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STATISTICAL DERIVATION OF BASIC EQUATIONS OFDIFFUSIONAL KINETICS IN ALLOYS WITH APPLICATION TOTHE DESCRIPTION OF DIFFUSION OF CARBON IN AUSTENITEV. G. Vaks *, I. A. ZhuravlevNational Resear
h Center �Kur
hatov Institute�123182, Mos
ow, RussiaMos
ow Institute of Physi
s and Te
hnology (State University)117303, Mos
ow, RussiaRe
eived January 26, 2012Basi
 equations of di�usional kineti
s in alloys are statisti
ally derived using the master equation approa
h.To des
ribe di�usional transformations in substitution alloys, we derive the �quasi-equilibrium� kineti
 equationthat generalizes its earlier versions by taking possible �intera
tion renormalization� e�e
ts into a

ount. Forthe interstitial alloys Me�X, we derive an expli
it expression for the di�usivity D of an interstitial atom X.This expression notably di�ers from those used in previous phenomenologi
al treatments. This mi
ros
opi
expression for D is applied to des
ribe the di�usion of 
arbon in austenite based on some simple models of
arbon�
arbon intera
tion. The results obtained enable us to make 
ertain 
on
lusions about the real form ofthese intera
tions and about the s
ale of the �transition state entropy� for di�usion of 
arbon in austenite.1. INTRODUCTIONThe problem of development of a adequate theore-ti
al des
ription of di�usion in alloys attra
ts interestfrom both fundamental and applied standpoints, see,e. g., [1�15℄. Presently, this des
ription is usually basedon the phenomenologi
al theory of di�usion in multi-
omponent systems developed by Onsager many yearsago [6℄. Phenomenologi
al kineti
 
oe�
ients are 
al
u-lated in this theory using various simpli�ed models withparameters estimated empiri
ally [1�4℄. However, theseempiri
al models have usually no 
onsistent theoreti
aljusti�
ation, and their relation to interatomi
 intera
-tions, as well as the possibilities of their appli
ation toother alloy systems, are typi
ally not 
lear.An important problem in this �eld is the strong 
on-
entration dependen
e of the di�usivity D of 
arbon inaustenite [1�5℄. This dependen
e 
auses 
ompli
ationsin the kineti
 analysis of various di�usion-
ontrolled re-a
tions in steels [4℄, and several empiri
al models havebeen suggested to des
ribe this dependen
e [1�4℄. How-ever, it is generally un
lear whether these models 
an beused for predi
tions of D at temperatures T . 1000 K*E-mail: vaks�mbslab.kiae.ru

(where many important phase transformations o

urbut D 
annot be dire
tly measured be
ause austeniteis unstable here) or under partial substitution of ironby other metals [5℄.A 
onsistent statisti
al des
ription of the di�usionalkineti
s in alloys 
an be based on the master equa-tion approa
h [7�15℄. This approa
h allows expres-sing the phenomenologi
al kineti
 
oe�
ients, su
h asthe mobility M� of an �-spe
ies atom, in terms of in-teratomi
 intera
tions in an alloy. These intera
tions
an be estimated using either some mi
ros
opi
 models[16�18℄ or ab initio methods [14, 19, 20℄. As the levelof a

ura
y and reliability of ab initio 
al
ulations issteadily in
reasing, this mi
ros
opi
 approa
h seems tobe prospe
tive for nonempiri
al 
al
ulations of diffusi-vitiy.At the same time, previous 
onsiderations of di�u-sional kineti
s in alloys based on the master equationapproa
h were usually restri
ted by dis
ussions of onlysimplest models and approximations or some parti
ularproblems [7�9; 11; 13℄. On the other hand, several moregeneral dis
ussions [10, 15℄ in
luded many unne
essary
ompli
ations and restri
tions that 
an hinder the un-derstanding of the results. Therefore, the �rst aim ofthis paper is to present a 
lear and general derivation719



