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Basic equations of diffusional kinetics in alloys are statistically derived using the master equation approach.
To describe diffusional transformations in substitution alloys, we derive the “quasi-equilibrium” kinetic equation
that generalizes its earlier versions by taking possible “interaction renormalization” effects into account. For
the interstitial alloys Me-X, we derive an explicit expression for the diffusivity D of an interstitial atom X.
This expression notably differs from those used in previous phenomenological treatments. This microscopic
expression for D is applied to describe the diffusion of carbon in austenite based on some simple models of
carbon—carbon interaction. The results obtained enable us to make certain conclusions about the real form of
these interactions and about the scale of the “transition state entropy” for diffusion of carbon in austenite.

1. INTRODUCTION

The problem of development of a adequate theore-
tical description of diffusion in alloys attracts interest
from both fundamental and applied standpoints, see,
e.g., [1-15]. Presently, this description is usually based
on the phenomenological theory of diffusion in multi-
component systems developed by Onsager many years
ago [6]. Phenomenological kinetic coefficients are calcu-
lated in this theory using various simplified models with
parameters estimated empirically [1-4]. However, these
empirical models have usually no consistent theoretical
justification, and their relation to interatomic interac-
tions, as well as the possibilities of their application to
other alloy systems, are typically not clear.

An important problem in this field is the strong con-
centration dependence of the diffusivity D of carbon in
austenite [1-5]. This dependence causes complications
in the kinetic analysis of various diffusion-controlled re-
actions in steels [4], and several empirical models have
been suggested to describe this dependence [1-4]. How-
ever, it is generally unclear whether these models can be
used for predictions of D at temperatures 7' < 1000 K
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(where many important phase transformations occur
but D cannot be directly measured because austenite
is unstable here) or under partial substitution of iron
by other metals [5].

A consistent statistical description of the diffusional
kinetics in alloys can be based on the master equa-
tion approach [7—15]. This approach allows expres-
sing the phenomenological kinetic coefficients, such as
the mobility M, of an a-species atom, in terms of in-
teratomic interactions in an alloy. These interactions
can be estimated using either some microscopic models
[16-18] or ab initio methods [14, 19, 20]. As the level
of accuracy and reliability of ab initio calculations is
steadily increasing, this microscopic approach seems to
be prospective for nonempirical calculations of diffusi-
vitiy.

At the same time, previous considerations of diffu-
sional kinetics in alloys based on the master equation
approach were usually restricted by discussions of only
simplest models and approximations or some particular
problems [7—9, 11, 13]. On the other hand, several more
general discussions [10, 15] included many unnecessary
complications and restrictions that can hinder the un-
derstanding of the results. Therefore, the first aim of
this paper is to present a clear and general derivation
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of basic equations of diffusion in alloys based on the
master equation approach, for both substitution and
interstitial alloys.

For this, in Sec. 2, we first discuss the vacan-
cy-mediated kinetics under diffusional transformations
in substitution alloys. This problem has been consid-
ered in Ref. [15], and some equations derived in Sec. 2
have been already presented there. But the full deriva-
tion of these equations has not been given in [15], while
the similar derivation in [10] includes a number of com-
plications and inaccuracies. In Sec. 2, we also discuss
the methods of computer simulations based on the mi-
croscopic equations proposed, including some general-
izations of the previously discussed “equivalence theo-
rem” [10, 15], which greatly simplifies such simulations.
In Sec. 3, we consider interstitial Me—X alloys and de-
rive the general statstical expression for the diffusivity
D of an interstitial atom X in a simple and physically
transparent form. This expression involves only micro-
scopic parameters that can be estimated using either
theoretical models or ab initio calculations. We also
generalize this microscopic expression for D to the case
of multicomponent alloys (Me;Me; ... )-X with several
species atoms in the metal sublattice.

The second aim of this work is to apply the results
in Sec. 3 to treat the above-mentioned problem of diffu-
sion of carbon in austenite microscopically. This treat-
ment described in Sec. 4 is based on the microscopic
model of carbon—carbon (C—C) interactions in austen-
ite suggested by Blanter [16], which supposes a strong
“chemical” repulsion at short C—C distances Roc and a
purely deformational (or “strain-induced”) interaction
at longer Rcc distances. We show that some natu-
ral generalizations of this model allow describing both
thermodynamic and diffusional characteristics of car-
bon in austenite at the same level of accuracy as that
achieved in phenomenological models [1-4,36]. The
microscopic approach simultaneously allows making a
number of conclusions about the type of C—C interac-
tions and about some physical features of diffusion of
carbon in austenite. The main results of this work are
summarized in Sec. 5.

2. EQUATIONS OF VACANCY-MEDIATED
KINETICS FOR DIFFUSIONAL
TRANSFORMATIONS IN SUBSTITUTION
ALLOYS

2.1. General equations for mean occupations of
lattice sites

We first present the necessary relations from
Ref. [15] with some extensions and comments. We

consider a substitutional alloy with m + 1 components
p', including atoms of m different species p = py,
P2, ... ,pm and vacancies v: p’ = {p,v}. The distri-
butions of atoms over the lattice sites i are described
by occupation number sets {n? I}, where the operator
nf’ is 1 when the site ¢ is occupied by a p’-species
component and 0 otherwise. For each i, these opera-
tors obey the identity > , n} " =1, and hence only m
of them are independent. It is convenient to let the
independent operators be denoted by Greek letters p
or o: (nf ’)mdep = nf, with the rest operator, denoted
as n?, expressed via the n?:

nh = (1—2712’). (1)

We note that both nl* and nf are projection operators:

h)2 — TLh

(ni 79 nfnf = 07 nfnf = 60””?' (2)

For dilute alloys, it is convenient to set “A” in (1) to be
the host component, e.g., h = Fe for the dilute BCC
Fe-Cu—v alloys discussed in [14, 15] and used below for
illustrations. ,

In terms of all operators n? , the total configura-
tional Hamiltonian H? (for simplicity supposed to de-
scribe pairwise interactions) can be written as

H' = % ST vE R nd (3)
p'qij

h

After elimination of the operators n} in accordance

with (1), this Hamiltonian becomes

H!=Ey+ Zappnf + Hipng,

pi
- (4)
Hin = E v NG

po,i>j

which includes only independent nf, while the con-
stants Fy and ¢, and the “configurational interactions”
vff are linearly expressed in terms of the couplings

’
VP9 in

s (3), in particular,

i = (VP7 —VPh —yhe iy (5)

The fundamental master equation for the probability
P of finding an occupation number set {nf} = ¢ is [12]

dP(&)

= = 2 W(EmP) =W P©) = SP (6)

where W (&, n) is the n — £ transition probability per
unit time. If we adopt the conventional “transition
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state” model [14] for the probabilities W, we can ex-
press the transfer matrix S in (6) in terms of the prob-
ability of an elementary intersite exchange (“jump”)
pi = vj between neighboring sites ¢ and j:

Wl = ninjeill exp [~B(ESh, - Bt ()

pi,vj pr,vj

where f = 1/T is the inverse temperature, Eflpw
the saddle-point energy, EZ’,’; vj 18 the initial (before the

jump) configurational energy of a jumping atom p and
a vacancy, and the pre-exponential factor w? can be
written as

SSP ) (8)

eff —
wpv - wiﬂv exp ( pi,vj

Here, wp, is the attempt frequency, which is generally
expected to have the order of magnitude of the mean
frequency of vibrations of a jumping atom in an al-
loy, and ASEZI; is the entropy difference between the
saddle-point and the initial alloy states. This difference
is mainly due to the difference of atomic vibrations in
the saddle-point state (supposed to be locally equilib-
rium, which allows thermodynamic notion such as the
entropy to be applied to it) and the initial state. At
high temperatures 7" under considerations (actually, al-
ready at T' 2 6p /2, where fp is the Debye temperature
[22]), this entropy difference can be described by the
classical expression

—~in

ASy =

- )
where w "' and wp? are certain mean frequencies of vi-
bratlons of a jumping atom in the initial and saddle-
point states (see, e.g., [29]). Because the frequencies
w,? in the saddle-point configuration can notably soften
with respect to wi™, the entropy difference ASSF can
be expected to take large positive values. For exam-
ple, for the Fe—Cu—v alloys with the Debye frequency
wke ~ 6-101% sec™! [23], Soisson and Fu (SF) [14] found
that wiff ~ 80wk and weffv ~ 30wt This implies
that ASFev ~ 4.5, ASSP ~ 3.5, (D;Z ~ wke/4, and
weh ~ wir/3, although so high values of ASS? and
wp/@%P can be somewhat overestimated due to inaccu-
racies of the estimates [14].

