
osity 
oe�
ientEnergy 
onservation equation (11), in terms of a
onstant bulk vis
osity, 
an be written as_�+ 3H(1 + 
)� = 9�0H2; (12)where we use the equation of state given by Eq. (10).We assume that the s
ale fa
tor a(t) has the form ofan expanding solution (power-law form)a(t) = a0t�; � > 0; (13)where a0 is the present value of the s
ale fa
tor. Thede
eleration parameter is given byq = � 1 + _HH2! : (14)We note that the de
eleration parameter q suggests� > 1 for 
osmi
 a

eleration. Equation (12) leadsto�(t) = 9�0�2�1+3�(1+
) t�1+�0a�3(1+
)0 t�3�(1+
): (15)The s
alar �eld 
an be found from Eq. (9) by setting!(t) = !0 (
onstant)as follows:�(t) = (1� 3
)�0a�3(1+
)0 t2�3�(1+
)(3 + 2!0)(1� 3�
)[2� 3�(1 + 
)℄ ++ 3�0(1� 4�)t(3 + 2!0)[1� 3�(1 + 
)℄ :682
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 a

eleration and Brans�Di
ke theoryThis equation suggests that the s
alar �eld 
an be takenin a power-law form when the s
ale fa
tor is given inthe expanding form.We next dis
uss the time-dependent BD parameter!, whi
h satis�es the �eld equations as well as the waveequation. For this, we assume a simple power-law formfor the s
alar �eld, �(t) = �0t� ; (16)where �0 is the present value of the s
alar �eld and� is any nonzero 
onstant. Field equation (7) 
an berearranged in the form_aa = � _�2� �s
(t) _�212�2 + �3�; (17)where 
(t) = 2!(�(t)) + 3:Using Eqs. (13) and (16) in Eq. (17), we obtain�(t) = 3�0t� �(2�+ �)24t2 � 
(t)�212t2 � : (18)The 
omparison of Eqs. (15) and (18) yields
(t) = 3�2 (2�+ �)2 � 36�0�2�0�2[3�(1 + 
)� 1℄t(1��) �� 4�0a�3(1+
)0 t�3�(1+
)��+2�0�2 : (19)The 
orresponding expression for !(t) be
omes!(�(t)) � !(t) = �18�0�2t(1��)�0�2[3�(1 + 
)� 1℄ �� 2�0a�3(1+
)0 t2���3�(1+
)�0�2 : (20)Here, we 
onsider time-dependent terms only.To verify the 
onsisten
y of these solutions with thewave equation, we substitute these values in (9). Thisleads to the two 
onsisten
y relations�[4(� � 1 + 3�) + �(1� 3
) ++ 2[2� 3�(1 + 
)� �℄℄ = 0; (21)4�(� � 1 + 3�) + �(1� 3
)� ++ [3�(1 + 
)� 1℄� + 2�(1� �) = 0: (22)Equation (21) implies that either � = 0 or � = �2�,while Eq. (22) is satis�ed for either � = �2� or