V. G. Vaks, I. A. Zhuravlev ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012of basi
 equations of di�usion in alloys based on themaster equation approa
h, for both substitution andinterstitial alloys.For this, in Se
. 2, we �rst dis
uss the va
an-
y-mediated kineti
s under di�usional transformationsin substitution alloys. This problem has been 
onsid-ered in Ref. [15℄, and some equations derived in Se
. 2have been already presented there. But the full deriva-tion of these equations has not been given in [15℄, whilethe similar derivation in [10℄ in
ludes a number of 
om-pli
ations and ina

ura
ies. In Se
. 2, we also dis
ussthe methods of 
omputer simulations based on the mi-
ros
opi
 equations proposed, in
luding some general-izations of the previously dis
ussed �equivalen
e theo-rem� [10, 15℄, whi
h greatly simpli�es su
h simulations.In Se
. 3, we 
onsider interstitial Me�X alloys and de-rive the general statsti
al expression for the di�usivityD of an interstitial atom X in a simple and physi
allytransparent form. This expression involves only mi
ro-s
opi
 parameters that 
an be estimated using eithertheoreti
al models or ab initio 
al
ulations. We alsogeneralize this mi
ros
opi
 expression for D to the 
aseof multi
omponent alloys (Me1Me2 : : : )-X with severalspe
ies atoms in the metal sublatti
e.The se
ond aim of this work is to apply the resultsin Se
. 3 to treat the above-mentioned problem of di�u-sion of 
arbon in austenite mi
ros
opi
ally. This treat-ment des
ribed in Se
. 4 is based on the mi
ros
opi
model of 
arbon�
arbon (C�C) intera
tions in austen-ite suggested by Blanter [16℄, whi
h supposes a strong�
hemi
al� repulsion at short C�C distan
es RCC and apurely deformational (or �strain-indu
ed�) intera
tionat longer RCC distan
es. We show that some natu-ral generalizations of this model allow des
ribing boththermodynami
 and di�usional 
hara
teristi
s of 
ar-bon in austenite at the same level of a

ura
y as thata
hieved in phenomenologi
al models [1�4; 36℄. Themi
ros
opi
 approa
h simultaneously allows making anumber of 
on
lusions about the type of C�C intera
-tions and about some physi
al features of di�usion of
arbon in austenite. The main results of this work aresummarized in Se
. 5.2. EQUATIONS OF VACANCY-MEDIATEDKINETICS FOR DIFFUSIONALTRANSFORMATIONS IN SUBSTITUTIONALLOYS2.1. General equations for mean o

upations oflatti
e sitesWe �rst present the ne
essary relations fromRef. [15℄ with some extensions and 
omments. We


onsider a substitutional alloy with m+ 1 
omponentsp0, in
luding atoms of m di�erent spe
ies p = p1,p2; : : : ; pm and va
an
ies v: p0 = fp; vg. The distri-butions of atoms over the latti
e sites i are des
ribedby o

upation number sets fnp0i g, where the operatornp0i is 1 when the site i is o

upied by a p0-spe
ies
omponent and 0 otherwise. For ea
h i, these opera-tors obey the identity Pp0 np0i = 1, and hen
e only mof them are independent. It is 
onvenient to let theindependent operators be denoted by Greek letters �or �: (np0i )indep = n�i , with the rest operator, denotedas nhi , expressed via the n�i :nhi =  1�X� n�i! : (1)We note that both nhi and n�i are proje
tion operators:(nhi )2 = nhi ; nhi n�i = 0; n�in�i = Æ��n�i : (2)For dilute alloys, it is 
onvenient to set �h� in (1) to bethe host 
omponent, e.g., h = Fe for the dilute BCCFe�Cu�v alloys dis
ussed in [14, 15℄ and used below forillustrations.In terms of all operators np0i , the total 
on�gura-tional Hamiltonian Ht (for simpli
ity supposed to de-s
ribe pairwise intera
tions) 
an be written asHt = 12 Xp0q0;ij V p0q0ij np0i nq0j : (3)After elimination of the operators nhi in a