The saddle-point energy Efllz)] depends in general
on the atomic configuration near the ij bond. We de-
scribe this dependence by the SF model [14] assuming
the saddle-point energy to depend only on occupations
of lattice sites [ nearest to the center of the i¢j bond

(denoted by 1% ):

EShi= Y elnl=Ep+ AL, (10)
q, =13l
7 ZKOT®, Bem. 4 (10)

Here, E} is the saddle-point energy for the pure host
metal and the operator Afj describes changes in this
energy due to a possible presence of minority atoms
near the bond:

P _ b _p AP _ PP
E; =z .6}, Aij = E APnj, (11)
p, 1=l

where 2%

is the total number of nearest lattice sites
[ for each bond (which is 22, = 6 for a BCC lattice),
Ab = (eh — &}), and €5 and €} are the microscopic
parameters of pairwise interactions calculated by SF
using ab initio methods [14]. We note that our defi-
nitions of Afj and AP differ by sign from those used
in [14] and [15].

The interaction parameters Vi’;’q’, ey, and AD in
Eqs. (3) and (11) can be calculated by ab initio meth-
ods. For Fe-Cu—v alloys, this was shown in [14]. The-
oretical calculations of the factors w¥f in Eq. (7) are
more difficult due to the presence of the entropic factor
exp(ASSP) in Eq. (8). However, values of w¥/ can be
estimated from experimental data on self-diffusion and
diffusion of isolated atoms in a host metal, as described
in [14].

Because the n! in Eqgs. (1), (4), and (6) are pro-
jection operators obeying Eqs. (2), the most general
expression for the probability P = P{n/} in (6) can be
written in the form of the generalized Gibbs distribu-
tion [10-12]

P{nf} = exp Q+ Z /\?be_Hmt_iLint ) (12)
pi
Z h’mn’)ncr +
pcr ij
+_ S BT nlngng +... (13)
po'T ijk

Here, the parameters \? (which are both time and
space-dependent in general) can be called “site chemi-
cal potentials” for p-species atoms; they are related to
local chemical potentials uf and pul of p-species and
host atoms as ) = (uf — ul) [21]. (12)7 Hing is
the same as in (4); the parameters hl 7 in (13) (also
depending on both time and space) describe possible
renormalizations of interactions, and  is determined
by normalization.

As discussed in detail in [12], under the usual condi-
tions of phase transitions corresponding to the absence
of external particle or energy fluxes (that is, when the
alloy is a “closed” but not an “open” statistical system),
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the effects of renormalizations of interactions can be ex-
pected to be insignificant, and we can therefore set

Bing = 0 (14)

n (12). There are at least two reasons to expect the
validity of Eq. (14) for transformations in closed sys-
tems. First, this relation holds both before and af-
ter the transformation. For example, it is true be-
fore an initially equilibrated alloy is quenched from a
higher temperature T} to the lower temperature 7T cor-
responding to another equilibrium phase (or phases),
and it is also true after the new equilibrium state at
T = T, is reached. Therefore, there is no driving force
drawing the correlation parameters hf 7 _j in distribu-
tion (12) away from their Gibbs values hp 7 =0. Sec-
ond, the parameters hj "7 in distribution (12) mainly
describe the short-range order. After a change of ex-
ternal conditions, such as temperature, this short-range
order is established relatively fast, in a time of the order
of one interatomic exchange time 7,, while the time for
completing microstructural evolution under phase tran-
sition is usually much longer, ¢t > 7, [8, 10, 15]. There-
fore, possible fluctuative violations of relation (14) at
small ¢ < 7, are not important for the whole evolution.

When relation (14) is satisfied, Eq. (12) takes the
form

P{nf} =exp | B(2+ Z Nn? — Hing) | (15)
pi

which is called the “quasi-equilibrium Gibbs distribu-
tion” in what follows.

We note, however, that for the essentially “open”
systems such as alloys under irradiation [24, 25] or an
alloy with an external atomic flux imposed [11], quasi-
equilibrium relation (14) can be strongly violated. Im-
portant cases of such violations can be the phase tran-
sitions accompanied by significant fluxes of vacancies
into the transformation region, for example, the precip-
itation in Fe—~Cu—v alloys, where these fluxes arise due
to the strong trapping of vacancies by the copper-based
precipitates [14]. In such cases, the effective vacancy—
copper interactions can notably vary with the evolu-
tion time, and large renormalizations h{™ # 0 can
be expected. Possible methods of calculations of such
renormalizations have been discussed in [10, 11, 13].

Multiplying Eq. (6) by operators nf and summing
over all configurations {n¢}, we obtain the set of equa-
tions for the mean occupations of sites (“local concen-
trations”) ¢f = (nf):

(3

—- = (n7S), (16)

where ((...)) = Z{n;,}(...

over the distribution P, for example,

Z ny P{ng}. (17)
{n7}

)P{n7} means averaging

In what follows, it is convenient to mark the minor-
ity atoms by Greek indices «, 3,... Then the index p
in Egs. (7)—(12) is a or h, corresponding to a minority
or a host atom, and the index p in Egs. (12)—(16) is «
or v, corresponding to a minority atom or a vacancy.
System of equations (16) can then be explicitly written
as

-
{np} iti
g exp (BE;:; y ﬂEsf,,J) i i}
x exp(3 (2 — Hepy )],

=2 > D il x

{nk} P (i)
x [nPnf exp (BEZ’,’}W BESL,) =i = i} x
x explf (@ = Hegy)],

X [nf

(18)

where the symbol j(i) means summation over sites j
that are nearest neighbors of the site ¢, and p is h or «,
while Hepp = Hepp{n}} is the effective Hamiltonian for
statistical averaging of expressions in square brackets:

Hepp = — Z/\ Z Okt ey s

po’ ki (19)

~p P

Uk;r = vy + hiyy -
Here, 0f; can be regarded as the full effective interac-
tion, which for simplicity is supposed to be pairwise,
just as the “true” interaction v}, in Hamiltonian (4).
The operator E;,’ZW n (18) (describing the part of the
initial configurational energy that depends on occupa-
tions of sites i and j) can be expressed in terms of
formal variational derivatives of Hamiltonian (3 ) with
respect to ny; and ny;, Hf, = §H'/én,; and H. =

pZ vj
= 62Ht/6npi5nvj:
in t t t
Epz vj npini + ntij - npintHpi,vj7 (20)

where the third term corresponds to the subtraction of
the “double-counted” interaction between an atom p at
site ¢ and a vacancy v at site j.

The main idea of further manipulations (analogous
to those made in [10, 11]) is to reduce the averages
of complex operators in square brackets in (18) to
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some simpler averages that have a clear physical mean-
ing. For this, in the sums over all configurations {n/}
in (18), we first perform summation over all possible
occupations of only two sites, 7 and j, belonging to the
ij bond under consideration. Due to the presence of
the projection operator n? nj in (18), the summation
reduces to setting n{ = d,, and nf = §,, in the nj-
and n?—dependent exponential factor exp Y multiplied
by this projection operator, where

Y = ’B(EZZ)’Z")] - Hef ) (2]‘)
We note that the saddle-point energy EAgzﬁ)]’v accord-

ing to its definition (10), does not contain occupa-
tion operators of sites ¢ and j. The common factor
wl?;f exp(ﬂQ—ﬂEAfﬁj) is therefore skipped in Eqs. (23)—
(26) for brevity.

In what follows, it is convenient to formally restore
the summation over all occupation number sets {n/}
in (18), including all values of n§ and nf. For this, we
can introduce the operator n}n/ into the summand.
Because this projection operator is nonzero only when
all n? and ng are zero, the summation with this factor
over all possible occupations of sites i and j is equiva-
lent to omitting all n}- and n7-dependent terms in the
exponential expY. Therefore, the result of the sum-
mation can be written as

Z ninjexpy =

P o
n;,n?

= Z nfn? exp (Yp, + ij + Ypi,vj + Y) R (22)

£ e
ny,nyg

where Y);, Y,;, and Y,;,; are variational deriva-
tives of Y over the relevant occupation numbers:
Y, = 6Y/on?, etc. The first term in the exponent in
Eq. (22) corresponds to the contribution to sum (22)
of the term in Y linear in n? but not in nj, the second,
to that of the term in Y linear in nj but not in n?, and
the third, to that of the term in Y linear in both n?
and nj.