� = 1=6. For 
osmi
 a

eleration, � = 1=6 is not an in-teresting value and we therefore ignore it. When � = 0,the BD parameter yields!(t)! �1and the s
alar �eld be
omes a 
onstant, � = �0. Thisleads to GR, and hen
e it is not the interesting 
ase.For � = �2�; ! takes the form!(t) = � 9�0t(1+2�)2�0[3�(1 + 
)� 1℄ �� �0a�3(1+
)0 t2��(1+3
)2�0�2 : (23)The power-law expression for the s
alar �eld turns outto be �(t) = �0t�2�:In what follows, we evaluate the BD parameter at dif-ferent epo
hs of the universe.In the va
uum-dominated era (
 = �1), the BDparameter is!(t) = 9�02�0 t(1+2�) � �02�0�2 t2(1+�): (24)In the radiation-dominated era (
 = 1=3), the BD pa-rameter be
omes!(t) = 9�02�0(1� 4�) t(1+2�) � �0a�40 t2(1��)2�0�2 : (25)In the matter-dominated era or the dust 
ase (
 = 0),the BD parameter takes the form!(t) = 9�02�0(1� 3�) t(1+2�) � �0a�30 t(2��)2�0�2 : (26)In the massless s
alar �eld era (
 = 1), the BD param-eter turns out to be!(t) = 9�02�0(1� 6�) t(1+2�) � �0a�60 t(2�4�)2�0�2 : (27)Finally, for the present time, t = t0, the BD parameter
an be 
al
ulated from the dust 
ase, i. e., matter withnegligible pressure. Equation (26) leads to the presentvalue of the BD parameter !0 given by!0 = � 9�02(3�� 1) � 12�2 : (28)Here, we normalize the 
onstants as�0 = a0 = t0 = 1; �0 = 0; � � 1;683
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Fig. 1. ! versus t for 
 = �1 (a) and 1=3 (b) with � = 1:1 and �0 = 0:0001 (1 ), 0:15 (2 ), 0:2 (3 ), 0:38 (4 )whi
h is 
onsistent with Eq. (17). The minimum valueof !0 is !0 = �9�04 � 12 :Clearly, the minimum value of !0 depends on thevalue of the 
onstant bulk vis
osity 
oe�
ient �0. Inthe BD theory, the gravitational 
oupling 
onstant andthe s
alar �eld density should be positive in the presentuniverse, whi
h 
an be a
hieved for ! > �3=2 [12℄. Inour 
ase, the bulk vis
osity 
oe�
ient must be �0 < 4=9with � > 1 for 
onsisten
y. The present observationalrange for the de
eleration parameter is�1 < q0 < 0(see [1; 2℄), whi
h restri
ts � > 1. A more general formof the model for the present universe 
an be obtainedby taking � = 1+ �, � > 0 (for small values of �), whi
hgives !(t) = �9�0t(3+2�)2(2 + 3�) � t(1��)2(1 + �)2 ;� = �0t�2(1+�); a(t) = a0t(1+�):We now dis
uss the BD parameter for the va
uumand matter-dominated eras. In the va
uum-dominatedera, the graphs indi
ate that !(t) is a de
reasing fun
-tion starting from zero for 0 < �0 � 0:11. For �0 > 0:11,the graphs represent fun
tions that �rst in
rease andthen, after some parti
ular points, be
ome de
reasingagain, as is shown in Fig. 1. Therefore, for this rangeof the 
onstant vis
osity �0 with � > 1, it is possible toa
hieve the 
osmi
 a

eleration with positive values of!(t). In all other eras of the universe, !(t) is a de
reas-ing fun
tion of time with smaller negative values. For

0 < � < 1, in the radiation-dominated era, !(t) is ade
reasing fun
tion and the universe undergoes a de
el-erated expansion. Hen
e the role of �0 is to 
ontrol thetime dependen
e of !(t). In the radiation and matter-dominated eras, and the massless s
alar �eld era, theBD parameter approa
hes �1 for � = 1=6; 1=3, and1=4. For 
osmi
 a

eleration, we must have � > 1, andhen
e these values are not interesting.3.2. Variable bulk vis
osity 
oe�
ientFor simpli
ity, we setn = 1=2; i. e.; �(t; �) = �0�1=2(t):Using this value of the bulk vis
osity 
oe�
ient alongwith Eq. (13) in (11) yields_�(t) + �3�t (1 + 
)� 9�0�2t2 � �(t)1=2 = 0:This has the solution�(t) = � 9�0�2t[3�(1 + 
)� 2℄ + �0t�3�(1+
)=2�2 ; (29)where �0 is an integration 
onstant. Comparing thisequation with Eq. (18), we obtain
(t) = 3�2�+ �� �2 � 4t2�0�2t� �� � 9�0�2t[3�(1 + 
)� 2℄ + �0t�3�(1+
)=2�2 :684
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Fig. 2. ! versus t for 
 = 0 (a) and 1=3 (b) with � = 1:1 and �0 = 0:0001 (1 ), 0:01 (2 ), 0:1 (3 ), 0:38 (4 )The 
orresponding BD parameter be
omes!(t) = � 2t2�0�2t� �� � 9�0�2t[3�(1 + 
)� 2℄ + �0t�3�(1+
)=2�2 : (30)To verify the 
onsisten
y of this solution with the waveequation, we substitute all these values in wave equa-tion (9), whi
h leads to� = 1=3; � = �2�; 
 = 1:For � = �2�, we obtain!(t) = � t2(1+�)2�0�2 �� � 9�0�2t(3�(1 + 
)� 2) + �0t�3�(1+
)=2�2 : (31)The 
hoi
e � = 1=3 is not feasible for obtaining 
osmi
a