ordan
ewith (1), this Hamiltonian be
omesHt = E0 +X�i '�n�i +Hint;Hint = X��;i>j v��ij n�i n�j (4)whi
h in
ludes only independent n�i , while the 
on-stants E0 and '� and the �
on�gurational intera
tions�v��ij are linearly expressed in terms of the 
ouplingsV p0q0ij in (3), in parti
ular,v��il = (V �� � V �h � V h� + V hh)ij : (5)The fundamental master equation for the probabilityP of �nding an o

upation number set fn�i g = � is [12℄dP (�)dt =X� [W (�; �)P (�) �W (�; �)P (�)℄ � ŜP (6)where W (�; �) is the � ! � transition probability perunit time. If we adopt the 
onventional �transition720
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al derivation of basi
 equations : : :state� model [14℄ for the probabilities W , we 
an ex-press the transfer matrix Ŝ in (6) in terms of the prob-ability of an elementary intersite ex
hange (�jump�)pi
 vj between neighboring sites i and j:W pvij = npinvj!effpv exp h��(ÊSPpi;vj � Êinpi;vj)i ; (7)where � = 1=T is the inverse temperature, ÊSPpi;vj isthe saddle-point energy, Êinpi;vj is the initial (before thejump) 
on�gurational energy of a jumping atom p anda va
an
y, and the pre-exponential fa
tor !effpv 
an bewritten as !effpv = !pv exp ��SSPpi;vj� : (8)Here, !pv is the attempt frequen
y, whi
h is generallyexpe
ted to have the order of magnitude of the meanfrequen
y of vibrations of a jumping atom in an al-loy, and �SSPpi;vj is the entropy di�eren
e between thesaddle-point and the initial alloy states. This di�eren
eis mainly due to the di�eren
e of atomi
 vibrations inthe saddle-point state (supposed to be lo
ally equilib-rium, whi
h allows thermodynami
 notion su
h as theentropy to be applied to it) and the initial state. Athigh temperatures T under 
onsiderations (a
tually, al-ready at T & �D=2, where �D is the Debye temperature[22℄), this entropy di�eren
e 
an be des
ribed by the
lassi
al expression�SSPpv = 3 ln �!inp�!spp ; (9)where �!inp and �!spp are 
ertain mean frequen
ies of vi-brations of a jumping atom in the initial and saddle-point states (see, e. g., [29℄). Be
ause the frequen
ies!spp in the saddle-point 
on�guration 
an notably softenwith respe
t to !inp , the entropy di�eren
e �SSPpv 
anbe expe
ted to take large positive values. For exam-ple, for the Fe�Cu�v alloys with the Debye frequen
y!FeD � 6�1013 se
�1 [23℄, Soisson and Fu (SF) [14℄ foundthat !effFe v � 80!FeD and !effCu v � 30!FeD . This impliesthat �SSPFe v � 4:5, �SSPCu v � 3:5, �!spFe � !FeD =4, and�!spCu � !FeD =3, although so high values of �SSP and!D=�!sp 
an be somewhat overestimated due to ina

u-ra
ies of the estimates [14℄.The saddle-point energy ÊSPpi;vj depends in generalon the atomi
 
on�guration near the ij bond. We de-s
ribe this dependen
e by the SF model [14℄ assumingthe saddle-point energy to depend only on o

upationsof latti
e sites l nearest to the 
enter of the ij bond(denoted by lijnn):ÊSPpi;vj = Xq; l=lijnn "pq nql = Eph + �̂pij : (10)