We first consider the term with p = « in (22) and
express all operators n) in expression (20) for Eé’}’vj
in terms of the independent n/ using Eq. (1). After
setting n{ = 1 and nj =1 in that expression, the ex-
ponent Y in (21) takes the form

Y =8 S (Vi -vat nf+ Y (Vie-viit) nf +
lp Lp

+ > (Ve + Vi) - Ve - Heff] . (23)
1
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Using Eqs. (19) and (5), we can explicitly write rela-
tion (22) at p = « as

o, v _ h._h
E nin;expY = E n;nj x

P o P no
ng,n? n;,n?

xexp B[ (uf +ulnf + > (Viet + Vi) —
lp l

— Vi?h—hf}v—l- A+ | A - Z h;lpnf —Hefr (24)
lp

where the quantity
h hh
ul = Vit =V (25)

can be called “the kinetic interaction” for a p-species
atom (because it affects only mobilities but not ther-
modynamic properties [15]). We note that the vacancy
concentration ¢} = (n¥) in real substitution alloys is
very small, and hence all n; can be neglected in the
statistical averages involved in Egs. (18). Therefore,
terms with n/ in (24) actually correspond to the minor-
ity atoms with p = 3 # v. In writing Eq. (24), we also
used the above-mentioned argument that for the usual
conditions of phase transitions, significant renormaliza-
tions h? can be expected only for the vacancy-atom
interactions, while for the interactions between differ-
ent atoms, the analogous renormalizations h%ﬁ are not
essential.

In the case p = h, Eq. (22) is simplified because the
operator Y in (21) depends only on the independent
operators nf but not on nl. Therefore, the terms Yy,
and Y}, ,; in (22) are absent and the exponent reduces
to (Y,;+Y). Making the same manipulations as above,
we then obtain instead of (24),

h v _ h h
E n;n;jexpyY = g n;nj x

P o P no
n;,n? ny,n?

xexp QB | D_(ugufn+ 3 (Vi +Vit) Vit +
[45) l

5,8
+ | A =D h
5

— Hpy . (26)

Substituting relations (24) and (26) in (18), we can
express the derivatives dcf /dt via some statistical ave-
rages. In writing these averages, we can take into ac-
count that the interaction renormalizations hjn; in (12)
are present only for the vacancy—atom terms h:’f nfnf ,

which include the vacancy occupation operators n and

7*
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can therefore be neglected. Hence, quasi-equilibrium
distribution (15) can be used in calculations of these
averages. To simplify formulas, in treating the inter-
action renormalization terms h;’f nf in Egs. (24) and
(26), we use the mean field approximation (MFA), re-

placing each operator nlﬁ in these averages by its mean
value clﬁ . Therefore, each term h;’f nlﬁ is replaced by

h;f cf , which corresponds to replacing the vacancy site

chemical potential \? by its “renormalized” value A?:

A= h
&)

/\:’—Zh;’lﬁn? =\ = . (@27
B

We show in Sec. 2.2 that for cf values close to unity,
when the interaction renormalization effects can be ex-
pected to be most significant, approximation (27) be-
comes exact. Hence, we can expect it to be sufficiently
accurate at all cf . We also note that a similar MFA
treatment of interaction renormalization effects have
been used in [11, 13], where the comparison of MFA
and kinetic Monte Carlo results have shown that the
MFA accuracy is sufficient for treatments of renormal-
ization effects.

Using relations (24)-(27), we can write Egs. (18) in
the concise form

dc(ix (e v, v,
at = Z%zvbij(fi Ny =< ),
i)
dcy
P (28)

J ’
which is called the “quasi-equilibrium” kinetic equa-
tions (QKE) in what follows. The term -, in these
equations (where p is a or h, i.e., denotes a minority
or a host atom) is the effective exchange rate p =v for
a pure host metal. This term can be written in a form
similar to Eq. (7),

-2

i(4)

{5}’ Yol + > vaebim? | —{i = j}
B

Vpv = w;;f,f exp

(—BEZ),
where w/ is the same as in (8), while E?? is the ef-
fective activation energy, which is expressed in terms

of the saddle-point energies E} in (11) and the interac-
tions Vi’]?’ql and hgY in (3) and (19) as

(29)

v h v av
Ei. = E}ZZ - Z(‘/;I]) + ‘/;jh) + VJL': + hii )
J

(30)

EN =Ep = (Vi + Vit + Vi,
j

(31)
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where mn means “nearest neighbors”. — Comparing
these expressions with the analogous activation ener-
gies B ;¢ used in the kinetic Monte Carlo approach
[14] and given by Eq. (2.5) in [26], we find

BoY = BSf o + 008, BN =B (32)
where 9%? is the same as in (19). The difference be-
tween EQY and B ), arises because transition prob-
ability (7) in the statistically averaged QKE (28) is
averaged over distribution (12). For the intersite ex-
change ai = wvj, this leads to an extra Gibbs factor
exp(—p05") in the averaged probability, with 7" de-
fined in (19).

We note in this connection that in their study of
diffusion in dilute Fe-Cu alloys [14] with the correla~
tion effects for this vacancy-mediated diffusion thor-
oughly taken into account [27], SF obtained the value
(ESU%) s & 0.47 eV for the effective activation energy
of a copper atom [26, 28]. This is very close to the value
ECu = 0.44 eV that follows from Eq. (30) at hg-‘“’ =0
after the substitution of couplings V;} used by SF. This
may imply that for the diffusion in dilute Fe—Cu al-
loys, our statistical averaging with quasi-equilibrium
Gibbs distribution (15) can rather accurately describe
the relevant correlation effects [27], while the interac-
tion renormalization effects are not very significant for
this diffusion.

The quantities b}; in (28) (to be called “correlators”)
are certain averages of site occupations and describe the
influence of minority atoms in the vicinity of the bond
17 on the pi=wvj jump probability:

<n?n? exp [

P
0 =

> Buf + ufy)ni ~

al

- > BAZnp > . (33)
@, =l

where A? is the same as in (11) and uf} is the same as

n (24)—(26).

Finally, the quantities & and n{ in (28) can be re-
spectively called the “site thermodynamic activities” for
vacancies and a-species atoms because they are related
to the site chemical potentials A" in (15) and the renor-
malized site chemical potential A} in (27) as

& =exp(BAY), i = exp(BAY) (34)
(which is similar to the relations between conventional
thermodynamic activities and chemical potentials).
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2.2. Calculations of site chemical potentials A7
and correlators bfj

To find explicit expressions for the site chemical po-
tentials \? = A\ (¢;) determined by Eqs. (17) and for
the correlators bj; = b};(cx) determined by Eqs. (33),
we should use some approximate method of statistical
physics, such as the MFA or cluster methods [12]. As
discussed in detail in [15, 21, 29], using the MFA for cal-
culations of chemical potentials ! in real alloys often
leads to large errors, while the pair cluster approxima-
tion (PCA) usually combines simplicity of calculations
with high accuracy, particularly for dilute alloys. As an
illustration (used also below for interstitial alloys), we
present the PCA expressions for A? in a binary A-B—v
alloy with host atoms h = A and minority atoms o = B

(omitting the index B at AP = ); and ¢f = ¢; for
brevity):
N =T |In(e;/cl) Zln - gijci) |, (35)
J#i
N =T /et = S+ g | . (36)

J#

Here, the function g;; or g;; is expressed in terms of
the Mayer function f;; = [exp(—puv;;) — 1] or f};

= [exp(—ﬂvij) — 1] for the potential v;; = U?jB or vij
defined in (5) as
9ij = 2fij [ [Rij + 1+ fij(ci + ¢;)],
915 = 2£35/[Rij + 1+ fij(ei — ¢5)], (37)
1/2
Rij = {[1+(Ci+6j)fij]2—4ci0jfij(fij-l-l)} / .
For a multicomponent alloy A-B;— ... B,,—v, the PCA

methods of calculations of site chemical potentials \?
are described in [21].

In calculating the correlators by; in (33), for sim-
plicity, we first consider the case of configuration-inde-
pendent saddle-point energies when the differences Ag
and A? in Eqgs. (10), (11) and (33) are zero and the
correlators bfj = b;; are independent of the kind of a
jumping atom p. Using Egs. (2) and the identity

exp(en’) =1+n' f(x), flx)=e"—1, (38)

which follows from (2), we can rewrite Eq. (33) as

725

nz“)>=

k¢
bij = <nfn? H(]. + Z f[

= Z > Z < n;’:> X
k=0 1.1} a1.
Ik (39)
where we set
It = f(Bug + Buf)) (40)

with f(x) defined in (38), and k; is the total number
of sites with nonzero values of potentials ugj + u$,. For
example, for the nearest-neighbor or next-to-nearest-
neighbor interaction models in a BCC lattice [15],
ke = 14 or ky = 20.