eleration, while 
 = 1 
orresponds to a masslesss
alar �eld, whi
h is dis
ussed below. We now evaluatethe BD parameter in the di�erent eras.In the va
uum-dominated era, the BD parameter is!(t) = � t2(1+�)2�0�2 ��9�0�22t + �0�2 : (32)In the radiation-dominated era, the BD parameterturns out to be!(t) = � t2(1+�)2�0�2 � 9�0�2t(4�� 2) + �0t�2��2 : (33)In the matter-dominated era the BD parameter is!(t) = � t2(1+�)2�0�2 � 9�0�2t(3�� 2) + �0t�3�=2�2 : (34)

1 2

3

4

0 1 2 3 4 5

t

0

1

−1

−2

−3

−4

−5

ω

Fig. 3. ! versus t for � = 1:1 and 
 = �1 with�0 = 0:0001 (1 ), 0:01 (2 ), 0:1 (3 ), 0:38 (4 )In the massless s
alar �eld era, the BD parameter isgiven by!(t) = � t2(1+�)2�0�2 � 9�0�2t(6�� 2) + �0t�3��2 : (35)The expressions for !(t) 
orrespond to a fun
tion de-
reasing as �t2 for in
reasing values of the vis
osity
oe�
ient �0 and �1 � 
 � 1 ex
ept for the va
uum-dominated era. This gives rise to a

elerated expansionof the universe for � > 1 as shown in Figs. 2 and 3. For� = 1=2; 3=2, and 1=3, the BD parameter approa
hes�1. In the matter-dominated era, � = 3=2 lies in therange � > 1 allowed for the a

elerated expansion ofthe universe.We now dis
uss the radiative �uid 
ase (n = 1).Here, we take �(t; �) = �0�(t):685
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Fig. 4. ! versus t for � = 1:1 (a) and 0:5 (b) with �0 = 0:0001 (1 ), 0:09 (2 ), 0:38 (3 ), 1:2 (4 )Consequently, the 
ontinuity equation yields�(t) = �0t�3�(1+
) exp��9�0�2t � : (36)The BD parameter !(t) turns out to be!(t) = �2�0 exp (�9�0�2=t)�0�2 t2�3�(1+
)�� :Here, � = 0 and � = �2� are the 
orresponding 
onsis-ten
y relations. Choosing � = 0 provides no interestinginsights, while � = �2� leads to the expression!(t) = ��0 exp (�9�0�2=t)2�0�2 t2��(1+3
): (37)For the radiation-dominated era, the BD parametertakes the form!(t) = ��0 exp (�9�0�2=t)2�0�2 t2(1��): (38)We see that the 
oe�
ient of vis
osity appears only inthe exponential fun
tion. In the radiation-dominatedera, for small values of �0 and � > 1, we haveexp(�9�0�=t)! 1;providing small negative values of !(t) as shown inFig. 4. If �0 !1 with � > 1, thenexp(�9�0�=t)! 0;whi
h implies !(t) ! 0. Therefore, this model may
orrespond to that of the metri
 f(R) gravity. How-ever, it is not physi
ally possible. Also in this 
ase, for0 < � < 1, the values of !(t) are 
onstrained within therange �3=2 < !(�) < 0, whi
h shows that the universeundergoes a transition to the de
elerated phase.