Here, Eph is the saddle-point energy for the pure hostmetal and the operator �̂pij des
ribes 
hanges in thisenergy due to a possible presen
e of minority atomsnear the bond:Eph = zbnn"ph; �̂pij = X�; l=lijnn�p�n�l ; (11)where zbnn is the total number of nearest latti
e sitesl for ea
h bond (whi
h is zbnn = 6 for a BCC latti
e),�p� = ("p� � "ph), and "p� and "ph are the mi
ros
opi
parameters of pairwise intera
tions 
al
ulated by SFusing ab initio methods [14℄. We note that our de�-nitions of �̂pij and �p� di�er by sign from those usedin [14℄ and [15℄.The intera
tion parameters V p0q0ij , "ph, and �p� inEqs. (3) and (11) 
an be 
al
ulated by ab initio meth-ods. For Fe�Cu�v alloys, this was shown in [14℄. The-oreti
al 
al
ulations of the fa
tors !effpv in Eq. (7) aremore di�
ult due to the presen
e of the entropi
 fa
torexp(�SSP ) in Eq. (8). However, values of !effpv 
an beestimated from experimental data on self-di�usion anddi�usion of isolated atoms in a host metal, as des
ribedin [14℄.Be
ause the n�i in Eqs. (1), (4), and (6) are pro-je
tion operators obeying Eqs. (2), the most generalexpression for the probability P = Pfn�i g in (6) 
an bewritten in the form of the generalized Gibbs distribu-tion [10�12℄Pfn�i g = exp24�0�
+X�i ��i n�i�Hint�ĥint1A35 ; (12)ĥint = 12 X��;ij h��ij n�i n�j ++ 16 X���;ijk h���ijk n�in�j n�k + : : : (13)Here, the parameters ��i (whi
h are both time andspa
e-dependent in general) 
an be 
alled �site 
hemi-
al potentials� for �-spe
ies atoms; they are related tolo
al 
hemi
al potentials ��i and �hi of �-spe
ies andhost atoms as ��i = (��i � �hi ) [21℄. In (12), Hint isthe same as in (4); the parameters h�:::�i:::j in (13) (alsodepending on both time and spa
e) des
ribe possiblerenormalizations of intera
tions, and 
 is determinedby normalization.As dis
ussed in detail in [12℄, under the usual 
ondi-tions of phase transitions 
orresponding to the absen
eof external parti
le or energy �uxes (that is, when thealloy is a �
losed� but not an �open� statisti
al system),7 ÆÝÒÔ, âûï. 4 (10) 721
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ts of renormalizations of intera
tions 
an be ex-pe
ted to be insigni�
ant, and we 
an therefore setĥint = 0 (14)in (12). There are at least two reasons to expe
t thevalidity of Eq. (14) for transformations in 
losed sys-tems. First, this relation holds both before and af-ter the transformation. For example, it is true be-fore an initially equilibrated alloy is quen
hed from ahigher temperature Th to the lower temperature Tl 
or-responding to another equilibrium phase (or phases),and it is also true after the new equilibrium state atT = Tl is rea
hed. Therefore, there is no driving for
edrawing the 
orrelation parameters h�:::�i:::j in distribu-tion (12) away from their Gibbs values h�:::�i:::j = 0. Se
-ond, the parameters h�:::�i:::j in distribution (12) mainlydes
ribe the short-range order. After a 
hange of ex-ternal 
onditions, su
h as temperature, this short-rangeorder is established relatively fast, in a time of the orderof one interatomi
 ex
hange time �a, while the time for
ompleting mi
rostru
tural evolution under phase tran-sition is usually mu
h longer, t� �a [8, 10, 15℄. There-fore, possible �u
tuative violations of relation (14) atsmall t . �a are not important for the whole evolution.When relation (14) is satis�ed, Eq. (12) takes theformPfn�i g = exp24�(
 +X�i ��i n�i �Hint)35 ; (15)whi
h is 
alled the �quasi-equilibrium Gibbs distribu-tion� in what follows.We note, however, that for the essentially �open�systems su
h as alloys under irradiation [24, 25℄ or analloy with an external atomi
 �ux imposed [11℄, quasi-equilibrium relation (14) 
an be strongly violated. Im-portant 
ases of su
h violations 
an be the phase tran-sitions a

ompanied by signi�
ant �uxes of va
an
iesinto the transformation region, for example, the pre
ip-itation in Fe�Cu�v alloys, where these �uxes arise dueto the strong trapping of va
an
ies by the 
opper-basedpre
ipitates [14℄. In su
h 
ases, the e�e
tive va
an
y�
opper intera
tions 
an notably vary with the evolu-tion time, and large renormalizations hvCuij 6= 0 
anbe expe
ted. Possible methods of 
al
ulations of su
hrenormalizations have been dis
ussed in [10, 11, 13℄.Multiplying Eq. (6) by operators n�i and summingover all 
on�gurations fn�i g, we obtain the set of equa-tions for the mean o