In finding the averages in (39), we recall that the
functions f in Eqs. (39) and (40) are typically rather
large for real alloys. For example, for the BCC Fe—Cu-v
alloys considered in [15], f(Bu1) ~ 5 and f(Buz) ~ 1
(where the interactions u; and wuy correspond to the
nearest and next-to-nearest neighbors). Hence, the
leading contributions to sum (39) come from averages
of products of many different operators nj* correspon-
ding to well-separated and weakly correlated sites [. In
particular, for the BCC lattice, these products (even for
the nearest-neighbor interaction model) include terms
with the neighbors from first to tenth, most often third
and fourth. Correlations of occupations of so distant
sites should typically be weak. Therefore, using the
simple MFA that neglects such correlations should gen-
erally be admissible in calculations of averages (39), in
contrast to the calculations of chemical potentials \;
mentioned above.

In the MFA, each operator n] in Eq. (39) is replaced
by its mean value ¢f'. Hence, the correlator b;; can be
explicitly written as

ke
c’; (1 + Z c;"fla) =
=1 ozkt
= clelexp lz In (1 +° fﬁcfﬂ . (41)
=1 o

When the differences A2 in Eqs. (11) and (33) are
nonzero, the correlator b7; in Eq. (33) can be calculated
in the same way as b;; in (39)—(41). The difference
arises only for sites | = [, adjacent to the ij bond, for
which the factor f deﬁned in Eq. (40) is replaced by
an analogous factor f;X defined as

fix = f(Bujj + Bus,

_ h
bij—ci

- 5AZ15171%)» (42)
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where A? = Ag&hl;j@ and 4, ;i is unity when [ = I},
and zero when [ # [}J,. Therefore, the correlator bY; is
given by Eq. (41) with each f{* replaced by f;:

ap o

ke
by :c?c?exp lZln <1+ZflAcl>] . (43)
=1 o

We finally remark about the MFA-type approxima-
tion in (27) used in the derivation of QKE (28). If we
do not use this approximation, then Eqs. (28), instead
of the correlators bfj in (43), include similar correlators

5% differing from b}; by the presence of additional inter-

action renormalization terms ,Bh;f n{* in the exponents:

ki
by = clrelexp Z In {1 + Z lexp (Bug; + Buf; —
=1 o

_ Az, — pne) —1] } m

where we write the function f(x) defined in (38) ex-
plicitly. For the diffusional transformations under con-
sideration, the interaction renormalization effects seem
to be most significant in those spatial regions where
the local concentration cf* is close to unity. This is il-
lustrated by the case of precipitation in Fe—Cu alloys,
where these effects arise due to the strong trapping of
vacancies by the Cu-based precipitates for which cf“
is close to unity [15]. For such ¢f, the argument of
the logarithm in (44) reduces to a single exponential,
and relation (27) becomes exact. We also note that
for simulations of diffusional transformations based on
Eq. (28), the details of vacancy distributions are ac-
tually insignificant due to the “adiabaticity principle”
and the “time rescaling” procedure discussed in Sec. 2.3.
Therefore, approximation (27) appears to be sufficient
for the use in such simulations.

2.3. Reducing kinetic equations (28) to
equations for some direct exchange model

Quasi-equilibrium kinetic equations (28) can be
used for modeling most different phase transformations,
in particular, processes of precipitation, which attract
great attention in connection with numerous applica-
tions [30-32]. However, in their original form (28),
these equations are not suitable for using in computer
simulations due to very small values of vacancy con-
centration ¢, in real alloys. Because atomic exchanges
pi = wvj occur only with a vacancy, this smallness
leads to a great difference in the relaxation times 7
between atoms a and vacancies v: T, ~ T,/cy > T,.
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This is illustrated by the presence of vacancy activi-
ties £ = exp(AAY) in the right-hand side of QKE (28).
This activity is proportional to the vacancy concentra-
tion ¢}, which is a general relation of thermodynamics
of dilute solutions illustrated by Eq. (36). Therefore,
the time derivatives of mean occupations are propor-
tional to the local vacancy concentration, ¢j or ¢j. This
is natural for the vacancy-mediated kinetics and leads
to the strong inequality between 7, and 7, mentioned
above. Therefore, the type of temporal evolution for
atoms and vacancies is quite different, which makes the
direct numerical solution of Eqgs. (28) for ¢¥ (¢) and ¢$(t)
unsuitable and time consuming.

At the same time, the inequality 7, > 7, al-
lows using the “adiabatic” approach encountered in
many fields of physics, including the well-known Born—
Oppenheimer approach in the quantum mechanical de-
scription of the motion of atoms in molecules and solids.
In this approach, the effective driving force for a slow
motion is obtained by its averaging over a rapid mo-
tion. Therefore, to fully describe the slow motion, only
a few averaged characteristics of the rapid motion are
needed. In quantum mechanics, this is the appropri-
ate electronic energy (“electronic term”) calculated at
fixed positions R; of atoms. In our problem, this means
that at a given atomic distribution {c¢}, the local va-
cancy concentration ¢! adiabatically fast (i.e., in a time
Ty ~ CpTo K To) reaches its “quasi-equilibrium” value
c?{c$} for which the right-hand side of the second equa-
tion in (28) vanishes. Therefore, discarding small cor-
rections of the relative order ¢} <« 1, we can approxi-
mate this equation by its adiabatic version

0= Z [5; <7hvbz + Z’Y(lvb?jn?> -
i@ o
—{i %j}] , (45)

which can be called “the adiabaticity equation” for the
vacancy activity &7. Solving this linear equation for
7, we can, in principle, express it in terms of .
Substituting these £(c§) in the first equation in (28)
then yields the QKE for some equivalent direct-atomic-
exchange (DAE) model.

To illustrate these considerations, we first con-
sider models with configuration-independent saddle-
point energies. For such models, the parameters AD
in (11) are zero, the correlators bj; = b;; are indepen-
dent of the species p of the jumping atom, and adia-
baticity equation (45) takes the simple form
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Z bij &

3(4)

(%ﬁZ%W?) /ff_{z - ]}] =

—0. (46)

If we let 1/v; denote the first term in the square brack-
ets, then the difference in these brackets takes the form
vt . Hence, a solution of Eqs. (46) is given by
v; being a constant independent of the site number i
(although possibly depending on time as well as on tem-
perature and other external parameters):

Vi = ff/ <7hv + ZVQDU?) = l/(t)' (47)

Relation (47) determines the above “quasi-equilibrium”
vacancy distribution ¢?{c¢}, which adiabatically fast
follows the atomic distribution {c¢}. Substituting it
in the first equation in (28), we obtain an explicit ki-
netic equation for atomic distributions {¢¥} for which
the evolution of the vacancy distribution is character-
ized by a single parameter v(t) being a “spatially self-
averaged” quantity:

_l/j

L W0 (% — 2
t — - i YavYhv 77] 777,) +

+ ) Yavvse (77?77? — e ) (48)
5

Equations (48) can also be rewritten in the form used
in DAE models [12]:

« B « «
3(7)

det

[3

dt

+ > Ma%sh{ (A% + X — Ag—Af)], (49)
j(i), B

where the generalized mobilities M} describing the in-
tersite exchanges o = h and a = 3 are given by

Mi(;'h = 7av7hvy(t) bij exp [B(/\;l + )\?)/2] ’ (50)

M%B = VQvVBvV(t) bij X
X exp [B(/\;.’ + A%+ 07+ /\]B-)/2] . (51)
Comparing these expressions with expression (32) in
[10], which describes the mobility M} in an alloy with
the nearest-neighbor direct-exchange rate ;7 = v,

we see that Eqs. (50) and (51) correspond to a DAE
model with the effective direct exchange rates
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VI = Yo rher(t), 7(% = YavVguV(t). (52)
Because v(t) in (47) is proportional to ¢!, the effec-

tive DAE rates in (52) are by a factor ¢, smaller than
the vacancy exchange rates 7,,, in accordance with the
above-discussed adiabaticity relations.