4. COSMIC ACCELERATION WITH ABAROTROPIC FLUID AND THE BIANCHI-IUNIVERSE MODELHere, we investigate expansion of the universe byusing the LRS Bian
hi type-I model in the barotropi
�uid ba
kground. The line element of the Bian
hitype-I universe model is des
ribed by [44℄ds2 = dt2 �A2(t) dx2 �B2(t)(dy2 + dz2); (39)where A and B are s
ale fa
tors. This model has onetransverse dire
tion x and two equivalent longitudinaldire
tions y and z. We assume that matter 
ontents ofthe universe are des
ribed by the perfe
t �uid with theenergy�momentum tensorT�� = (�+ P )u�u� � Pg�� : (40)The 
orresponding �eld equations (2) and (3) 
an bewritten as2 _A _BAB + _B2B2 = �� + !(�)2 _�2�2 ++ V (�)2� � _AA + 2 _BB! _��; (41)2 �BB + _B2B2 = �P� � !(�)2 _�2�2 �� 2 _BB _�� � ��� + V (�)2� ; (42)�BB + �AA + _A _BAB = �P� � !(�)2 _�2�2 � ��� ++ V (�)2� � _AA + _BB! _��: (43)686
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 a

eleration and Brans�Di
ke theoryThe wave equation is��+ _AA + 2 _BB! _� = �� 3P2!(�) + 3 �� 2V (�)� �dV (�)=d�2!(�) + 3 � _�2d!(�)=d�2!(�) + 3 : (44)For this model, the average s
ale fa
tor and the meanHubble parameter area3(t) = AB2; H(t) = 13  _AA + 2 _BB! :The energy 
onservation equation for the energy�momentum tensor in Eq. (40) is_�+ _AA + 2 _BB! (�+ P ) = 0: (45)We assume that the universe is �lled with abarotropi
 �uid. The barotropi
 equation of state [14℄is given by P = 
�; �1 � 
 � 1:The expansion s
alar for Bian
hi type-I model is givenby � = ua;a = _AA + 2 _BBwhile the shear s
alar is� = 1p3  _AA � _BB! :It is known [45℄ that for a spatially homogeneous met-ri
, the normal 
ongruen
e to homogeneous expansionyields a 
onstant ratio �=�, i. e., the expansion s
alar� is proportional to the shear s
alar �. This physi
al
ondition leads to the relationA = Bm (46)between the s
ale fa
tors, where m 6= 1 is any positive
onstant (form = 1, it redu
es to the �at FRW model).In the literature [44�49℄, this 
ondition has been widelyused to �nd exa
t 
osmologi
al models. Using this as-sumption in Eq. (45), we obtain_�+ (1 + 
)(m+ 2) _BB�(t) = 0when
e �(t) = �0B�(1+
)(m+2): (47)We now dis
uss the various possible 
hoi
es for !(�)and V (�).

4.1. Model without potential, V (�) = 0We 
onsider the following two 
ases a

ording towhether ! is 
onstant or ! = !(�).4.1.1. Case (i)We �rst take BD parameter to be a 
onstant,!(�) = !0. For the solution of the �eld equations,we 
onsider the power lawB(t) = b0t�; � � 0: (48)Using Eqs. (46) and (48) and the mean Hubble param-eter H , we 
an write the de
eleration parameter asq = � �1� 3�(m+ 2)� :We note that q < 0, q = 0, and q > 0 respe
tivelyindi
ate an a

elerated expansion, uniform expansion,and the de
elerating phase of the universe. For the a
-
elerated expansion of the universe, we must have thefollowing 
ondition on �:� > 3(m+ 2) ; m 6= 1: (49)Substituting Eqs. (46) and (48) in (44), we express thes
alar �eld as�(t) == (1� 3
)�0b�(m+2)(1+
)0 t2��(1+
)(m+2)(3+2!0)[1��
(m+2)℄[2��(1+
)(m+2)℄ : (50)The BD parameter is obtained from �eld equations(41)�(43) as!0 = � 1(1� 
) � (m+ 3)�(�� 1)[2� �(m+ 2)(1 + 
)℄2 ++ �2 (m2+1)+2
(2m+1)[2��(m+2)(1+
)℄2 + �[m+3+2
(m+2)℄2��(m+2)(1+
) ++ 1� �(m+ 2)(1 + 
)2� �(m+ 2)(1 + 
)� : (51)For a massless s
alar �eld, 
 = 1, we have ! ! �1,whi
h leads to GR. We have seen that the BD param-eter depends on the parameters �, 
, and m. Theseparameters are 
onstrained using some physi
al 
ondi-tions. The possible ranges for m are 0 < m < 1 andm > 1 and 
 is allowed to be in the range �1 � 
 � 1.By taking di�erent possible 
hoi
es for these param-eters, it 
an be seen that the BD parameter takessmall negative values as well as positive values for�1 � 
 < 0, as shown in Figs. 5�7. This gives rise to687
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osmi
 a