upations of sites (�lo
al 
on
en-trations�) 
�i = hn�i i: d
�idt = hn�i Ŝi; (16)

where h(: : : )i = Pfn�j g(: : : )Pfn�j g means averagingover the distribution P , for example,
�i = hn�i i = Xfn�j gn�i Pfn�j g: (17)In what follows, it is 
onvenient to mark the minor-ity atoms by Greek indi
es �; �; : : : Then the index pin Eqs. (7)�(12) is � or h, 
orresponding to a minorityor a host atom, and the index � in Eqs. (12)�(16) is �or v, 
orresponding to a minority atom or a va
an
y.System of equations (16) 
an then be expli
itly writtenas d
�idt = Xfn�kgXj(i) !eff�v �� hnvi n�j exp��Êin�i;vj � �ÊSP�i;vj�� fi! jgi�� exp[� (
�Heff )℄;d
vidt = Xfn�kgXp Xj(i) !effpv �� hnpi nvj exp��Êinpi;vj � �ÊSPpi;vj�� fi! jgi�� exp[� (
�Heff )℄;
(18)

where the symbol j(i) means summation over sites jthat are nearest neighbors of the site i, and p is h or �,while Heff = Hefffn�kg is the e�e
tive Hamiltonian forstatisti
al averaging of expressions in square bra
kets:Heff = �X�;k ��kn�k + 12 X��;kl ~v��kl n�kn�l ;~v��kl = v��kl + h��kl : (19)Here, ~v��kl 
an be regarded as the full e�e
tive intera
-tion, whi
h for simpli
ity is supposed to be pairwise,just as the �true� intera
tion v��kl in Hamiltonian (4).The operator Êinpi;vj in (18) (des
ribing the part of theinitial 
on�gurational energy that depends on o

upa-tions of sites i and j) 
an be expressed in terms offormal variational derivatives of Hamiltonian (3) withrespe
t to npi and nvi, Htpi = ÆHt=Ænpi and Htpi;vj == Æ2Ht=ÆnpiÆnvj :Êinpi;vj = npiHtpi + nvjHtvj � npinvjHtpi;vj ; (20)where the third term 
orresponds to the subtra
tion ofthe �double-
ounted� intera
tion between an atom p atsite i and a va
an
y v at site j.The main idea of further manipulations (analogousto those made in [10, 11℄) is to redu
e the averagesof 
omplex operators in square bra
kets in (18) to722
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al derivation of basi
 equations : : :some simpler averages that have a 
lear physi
al mean-ing. For this, in the sums over all 
on�gurations fn�kgin (18), we �rst perform summation over all possibleo

upations of only two sites, i and j, belonging to theij bond under 
onsideration. Due to the presen
e ofthe proje
tion operator npi nvj in (18), the summationredu
es to setting nqi = Æqp and n�j = Æ�v in the nqi -and n�j -dependent exponential fa
tor expY multipliedby this proje
tion operator, whereY = �(Einpi;vj �Heff ): (21)We note that the saddle-point energy ÊSPpi;vj , a

ord-ing to its de�nition (10), does not 
ontain o

upa-tion operators of sites i and j. The 
ommon fa
tor!effpv exp(�
��ÊSPpi;vj) is therefore skipped in Eqs. (23)�(26) for brevity.In what follows, it is 
onvenient to formally restorethe summation over all o

upation number sets fn�kgin (18), in
luding all values of n�i and n�j . For this, we
an introdu
e the operator nhi nhj into the summand.Be
ause this proje
tion operator is nonzero only whenall n�i and n�j are zero, the summation with this fa
torover all possible o

upations of sites i and j is equiva-lent to omitting all n�i - and n�j -dependent terms in theexponential expY . Therefore, the result of the sum-mation 
an be written asXn�i ;n�j npi nvj expY == Xn�i ;n�j nhi nhj exp (Ypi + Yvj + Ypi;vj + Y ) ; (22)where Ypi, Yvj , and Ypi;vj are variational deriva-tives of Y over the relevant o