For more realistic models with configuration-depen-
dent saddle-point energies, the basic adiabaticity equa-
tion (45) for vacancy activities & cannot be solved
analytically in general, and hence either numerical or
some approximate analytic methods should be used.
For the first-principle model of Fe—-Cu—v alloys devel-
oped in [14], such an approximate treatments in [15]
have shown that equivalence relations (48)—(52) usu-
ally preserve their form, but the correlator b;; is re-
placed by some other quantity, b{* or bjf. Physically,
the possibility to reduce the vacancy-mediated kinetics
to the equivalent direct atomic exchange kinetics is re-
lated with the above-mentioned fact that in the course
of evolution of an alloy, the distribution of vacancies
follows that of the main components adiabatically fast.
Therefore, it can be assumed that this equivalence is
actually a general feature of vacancy-mediated kine-
tics, while for more general models, the correlators b;;
in (50) can be replaced by some other expressions with
similar properties.

The function v(t) in Eq. (52) determines the
rescaling of time between the initial vacancy-mediated
exchange model and the equivalent DAE model
Eqs. (48)—(52). Temporal evolution of this DAE model
is actually described by the dimensionless “reduced
time” ¢, related to the real time ¢ by the differential or
integral relations

dt, = 'yeffdt YauYhov (t) dt,
t
t, = / AT dt,
0 (53)
2%
t= /dt,,rj/jf(t ),
0

where 7 = 1/4%/ has the meaning of the mean time
of an atomlc exchange a = h and {, has the meaning
of an effective number of such atomic exchanges.

The form of the function #(¢,) in (53) depends on
the boundary conditions for vacancies adopted in si-
mulations. In particular, if we adopt the “vacancy con-
servation” model for which the interaction renormaliza-
tion effects can be expected to be insignificant, then we
can use Eqs. (47) and (36) to express the local vacancy
concentration ¢} via v(t) and ¢ (t,). Then the vacancy
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conservation condition . ¢/ (t,t,) = N, = const can
be used to explicitly find the dependence t(¢.). How-
ever, in view of a possible creation of vacancies at vari-
ous lattice defects (grain boundaries, dislocations, etc.),
the kinetic Monte Carlo (KMC) simulations [14, 26]
taking into account such precesses appear to be more
realistic. Then the dependences t(¢,.) can be found by
comparing the results of the DAE-based simulations
described above with the appropriate KMC results, as
was illustrated in [15]; these dependences seem to be
rather simple and universal. In more detail, applica-
tions of Eqs. (48)—(53) to studies of precipitation in
specific alloys will be described elsewhere.

3. EQUATIONS FOR DIFFUSION OF
INTERSTITIAL ATOMS IN INTERSTITIAL
ALLOYS

In binary interstitial alloys Me—X, where X is an in-
terstitial atom, and in iron—carbon steels in particular,
diffusion of atoms X is realized via thermo-activated
jumps of these atoms between their interstitial sites
(“pores”). Therefore, this diffusion can be described by
the general equations in Sec. 2 for a particular case of
a substitution binary alloy X—v that consists of atoms
a = X and vacancies v in the crystal lattice of pores,
with the “host” atoms h being vacancies v. The to-
tal configurational Hamiltonian (3) here includes X-X
interactions between atoms X, but not X—v and v—v in-
teractions. Therefore, only VZ?X terms are nonzero in
formulas (3)—(5):

Yoo —

L)

Vi A0, VN =Vh=0. (59)

The only meaningful index o = X is usually omitted
below, for example, ¢ = ¢; and Vgx = vj;, and hence
the effective Hamiltonian (19) takes the form

Hegp = =Y Xini + Hiny,
i (55)
1
Hint = 5 Zvijnmj.
ij

The mean occupation ¢; = (n;) of a pore i by an atom
X is related to the local chemical concentration z; by
the relation depending on the geometry of pores [2],
e.g., ¢ = x/(1 — z) for a uniform austenite structure
MeX, with the FCC lattice of octo-pores.

An important principal feature whereby the diffu-
sional kinetics in the interstitial Me—X (i. e., substitu-
tion X—v) alloys differs from that in the substituton
A-B-v alloys is the validity for Me-X alloys of rela-
tion (14), that is, the absence of the interaction renor-
malization effects. This follows, first, from the physical
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considerations presented after Eqs. (14) and (15) and,
second, from the thorough analysis of interaction renor-
malization effects for A-B—v alloys in [11, 13]. Tt was
found there that these effects are described by terms an-
tisymmetric with respect to the transposition of A and
B atoms, hf5®—hP*, which vanish in a binary X—v alloy,
where A = B = X. Therefore, the diffusional kinetics
in Me—X alloys can be described by quasi-equilibrium
relations (14) and (15).

For a uniform Me—X alloy, the site chemical poten-
tial A\; = A in (55) coincides with the thermodynamic
chemical potential ux, in contrast to the case of substi-
tution alloys, where the analogous quantity \,, as men-
tioned in Sec. 2.1, is equal to the difference o — pin.
To show this, we generalize Eqs. (21)—(24) and (40)—
(43) in Ref. [21] to the case of interstitial alloys Me—
X. Quasi-equilibrium Gibbs distribution (15) and the
generalized grand canonical potential , for effective
Hamiltonian (55) are given by

P =exp lﬂ(ﬁg + Z Aing — Hznt)] ) (56)

Q, = -

Tln Z exp [5 (Z Aing — Hznt)] , (57)
¥ i

{nai

while the mean occupation ¢; is related to Q4{\;} by
the formula obtained by differentiating equality (57):

C; = (n,} = —6Qg/8)\l (58)

Therefore, if we define the generalized free energy F' by
the equality

F=0Q,+> N (59)
then the site chemical potential )\; is related to F' by
the relations generalizing those for a uniform alloy:

To relate \; and Q4 in Egs. (56)—(60) to the thermo-
dynamic chemical potentials, we consider the case of a
uniform alloy Me-X, where ¢; and \; in Eqgs. (56)—(60)
are independent of i: ¢; = ¢ and \; = . For definite-
ness, we discuss the austenite structure for which the
total number of interstitial sites (octo-pores) is equal
to the total number Ny of Me atoms. Then instead
of the total thermodynamic potentials {2, and F, it is
convenient to consider the analogous quantities per one
Me atom, 2 and f:

QZQQ/NMe, fZF/NMeZQ-F/\C,

Csz/NMe. (61)
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Here, Nx is the total number of atoms X, and hence
c is the mean occupation of an interstitial site, and,
according to Eq. (60),

A = af /. (62)

The quantities 2 and \ in Eqs. (61) and (62) are simply
related to the partial chemical potentials pux and pre
defined by the thermodynamic relations

HUX = 3F/8Nx, MUMe = 8F/6NM3. (63)

Substituting relations (61) for ¢ and F = Ny f(c) in
Egs. (63) and taking Eq. (62) into account, we obtain

(64)

Hence, the quantities A and Q in Egs. (61) and (62)
have the respective meaning of the chemical potentials
of X atoms and Me atoms.

Kinetic equation describing diffusion of atoms X in
an interstitial alloy Me—X (treated as a binary substitu-
tion alloy X-v) can be derived analogously to Eqs. (28)
with the simplifications implied by Eqs. (54) and (55).
Taking into account Eqs. (34), (27), (54), (55) and re-
lations v = h, A\¥ = A} = 0, this equation can also
be obtained simply putting £ = 1 in the first equa-
tion (28):

dCi

=2 b [exp(B3;) — exp(8A)].
J(4)

A=px, Q= e

(65)

The jump probability v;; and the correlator b5 in (65)
are defined by relations analogous to (29) and (33):

vij = will exp(—BEL),

bf§-2<(1—nl)(1—n3 exp( ﬂZA]nk>> (67)

The pre-exponent w 7 in (66) is determined by Eq. (8)
with the replacement p — X, and the activation en-
ergy E% reduces to the term Ep EX in (10), unlike
the more complex expression (31) in a substitutional
alloy. The index “i7” at the quantities weff and EY,
in (66) allows for a possible nonuniformity of an alloy;
for a uniform alloy, this index can be omitted. The
quantity Afj in (67) is an analogue of Afj in Egs. (10)
and (11); it describes the change of the saddle-point
energy EYP,; for an inter-site X-atom jump i — j due
to the presence of another atom X at site k.
Kinetic equation (65) can also be written in a form
analogous to Eq. (49):
-x).

dcz Z 2M;; sh [

(66)

(68)
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where the generalized mobility M;;, according to (65),
is determined by the relation
M = ~:b= é ) .
ij = 7ijbi; exp {2 (i + )\J)] . (69)
In usual diffusion problems, the spatial dependence
of the functions ¢; = ¢(r;), \; = A(¢;), and by
= bfg. (¢i,c;) in Eqgs. (65)—(69) is supposed to be smooth.
Therefore, variations of these functions under the re-
placements ¢; — ¢; (or r; — r; = r; + rj;, where
rj; = r; —r; is the interpore distance) are small. Then
kinetic equation (65) or (68) can be expanded in po-
wers of r;;Ve. This yields a continuous version of this
kinetic equation in the form of a “continuity equation”
for the flux j of atoms X:

dc .. .
Edelv.]—O7

Ja = »C. (70)

— Z Dg,(c)V

Here, a and v are Cartesian indices and the diffusivity
D, is determined by the expression

6(1)(
Do, =T bx—, 71
(©) = Laulx 22 )

1 oV
Loy = ) Z%’jrz’jrz’ja (72)

3(4)

where ax = ax(c,T) = exp[fA(e,T)] is the thermo-
dynamic activity of X atoms and bx = bx(¢,T) is the
correlator b in Eq. (67) at ¢; = ¢; = c.