eleration for this range of 
. We note herethat for 
eratin ranges of � allowed for 
osmi
 a

eler-ation and �1 � 
 < 0; !0 
an take larger values thatwould be 
ompatible with the solar system experiment
onstraints.Solving Eq. (51) for �, we obtain the quadrati
equation�2[(m+ 2)2(1 + 
)2[(
 � 1)!0 � 2℄� (m+ 3)�� [m2 + 1 + 2
(2m+ 1)℄ + (m+ 2)(1 + 
)�� [m+ 3 + 2
(m+ 2)℄℄ + �[(m+ 2)(1 + 
)�� [�4(
 � 1)!0 + 6℄(m+ 3)�� 2[m+ 3 + 2
(m+ 2)℄℄ + 4[!0(
 � 1)� 1℄ = 0 (52)whi
h has two roots. These values for m = 1=2 and
 = 0 (the present universe) are given by� = 23=2+ 10!0 �p�15=4� 6!017 + 25=2!0 : (53)Be
ause �2 � !0 � �3=2 is the observed range for
osmi
 a

eleration, the 
hoi
e of !0 = �5=3 leads tofollowing values of �:�1 = 16=23; �2 = 2:Here, �1 gives q > 0, and we hen
e leave it, while�2 = 2 yields q < 0, leading to a

elerating expansion.Also, it yields �(t) = t�3, whi
h provides a positive
oupling 
onstant. In our 
ase, �(t) is de
reasing morerapidly than �(t) = t�2 [11℄ and �(t) = t�5=2 [12℄, andit therefore 
orresponds to a greater rate of the a

el-erated expansion of the universe.4.1.2. Case (ii)In this 
ase, the BD parameter is not 
onstant, butis a fun
tion of �. Using Eqs. (13), (46), (41)�(43),and (48), we 
an write the BD parameter as!(�) = 1�2 � (3m�m2 � 2)2 �2 + (m+ 3)�2 ++ (m+ 1)��2 � �2 + ���� 1�2 h�0b�(m+2)(1+
)0 (1+
)�(��(m+2)(1+
)��+2)=� �� �(��(m+2)(1+
)�2)=�0 i : (54)Substituting this value in Eq. (44), we obtain the 
on-sisten
y relation� = � (m+ 2)�(1 + 
)2 ; m 6= 1: (55)

This shows that � remains negative for all0 < m < 1; m > 1; � > 3m+ 2 ; �1 � 
 � 1:The 
onsisten
y of this solution with the dynami
alequations (the requirement that ea
h term in the dy-nami
al equations have the same time dependen
e), re-sults in another 
onstraint given by� = 2� �(m+ 2)(1 + 
):Using this value of � in Eq. (55), it 
an be seen thatthe parameter � is restri
ted to �2. We now dis
ussthe BD parameter and 
osmi
 a

eleration in di�er-ent phases of the universe by using this value of �.The expressions for the BD parameter in matter andradiation-dominated eras with � = �2, � > 6=5, andm = 1=2 turn out to be!(�) = 14 ��3�28 + �4 � 6�� 14��2+5�=4;!(�) = 14 ��3�28 + �4 � 6�� 13��2+5�=3:By taking di�erent 
hoi
es for these parameters, wesee that for all phases of the universe, the BD parame-ter !(�) has small negative values and lies in the range! � �3=2, as shown in Figs. 8 and 9, whi
h 
orrespondsto an a