upation numbers:Ypi = ÆY=Ænpi , et
. The �rst term in the exponent inEq. (22) 
orresponds to the 
ontribution to sum (22)of the term in Y linear in npi but not in nvj , the se
ond,to that of the term in Y linear in nvj but not in npi , andthe third, to that of the term in Y linear in both npiand nvj .We �rst 
onsider the term with p = � in (22) andexpress all operators nhl in expression (20) for Ein�i;vjin terms of the independent n�l using Eq. (1). Aftersetting n�i = 1 and nvj = 1 in that expression, the ex-ponent Y in (21) takes the formY = � 24Xl� �V ��il �V �hil �n�l+Xl� �V v�jl �V vhjl �n�l ++ Xl �V �hil + V vhjl �� V �vij �Heff# : (23)

Using Eqs. (19) and (5), we 
an expli
itly write rela-tion (22) at p = � asXn�i ;n�j n�i nvj expY = Xn�i ;n�j nhi nhj �� exp8<:� 24Xl� (u�il + u�jl)n�l +Xl �V �hil + V vhjl � ��V hhij �h�vij + ��i +0��vj�Xl� hv�jl n�l1A�Heff359=; (24)where the quantityu�il = V �hil � V hhil (25)
an be 
alled �the kineti
 intera
tion� for a �-spe
iesatom (be
ause it a�e
ts only mobilities but not ther-modynami
 properties [15℄). We note that the va
an
y
on
entration 
vi = hnvi i in real substitution alloys isvery small, and hen
e all nvl 
an be negle
ted in thestatisti
al averages involved in Eqs. (18). Therefore,terms with n�l in (24) a
tually 
orrespond to the minor-ity atoms with � = � 6= v. In writing Eq. (24), we alsoused the above-mentioned argument that for the usual
onditions of phase transitions, signi�
ant renormaliza-tions hv�ij 
an be expe
ted only for the va
an
y�atomintera
tions, while for the intera
tions between di�er-ent atoms, the analogous renormalizations h��ij are notessential.In the 
ase p = h, Eq. (22) is simpli�ed be
ause theoperator Y in (21) depends only on the independentoperators n�j but not on nhi . Therefore, the terms Yhiand Yhi;vj in (22) are absent and the exponent redu
esto (Yvj+Y ). Making the same manipulations as above,we then obtain instead of (24),Xn�i ;n�j nhi nvj expY = Xn�i ;n�j nhi nhj �� exp8<:� 24Xl� (u�il+u�jl)n�l +Xl �V hhil +V vhjl ��V hhij ++ 0��vj �Xl� hv�jl n�l 1A�Heff1A359=; : (26)Substituting relations (24) and (26) in (18), we 
anexpress the derivatives d
�i =dt via some statisti
al ave-rages. In writing these averages, we 
an take into a
-
ount that the intera
tion renormalizations ĥint in (12)are present only for the va
an
y�atom terms hv�ij nvi n�j ,whi
h in
lude the va
an
y o

upation operators nvi and723 7*
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an therefore be negle
ted. Hen
e, quasi-equilibriumdistribution (15) 
an be used in 
al
ulations of theseaverages. To simplify formulas, in treating the inter-a
tion renormalization terms hv�jl n�l in Eqs. (24) and(26), we use the mean �eld approximation (MFA), re-pla
ing ea
h operator n�l in these averages by its meanvalue 
�l . Therefore, ea
h term hv�jl n�l is repla
ed byhv�jl 
�l , whi
h 
orresponds to repla
ing the va
an
y site
hemi
al potential �vi by its �renormalized� value ~�vi :0��vi �Xl� hv�jl n�l 1A! ~�vi = 0��vi �Xl� hv�jl 
�l 1A : (27)We show in Se
. 2.2 that for 
�l values 
lose to unity,when the intera
tion renormalization e�e
ts 
an be ex-pe
ted to be most signi�
ant, approximation (27) be-
omes exa
t. Hen
e, we 
an expe
t it to be su�
ientlya