The site chemical potential \; in a binary alloy can
be written as

Ai = Al A (73)

where A4 = T'In[e;/(1 — ¢;)] corresponds to the ideal
solution and A" describes interaction effects, see,
e.g., (35). Therefore, for the ideal solution for which
both A" in (73) and A} in (67) are zero, we have
ax = c¢/(1+¢), bx = (1 —¢)?, and bxdax/dc = 1 and
Eq. (70) becomes the simple linear diffusion equation

Z Dzd v2

with the concentration-independent diffusivity D
equal to Ty, in (72). However, when X-X interactions
v;; and Afj are significant, kinetic equation (70) is non-
linear and the diffusivity D in (71) should vary with the
local concentration ¢ = ¢X(r).

For a uniform cubic alloy, such as austenite, the ten-
sor Ty, reduces to a scalar dq,va?, where v is given by

(74)
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Eq. (66) (with the index ij omitted) and a is the FCC
iron (y-iron) lattice constant, whence Dy, = da,D.
According to (71), the diffusivity D can then be writ-
ten as

D = ya’bx Jax (75)

dc’
where v is defined by Eqs. (66) and (8) with the appro-
priate change of indices:

7 = UJ ff eXp( /8ECLC)7 P) .

For a uniform alloy with ¢; = ¢, PCA expression (35)
for the local chemical potential A(c) is simplified [29]:

T)= TZzn In(1 — gne)
gn = 2fn/(Rn +1+ 2Cfn)7
fn = eXp(_B'Un)_la

where z, is the coordination number and v, is the con-
figurational interaction for the nth coordination sphere.
In the case of weak interaction, fv, < 1, Eq. (77) re-
duces to the MFA expression /\MFA (3, znvn) c. But
for the realistic values of the interactions v,, such as
those in Table 1, using the MFA can lead to significant
errors [29)].

The correlator bx (¢, T') for a uniform alloy, accord-
ing to Eqgs. (67) and (44), can be written as

Wil (76)

= wx exp (AS§

(77)

R = [1+4c(1—c) f]'/?,

> #PIn(1 + fiPe)

n=1

bx(e.T) = (1 - ¢)?exp [ ] .

fif = exp(=BA,) -

where 2P is the coordination number and A,, is the
saddle-point interaction for the nth coordination sphere
of the saddle point considered. If these interactions are
weak, BA, < 1, then Eq. (78) takes its MFA form

bx(c,T) = (1 —c)*exp ( BcZzs”A > (79)

But for the realistic saddle-point interactions A,,, such
as those in Table 2 below, using the MFA can lead to
significant errors, just as for A in Eq. (77).

Microscopic relation (75) can be compared with var-
ious phenomenological models for diffusivity [1-4]. In
particular, it can provide a statistical expression for the
phenomenological mobility Mcy, introduced by Agren
in his discussion of diffusion of carbon in austenite
[1-3]. Comparing Eq. (75) with the definition of Mcva
in Eq. (9) in [2], we find

ya?bx ac

M, =
cva (1 — )V, T’

(80)
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where V,,, is the volume per atom Me. In more detail,
the microscopic and phenomenological descriptions of
diffusion of carbon in austenite are compared in Sec. 4.

We now consider a multicomponent interstitial al-
loy (MeyMes ... )-X with several species atoms p in
the metal sublattice, such as an Fe-Mn—C alloy. The
interstitial sites are denoted by indices 7, j, and k, while
the sites in the metal sublattice, by indices [, m, and n.
The total configurational Hamiltonian can be written
in the form generalizing Eq. (3):

1
=3 Z’Ui]'ninj + Z Vinnl +
j

p,il
1
+§§ Viinynd,,

pg,lm

(81)

where we again omit the index X for an interstitial
atom, setting nX = n;, V" = V), and VXX As
above, we discuss diffusion of only 1nterst1t1al but not
metal atoms, and the presence of vacancies in the metal
sublattice is neglected. Therefore, occupation opera-
tors nl for host metal h can be expressed in terms of
those for the minority metals a similarly to Eq. (1):
nt =1-3_ng. The effective Hamiltonian for statis-

tical averaging, instead of (19), takes the form
1
Heff = — ;/\znz - Zl )\f‘n,a + 5 izj’l}i]'ni’nj +
«,

1
+ Y vmanf + 5 Y vpng

a,il af,lm

= Vjj-

nB

m?

(82)

where v§ = V& — V', and Uﬁf is related to V)7 in (81)
similarly to Eq. (5).

The equations describing diffusion of X atoms can
again be derived using Eqs. (6)—(26) with appropriate
generalizations and simplifications. In particular, the
first equation in (18) here takes the form

d de;
oo Z Zweﬁ[l—nZ nj X
{ne.ni} j(é)
X exp (5E§;¢ _ 5E5P) i j}] x
xexp[B(Q — Hey)] . (83)

E;D;P, instead of Eqs. (10)

), is given by the expression

Eip = F) +ZA]’I’Lk + ZAU[W R

al

Here, the saddle-point energy
and (11

(84)

where Azj and Agl are analogues of Azj in (67). Using
relations (20) and (26), we again reduce Eq. (83) to
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Table 1. Configurational interactions v,, (in kelvin) of carbon atoms in austenite
n 1 2 3 4 5 6 7 8 9 10 11
2R, /a 110 200 211 220 310 222 321 400 330 | 411 420
R, /Ry 1 1.41 1.73 2 2.24 | 245 | 2.65 2.83 3 3 3.16
Zn 12 6 24 12 24 8 48 6 12 24 24
vB Blanter [16] | 1334 | 1961 | —487 46 46 267 -23 | —139 58 —-12 | -23
Up, this work 1400 | 1180 | —322 46 46 267 —-23 | —139 58 —-12 | —23

Table 2. Saddle-point interactions A, = A(R;P) (in kelvin) of carbon atoms in austenite for vectors R;” = R, — Ry,
where R, is the saddle-point position of the carbon atom
n 1 4 5 6 8 9 10
RP /Ry 0.87 1.12 1.5 1.66 1.80 1.94 2.06 2.18 2.29
z5P 4 4 6 4 12 8 12 8
A, 1470 1336 1228 229 —924 -929 —543 133 133 286
n 11 12 13 14 15 16 17 18 19
R? /Ry 2.40 2.50 2.60 2.70 2.78 2.87 2.96 3.04 3.12
z5p 8 14 16 4 16 16 8 20 8
Ay 622 564 144 —160 -310 —269 34 —43 —59

form (65). However, the activation energy E,. in (66)
and the correlator bgg- in (67) are now defined as

E,c = Ep — Z‘/z?a
l

by = <(1—ni)(1_nj) X (85)

X exp (—ﬂZAZjnk — ﬂZAan‘) > ,
k al

and Eqs. (83) and (85) now include statistical averag-
ing over various distributions of a-species atoms in the
metal sublattice.

4. CALCULATIONS OF DIFFUSIVITY AND
ACTIVITY OF CARBON IN AUSTENITE
FOR SIMPLE MODELS OF
CARBON-CARBON INTERACTIONS

To calculate the diffusivity D in accordance with
microscopic expression (75), we should use some theo-
retical model of X—X interactions in an alloy, both for

the configurational interactions v, in (77), which deter-
mine the chemical potential A\, and for the saddle-point
interactions A, in (79), which determine the correla-
tor bx. For substitution Fe—Cu alloys, such a first-
principle model for both v, and A, was developed
in [14], and simulations of precipitation in Fe-Cu al-
loys based on this model confirmed its relevance and
reliability [14]. For interactions of carbon in austen-
ite, reliable first-principle calculations are still absent
due to the well-known difficulties of taking magnetic
interactions in y-iron into account [19]. However, some
simplified model of configurational interactions v, in
austenite has been suggested by Blanter [16], and his
estimates of these interactions are presented in Table 1
as v2. Below, we use this model and some its exten-
sions to investigate the concentration and temperature
dependences of the diffusivity D that follow from mi-
croscopic expression (75).