elerated expansion of universe. This result isin agreement with [14℄ for a spatially �at model.4.2. Model with potential V (�) 6= 0Again, we dis
uss two 
ases depending on the valueof the BD parameter !.4.2.1. Case (i)First, we dis
uss the 
ase of a 
onstant BD param-eter, !(�) = !0. We then 
onsider the power-law formof the s
alar �eld in terms of the s
ale fa
tor B(t)� = �0B�; � > 0: (56)Using this value of � in �eld equations (41)�(43) leadsto �BB +A _BB!2 = �CB��(1+
)(m+2);whereA = �2 � 3�� 2 + 2m2 + �m� 2m+ !0�23�+ 2m ;688
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)�0�0(3�+ 2m) :The expression for _B(t) 
an be written as_B(t) =s2(1 + 
)�0�0 B(t)(2���(1+
)(m+2))=2 �� [(3�+ 2m)[(1 + 
)(m+ 2) + (�� 2)℄��2�2+6�+4�4m2�2m�+4m�2!0�2℄�1=2; (57)whi
h yields B(t) = A0t2=[�+(1+
)(m+2)℄; (58)

whereA0 = � �02�0 [�+ (1 + 
)(m+ 2)℄2(1 + 
) �� [(3�+ 2m)[(1 + 
)(m+ 2) + (�� 2)℄�� 2�2 + 6�+ 4� 4m2�2m�+ 4m�� 2!0�2℄�1�1=[�+(1+
)(m+2)℄ : (59)The value of the s
ale fa
tor A(t) 
an be obtained usingvalue of B(t) in Eq. (46).The 
orresponding expression for the s
alar �eld is�(t) = �0t2�=[�+(1+
)(m+2)℄; (60)where �0 = �0A0�:Equation (58) yields the following 
onstraint on �:3� � �(1 + 3
)(m+ 2): (61)690
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 a

eleration and Brans�Di
ke theoryThe de
eleration parameter q turns out to beq = �1 + 3[�+ (1 + 
)(m+ 2)℄2(m+ 2) :It 
an be easily seen that for all positive 
onstant m(m 6= 1), � > 1, and �1 � 
 � 1, the de
eleration pa-rameter remains negative, q < 0. Hen
e, the universeis in the state of a

elerated expansion. From waveequation (44), the potential 
an be written asV (�) = B0�(1+
)(m+2)=� ; (62)whereB0 = ���2=(�p)0(1 + 
)(m+ 2)[�+ (1 + 
)(m+ 2)℄2 �� [4(1 + 
)(m+ 2)(!0��m� 2)�� 8(m+ 2)�!0 + 16m+ 8m2 + 24� 4m�� 8�℄:4.2.2. Case (ii)We take the BD parameter as a fun
tion of thes
alar �eld �, i.e, !(�). We 
onsider the power-lawforms of the s
alar �eld and the s
ale fa
tor givenby (48) and (13). Using �eld equations (41)�(43), weexpress the s
alar potential asV (�) = �2=�0 �(��2)=� �(m2 + 5m+ 6)�22 �� (m+ 3)�2 + �2 � � + 3m+ 72 ���� (1� 
)�� �0b�(m+2)(1+
)0 ���(m+2)(1+
)=� �� ��(m+2)(1+
)=�0 : (63)The BD parameter turns out to be the same as in (54).Substituting these values in Eq. (44), we obtain the
onsisten
y relations� = 0; � = �2 � = ��2 (m+ 3);� = 1� �(m+ 2): (64)The 
onsisten
y of this solution with the dynami
alequation implies that� = 2� �(m+ 2)(1 + 
):We now dis
uss the behavior of the self-intera
tionpotential V (�) for these values of � in di�erent eras ofthe universe. The 
hoi
e � = 0 is not feasible, and we

therefore negle
t it. For � = �2, the self-intera
tionpotential 
an be written asV (�) = �2 ��m2 + 5m+ 62 ��2 �� �m+32 ��+6�(3m+7)���(1�
)��(m+2)(1+
)=2;where m 6= 1 is a positive 
onstant and� > 3m+ 2 :For � = �9�=4; m = 3=2; � > 6=7;we obtainV (�) = �1+8=9�(�3�2)� (1� 
)�14(1+
)=9:For m = 2; � > 3=4; � = �5�=2;the potential turns out to beV (�) = �(1� 
)�8(1+
)=5;where �1 � 
 � 1. The expression for the self-inter-a
tion potential for the radiation-dominated era with� = 2(1� 5�=3); � > 6=5; m = 1=2is given byV (�) = �95�272 � 13�4 + 43��(�5�=3)=(1�5�=3):The self intera
tion potential for the matter-dominatedera with � = 2� 5�=2; � > 6=5; m = 1=2takes the formV (�) = �1� 3�4 ���5�=2(2�5�=2):For the �rst three 
onsisten
y relations for � inEq. (64), we see that V (�) is a de
reasing fun
tionstarting from zero with the in
reasing values for � ex-
ept in the 
ase � = �2. In that 
ase, only 
 = �1 and
 = 1 with � � 1:3 provide a positive potential energybe
ause for these ranges, they are in
reasing fun
tionsof � as shown in Figs. 10, 11, 13. Figure 12a showsthat V (�) attains negative values starting from zero,but at larger values of �, it is an in
reasing fun
tionwith positive values. Figure 12b shows that V (�) at-tains positive in
reasing values for � > 6=5. Therefore,we 
on
lude that these 
ases provide positive potentialenergy be
ause they result in in
reasing fun
tions of �for parti
ular values of �.691 5*
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 = �1 (4 ); � = 1:5, 
 = 1 (5 );� = 1:3, 
 = 1 (6 )5. VARIATION FOR THE NEWTON'SGRAVITATIONAL CONSTANT IN THEGENERALIZED BD THEORYA well-known fa
t about the BD theory of gravityis that it provides very small variations for the gravi-tational 
onstant. However, the generalized BD theorysuggests various possibilities for variation of G. In thegeneralized BD theory, the expression for G is found tobe [20℄ G(t) = 4 + 2!(�)�(3 + 2!(�)) :The present rate of variation of the gravitational 
on-stant is given by _GG!0 = � _��!0 � 2( _!0)(3 + 2!0)(4 + 2!0) : (65)Here, the subs
ript indi
ates the present values of the
orresponding parameters. Using Eq. (23),� = �2�; � > 1; �0 = 0:0001and the estimated age of the universe t0 = 14 � 2Gyrs, we obtain the rate of variation of ( _G=G)0 to be1:5714 � 10�19 yrs. It lies 
learly within the allowedrange of variation of G for 
osmi
 a

eleration, that is,( _G=G)0 < 4 � 10�10 yrs(see [11; 12℄).For the Bian
hi type-I model, by using expressionfor !(�) given by Eq. (54) in Eq. (65) along with values� = �2; � > 6=5; 
 = 0;

t0 = 14� 2 Gyrs; m = 1=2;we obtain ( _G=G)0 = 1:4287 � 10�10 yrs:This also safely lies within the allowed range of varia-tion of G for 
osmi
 a

eleration. Hen
e, our obtainedmodels satisfy the observational limit of G for 
osmi
a

eleration.6. SUMMARY AND DISCUSSIONWe have investigated the possibility of obtaining
osmi
 a

eleration by using the role of the BD para-meter in the presen
e of vis
ous and barotropi
 �uids.For this purpose, we 
onsidered the FRW and Bian
hitype-I universe models. The 
onstru
ted models en-tirely depend on the values of the parameters �, �,
, and m. First, we dis
ussed the FRW model in thepresen
e of a vis
ous �uid. We have seen that the totale�e
tive pressure 
ontains a negative fa
tor asso
iatedwith bulk vis
osity, whi
h leads to negative e�e
tivepressure. Consequently, the �uid a
ts as a dark energy
andidate and 
an explain many aspe
ts of evolution ofthe universe. The de
eleration parameter 
onstraintsthe parameter � for 
osmi
 a