Blanter used the model of purely deformational
configurational interactions with the nearest-neighbor
Kanzaki forces for all constants v2 except the first one.
The nearest-neighbor constant v2 (which cannot be de-
scribed by the deformational model correctly due to the
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strong “chemical” repulsion at short C-C distances) was
treated as a free parameter, which was estimated from
the fit of the carbon activity in austenite with respect
to graphite, al, ", calculated with these vZ to the ex-
perimental values. The quantity al,?" is related to
the “configurational” activity ac = exp(SAc¢), where
Ac = A is the chemical potential of carbon in austenite

discussed in Sec. 3, by the thermodynamic relation [16]

ali " = acexp(BAGLT), (86)
where AGY9" = AG},9"(T) is the difference between
the thermodynamic potentials per carbon atom in a
pure y-iron and in graphite. The fit to the experimen-
tal a; ?"(c,T) values obtained with the use of both
Monte Carlo [16] and PCA [29] calculations of ac/(e, T')
the v? values, and for AG,?"(T)), some experimental
estimates, seemed to be quite satisfactory. This may
imply that the simple model of Blanter [16] can serve
as a basis for realistic descriptions of C—C interactions
in austenite.

We estimated the configurational interactions v,, us-
ing a similar approach. However, in the fit to exper-
imental al, " (¢, T) values, we estimated the function
AGL ™" in (86) using the interpolation of experimental
data suggested by Agren [36]:

AGE 9" =5550K —2.31T (87)

instead of the interpolation in [29], and we also varied
not only vy but also the next two constants, v and v3.
The v,, values obtained are presented in the last line
of Table 1. Variations of our vs and vg with respect to
their “purely deformational” values v¥ and v¥ lie cer-
tainly within the real accuracy of the original Blanter
model because, first, this model disregards “chemical”
contributions to v and vz, which can be quite notice-
able (which is illustrated, in particular, by comparing
the results of calculations of C—C interactions in ferrite
based on ab initio [20] and on purely deformational [37]
approaches [33]) and, second, it neglects both possible
contributions of non-nearest Kanzaki forces [29] and
a probable variation of phonon spectra with temper-
ature (which was not measured in v-iron but is very
pronounced in BCC iron [34, 35]). In Figs. 1 and 2,
we present the carbon activity aly ¥"(zc,T) and the
equilibrium ferrite—austenite phase diagram calculated
using PCA expression (77) for A with our v, from Tab-
le 1, together with experimental data and the results of
calculations based on the phenomenological model by
Agren [36].

We now discuss the saddle-point interactions A, =
= A(RSP), where R{? = R], — Ry, and Ry, is the
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Fig.1. Dependence of the carbon activity al; " in

austenite with respect to graphite on the carbon con-
centration z¢ ¢/(1 + ¢) for various temperatures
T. Dots correspond to the experimental data in [16].
Solid curves are calculated using PCA expression (77)
for A\ with the interaction constants v,, from Table 1.
Dashed curves are calculated using the phenomenolog-
ical description of C-C interactions used by Agren [36]
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Fig.2. Fe—C phase diagram. Dots correspond to ex-

perimental phase boundaries. Solid curves show ferrite—

austenite phase boundaries calculated using Eq. (77)

with v, from Table 1. Dashed curves correspond to
the phenomenological calculations by Agren [36]
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saddle-point position of the carbon atom. In the second
and third lines of Table 2, we show the first 19 distances
R? = |RSP| and the coordination numbers z5P that
correspond to these RSP, To illustrate the distribution
of the R}? vectors in the FCC lattice, we present the
values of components of lattice vectors R}, = RP+Rg,
(in a/2 units) for the first eight coordination spheres of
the point Ry, = (0.5,0.5,0):

R, = (O,I,il),(l 0,+1),
R; = (0,2,0),(2,0,0),(1,1,0),(1,1,0),
R, = (2,1,+1), (1,2, +1), (0,1, £1), (1,0, £1),
L =1(2,2,0),(1,1,0), (0,0, +2), (1,1, +2),
R. = (2,1,41),(1,2, 1),

(88)
(3,1,0), (0,2, +2),
(2,0, i2) (1,1,42),(1,1,+2), (1,1, +3),
= (0,3,£1), (3,0, £1), (2,1, £1),
(1,2,+1), (3,0, £1),
R, = (2,2,0),(2,2,0),(3,1,0), (1,3,0),
(0,1,+3), (1,1, +1).

Models for estimating the saddle-point interactions
A, can be constructed similarly to those for the con-
figurational interactions v,,. The long-range deforma-
tional contributions to A, can be calculated using the
general expression for deformational interactions with
arbitrary Kanzaki forces discussed in [29], while the
short-range chemical contributions can be estimated
by treating the first several A, as adjustable param-
eters, as this was done for the v,,. However, we here
restrict ourselves by illustrative estimates of A,, based
on some interpolations between the v, values in Ta-
ble 1 and on several simple assumptions. First, we as-
sume that both chemical and deformational contribu-
tions to A, depend only on the distance RP = |R5P|
and vary with RSP smoothly. Second, we assume that
for short distances Ri? < Ry = 1.41R;, the A,, values
are mainly determined by the chemical contributions,
while for RJP > R», these values are mainly determined
by the deformational contributions. Third, we assume
that the dependence the saddle-point interactions A,
on R’P is similar to the dependence of the configura-
tional interactions v, on R,, for both chemical and
deformational contributions. Then the “chemical” in-
teractions Ay, Ay, and Az can be estimated using the
linear interpolation between v; and v, values, as shown
in Figs. 3 and 4. For the “deformational” A,, with n > 4
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the values of v,, and triangles, the values of A ob-
tained as described in the text

or RP > R, the analogous estimate of A,, includes the
following two steps.

(A) Interpolation of the dependence v(R) using the
vp, values in Table 1, which yields the “preliminary”
values A%O) shown in Fig. 3.

(B) Scaling of these ALY by some factor a,

A, =aA®), (89)

with the value of a determined from the fit of the diffu-
sivity D calculated according to Eqs. (75)—(79) to the
experimental data about the diffusivity of carbon in
austenite.

Step A is illustrated in Fig. 3. This figure shows
that to obtain an appropriate interpolation v(R), the
regions of long and “intermediate” distances R should
be treated differently. At long distances R > R4, we
can use the simple linear interpolation between neigh-
boring v,, values, while at Ry < R < Ry, some smooth
curve should be drawn between vy, v3, and v4 values.
For these intermediate R, we interpolate v(R) by a sim-
ple power law:

v(R) = {

where constants Cs and C4 are determined by the con-
ditions v(Rz) = vy and v(Ry) = vs. For the exponent

C>(Rs — R)™,
Cy4(R — R3)™,

R2<R<R3,

(90)
Rs < R < Ry,
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Fig.4. Values of C—C interactions that we use. Open

circles: configurational interactions v, = v(Ry); black

triangles: saddle-point interactions A, = A(R;P).

Dashed lines connect the neighboring A, values to
guide the eye

m we tried two values, 2 and 4, and the value m = 4
was found to be more suitable for the fit involved in
step B. The resulting interpolation v(R) is shown in
Fig. 3 by the dashed curve.

For step B, the physical arguments in favor of model
relation (89) can be deduced from the general expres-
sion for deformational interactions in Eq. (11) in [29].
According to this expression, the deformational inter-
action V¢ = V4(R; — R;) between two atoms posi-
tioned at R; and R, is proportional to the integral
over wave-numbers k in the Brillouin zone of some ex-
pression that includes the product of two appropriate
Kanzaki forces, fi and f{;, while each of these forces
is proportional to the amplitude of displacements of
neighboring host (iron) atoms due to the presence of an
impurity (carbon) atom at the site ¢ or j. Therefore, for
the configurational interactions v,,, the deformational
contributions are proportional to the product of two
Kanzaki forces £/ and f;” that describe the displace-
ments of iron atoms induced by a carbon atom located
in the octo-pore. At the same time, for the saddle-
point interaction A,, one of these factors is replaced
by a Kanzaki force f;” that describes the analogous
displacements of iron atoms induced by a carbon atom
in the saddle-point position, for which the carbon—iron
distance Rpe_ ¢ is 1/\/5 times that for a carbon atom
in an octo-pore. Therefore, this Kanzaki force £ can
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Fig.5. The diffusivity Dc(xc, T) of carbon in austen-
ite. The symbols show experimental values from [38]
presented in [3]. The solid lines are calculated using
Eq. (75) and the v, and A,, values from Tables 1 and
2. The dashed lines show the results of calculations by
Agren [3] based on his phenomenological model

be expected to considerably exceed f;”. Hence, the fac-
tor a in (89), which qualitatively describes the relative
scale of deformational contributions to the v, and A,
values, can considerably exceed unity.

The description of available experimental data on
the diffusivity D¢ (xzc,T) [38] by our model with the
choice @« = 2.9 in Eq. (89) is shown in Fig. 5. This
description corresponds to the following values of the
saddle-point energy E,., the product wgf a?, and the
frequency wgf in Eqs. (75) and (76):

E,. = 17700 K, (91)

wgfa2 = 0.225 cm?/sec,

(92)
wgf =1.76 - 10" sec 1,

where the value a = 3.58 A for y-iron [40] is used.
We note that the choice @ = 3.04 in Eq. (89) would
yield the values of D¢(xc,T) that virtually coincide
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with those obtained by Agren [3]. However, the choice
a = 2.9 seems to better describe the low-temperature
data in [38], which agree with those obtained in [39].
The saddle-point interactions A, that correspond to
a = 2.9 are presented in Table 2 and Fig. 4.

Both experimental and theoretical results presented
in Fig. 5 show that the diffusivity D¢ sharply increases
as the carbon concentration x¢ increases. In accor-
dance with Eqs. (10), (11), (75), and (79), this seems to
indicate the presence of a significant attraction in the
saddle-point interactions A,, because this attraction
decreases the saddle-point energy EZF for the inter-
site jumps of carbon atoms. In the model estimates of
interactions shown in Fig.4, it corresponds to the pres-
ence of significant negative A, at “intermediate” C-C
distances R in the range 1.6R; < R < 2Ry. The in-
crease in D¢(e, T') with z¢ mentioned above can imply
that such a significant attraction is present not only in
our model estimates but also in the real saddle-point
interactions of carbon atoms in austenite.

We now discuss the values of the pre-factor wgf and
the “transition state entropy” ASSF in (8) that corre-
spond to estimate (92). The attempt frequency wp,
in (8) can be estimated in our case as the frequency w(,
of local vibrations of carbon in austenite. These vibra-
tions have been experimentally studied in [41] with the
result

wg ~ T5meV = 1.14 - 10 sec . (93)

Note that this w!, exceeds the Debye frequency of
y-iron, w}, = 0.43-10* sec ! [42], by about three times.
Then using Eq. (8) with wy, = wl and wd = wd!

from (92), we obtain

ASEP ~ 04, BF ~0.9w]. (94)

These relations show that the “softening” of saddle-
point frequencies w¢l with respect to w(, for carbon in
austenite is rather weak (if any), unlike for Fe-Cu sub-
stitution alloys discussed in Sec. 2.1, while the saddle-
point entropy AS&F is by an order of magnitude lower
than the analogous ASZEP and ASZP values for Fe-Cu
alloys (as estimated in [14]). The difference can be
related (at least partly) to the above-mentioned in-
equality wl, > w}, which implies that the dynamics
of carbon atoms in austenite is much faster than the
iron atom dynamics. Under such conditions, the as-
sumption of “a local thermodynamic equilibrium” for
the saddle-point transition state, as well as the entropy
notion for this state, may not be fully applicable and
should be used with caution.

We note that Eqs. (94) correspond to the pre-factor
wgf of the factor v in (76) that determines diffusi-

vity (75) in the dilute alloy limit. Therefore, these
equations have no relevance to the illustrative estimates
of C—C interactions discussed above, but they provide
some definite information about the microscopic char-
acteristics of diffusion of carbon in ~-iron.

Finally, we compare the microscopic description
of thermodynamic and diffusional characteristics of
carbon in austenite presented in this work with
their phenomenological description developed by Agren
[2, 3, 36]. Both approaches use a similar number of ad-
justable parameters, and the quality of agreement be-
tween the results obtained and the experimental data
shown in Figs. 1, 2 and 5 is similar. But the micro-
scopic approach seems to provide a better physical un-
derstanding of the phenomena considered. It also opens
possibilities of developing fully first-principle descrip-
tions with no adjustable parameters, as was demon-
strated in [14] for Fe-Cu alloys. In addition, micro-
scopic expression (75) for the diffusivity seems to eluci-
date a number of principal points not discussed earlier.
First, it shows that the diffusivity can be written in the
form of the product of “thermodynamic” and “kinetic”
(or “saddle-point”) factors, and the thermodynamic fac-
tors include not only the usual, so-called Darken factor
Odlnax/0Ine 2] but also the concentration derivative
of the activity itself, dax /dc. Second, microscopic re-
lations (75)—(79) allow estimating the “transition state
entropy” ASSP from experimental data, as was demon-
strated for carbon in austenite. Third, these micro-
scopic relations allow relating the concentration depen-
dence of the activity ax and the diffusivity Dx to both
the configurational and saddle-point interactions be-
tween interstitial atoms X, in particular, between car-
bon atoms in austenite. Therefore, the analysis of ex-
perimental data on ac(xc,T) and Do(zc,T) can lead
to insights into the type and the scale of these interac-
tions.

5. CONCLUSIONS

We summarize the main results in this work. The
fundamental master equation for the probability of va-
rious atomic distrubutions in an alloy has been used to
derive the basic equations of diffusional kinetics in al-
loys. The microscopic parameters entering these equa-
tions can be calculated by ab initio methods, as was
demonstrated by SF for iron—copper alloys [14], or us-
ing various theoretical models. For substitution alloys,
the diffusional transformation kinetics is described by
the “quasi-equilibrium” kinetic equation (QKE) derived
in Sec. 2.1. This equation (28) generalizes the earlier
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version presented in [15] by taking possible “interaction
renormalization” effects into account, which can be im-
portant for the vacancy-mediated kinetics [11, 13]. In
Sec. 2.2, we described the calculations of local chemi-
cal potentials \; and correlators b;; entering QKE (28)
with the use of some analytic methods that combine the
simplicity of calculations with high accuracy, especially
for dilute alloys. In Sec. 2.3, we reduced QKE (28) de-
scribing the vacancy-mediated kinetics to the kinetic
equation for some equivalent direct-atomic-exchange
model that is suitable for computer simulations.

The microscopic equations describing diffusion of
interstitial atoms X in an interstitial alloy Me—X are de-
rived in Sec. 3. These equations have simple form (65)
or (68), which allows obtaining explicit analytic ex-
pressions for the diffusivity D = Dx. These expres-
sions for D given by Eqs. (71) or (75) have a simple
form of products of three factors: the concentration
derivative of the thermodynamic activity ax of atoms
X, the correlator bx given by Eqgs. (67) or (79), which
describes the influence of interactions between atoms
X on the activation barrier for the intersite jumps of
atoms X, and the concentration-independent factor ~
describing the diffusivity in the dilute alloy limit. This
microscopic expression for D is conspicuously different
from those used in phenomenological treatments [1—
4], in particular, by the presence of the concentration
derivative Jax /Oc rather than the so-called Darken fac-
tor 01nax/d1n c that is written usually. We also derive
equations describing diffusion of interstitial atoms X in
a multicomponent alloy (Me;Me, ... )—X.

In Sec. 4, we applied the results in Sec. 3 to mi-
croscopically treat the problem of diffusion of carbon
in austenite discussed by a number of authors [1-4].
Our treatment is based on the microscopic model of
C—C interactions in austenite suggested in [16], which
supposes a strong ‘“chemical” repulsion at short C-C
distances R and a purely deformational interaction at
longer R. To estimate the configurational interactions
v(R) that determine the carbon activity ac and the
“saddle-point” interactions A(R) that determine the
above-mentioned correlator bx = bc, we used some
plausible assumptions about the dependences v(R)
and A(R), which include adjustable parameters. The
interaction models obtained enable us to describe both
thermodynamic and diffusional properties of carbon
in austenite at the same level of accuracy as that
achieved in phenomenological treatments [1-4, 36]. At
the same time, the microscopic approach used allowed
us to make a number of qualitative conclusions about
C—C interactions and the characteristics of diffusion of
carbon in austenite, in particular, about the presence
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of a significant C-C attraction at intermediate R
and about a rather low value of the “transition state
entropy” ASEF given by estimate (94).

The authors are much indebted to F. Soisson for nu-
merous valuable discussions, as well as to G. F. Syrykh
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