eleration, i. e., � > 1.For a 
onstant bulk vis
osity 
oe�
ient, we obtain� = 0 and � = �2�. The �rst 
ase leads to GR, whilefor the se
ond 
hoi
e, in all eras of the universe ex
eptthe va
uum-dominated era, the BD parameter !(t) isa de
reasing fun
tion of time with small negative val-ues. In the va
uum-dominated era, we see that for thevis
osity greater than 0:11, it is possible to a
hieve 
os-mi
 a

eleration with positive values of !(t). For thevariable bulk vis
osity 
oe�
ient with n = 1=2, !(t)
orresponds to a fun
tion de
reasing as �t2 with smallnegative values for di�erent small values of the vis
os-ity 
oe�
ient �0 and �1 � 
 � 1. This gives rise toa

elerated expansion of the universe for � > 1. Forthe radiative �uid, we have found that the vis
osity 
o-e�
ient appears in the exponential fun
tion. In that
ase, !(t) is a de
reasing fun
tion with negative valuesfor both the a

elerated and de
elerated phases of theuniverse (�3=2 � ! � 0).Se
ond, we have taken the Bian
hi type-I uni-verse model in the presen
e of a perfe
t �uid with abarotropi
 equation of state. Here, we 
onsidered two
ases: V (�) = 0 and V (�) 6= 0. In the �rst 
ase, when!(�) = !0, by taking di�erent possible 
hoi
es for theparameters, we have seen that the BD parameter takessmall negative as well as positive values for �1 � 
 < 0693
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ertain ranges of �. It follows that 
osmi
 a

elera-tion 
an be a
hieved for positive larger values of ! withdi�erent values of �. Also, for the present universe with!0 = �5=3 (taken from the negative observed range for
osmi
 a

eleration �2 � !0 � �3=2), we have found�(t) / t�3:In this 
ase, the a

eleration rate of the universe ishigher than in [11℄, �(t) / t�2;and in [12℄, �(t) / t�5=2:When ! = !(�), taking di�erent values of the param-eters, we have seen that for all phases of the universe,the BD parameter !(�) takes small negative values andlies in the range ! � �3=2, whi
h 
orresponds to 
os-mi
 a

eleration and agrees with the already found re-sults [14℄.For V (�) 6= 0 and !(�) = !0, we have evaluatedthe values of s
ale fa
tors A and B, the s
alar �eld,and V (�). We have found that in all phases of the uni-verse, these values of s
ale fa
tors A(t) and B(t) leadto q < 0 for all positive 
onstant m with m 6= 1 and� > 1, whi
h 
orresponds to 
osmi
 a

eleration. Fi-nally, for V (�) 6= 0 and ! = !(�), we see that V (�) is ade
reasing fun
tion starting from zero with in
reasing� ex
ept for the 
hoi
e � = �2 with parti
ular valuesof 
 and � � 1:3. These values provide positive po-tential energy and result in an in
reasing fun
tion of �.However, for the 
onstraint� = 2� �(m+ 2)(1 + 
);it is possible to have a positive potential energy forlarger values of � in the matter-dominated era and forsmaller values of � in the radiation-dominated era.It is worthwhile to mention that all models dis-
ussed here satisfy the observational 
onstraints for thevariation of Newton's gravitational 
onstant availablein literature [11; 12℄, whi
h supports our results. Inea
h 
ase, we have explained the phenomenon of 
os-mi
 a

eleration for di�erent ranges of the 
orrespond-ing parameters. But these ranges of the BD parameter,ex
ept a few 
ases, are in
ompatible with solar sys-tem 
onstraints, whi
h require ! � 40:000. This is thegeneri
 problem noted in the 
ontext of s
alar�tensortheories. It would be of great interest to see whetherthis problem 
an be resolved using other Bian
hi mo-dels.In order to 
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k the viability of dark energy modelsbased on modi�ed theories of gravity, the evolution of
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al perturbations and the ba
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y with lo
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edures 
an be used to 
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kthe viability of above-dis
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