urate at all 
�l . We also note that a similar MFAtreatment of intera
tion renormalization e�e
ts havebeen used in [11, 13℄, where the 
omparison of MFAand kineti
 Monte Carlo results have shown that theMFA a

ura
y is su�
ient for treatments of renormal-ization e�e
ts.Using relations (24)�(27), we 
an write Eqs. (18) inthe 
on
ise formd
�idt =Xj(i) 
�vb�ij(�vi ��j � �vj ��i );d
vidt ==Xj(i) 24�vj 0�
hvbhij+X� 
�vb�ij��i 1A�fi! jg35 ; (28)whi
h is 
alled the �quasi-equilibrium� kineti
 equa-tions (QKE) in what follows. The term 
pv in theseequations (where p is � or h, i. e., denotes a minorityor a host atom) is the e�e
tive ex
hange rate p
v fora pure host metal. This term 
an be written in a formsimilar to Eq. (7),
pv = !effpv exp(��Epva
 ); (29)where !effpv is the same as in (8), while Epva
 is the ef-fe
tive a
tivation energy, whi
h is expressed in termsof the saddle-point energies Eph in (11) and the intera
-tions V p0q0ij and h�vij in (3) and (19) asE�va
 = Eph �Xj (V phij + V vhij ) + V hhnn + h�vij ; (30)Ehva
 = Ehh �Xj (V hhij + V vhij ) + V hhnn ; (31)

where nn means �nearest neighbors�. Comparingthese expressions with the analogous a
tivation ener-gies Epva
;MC used in the kineti
 Monte Carlo approa
h[14℄ and given by Eq. (2.5) in [26℄, we �ndE�va
 = E�va
;MC + ~v�vnn; Ehva
 = Ehva
;MC ; (32)where ~v�v is the same as in (19). The di�eren
e be-tween E�va
 and E�va
;MC arises be
ause transition prob-ability (7) in the statisti
ally averaged QKE (28) isaveraged over distribution (12). For the intersite ex-
hange �i 
 vj, this leads to an extra Gibbs fa
torexp(��~v�vij ) in the averaged probability, with ~v�vij de-�ned in (19).We note in this 
onne
tion that in their study ofdi�usion in dilute Fe�Cu alloys [14℄ with the 
orrela-tion e�e
ts for this va
an
y-mediated di�usion thor-oughly taken into a

ount [27℄, SF obtained the value(ECuva
 )eff � 0:47 eV for the e�e
tive a
tivation energyof a 
opper atom [26, 28℄. This is very 
lose to the valueECuva
 = 0:44 eV that follows from Eq. (30) at hCuvij = 0after the substitution of 
ouplings V pqij used by SF. Thismay imply that for the di�usion in dilute Fe�Cu al-loys, our statisti
al averaging with quasi-equilibriumGibbs distribution (15) 
an rather a

urately des
ribethe relevant 
orrelation e�e
ts [27℄, while the intera
-tion renormalization e�e
ts are not very signi�
ant forthis di�usion.The quantities bpij in (28) (to be 
alled �
orrelators�)are 
ertain averages of site o

upations and des
ribe thein�uen
e of minority atoms in the vi
inity of the bondij on the pi
vj jump probability:bpij = *nhi nhj exp"X�l �(u�il + u�jl)n�l �� X�; l=lijnn ��p�n�l 35+ ; (33)where �p� is the same as in (11) and u�il is the same asin (24)�(26).Finally, the quantities �vi and ��i in (28) 
an be re-spe
tively 
alled the �site thermodynami
 a
tivities� forva
an
ies and �-spe
ies atoms be
ause they are relatedto the site 
hemi
al potentials ��i in (15) and the renor-malized site 
hemi
al potential ~�vi in (27) as�vi = exp(�~�vi ); ��i = exp(���i ) (34)(whi
h is similar to the relations between 
onventionalthermodynami
 a
tivities and 
hemi
al potentials).724
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al derivation of basi
 equations : : :2.2. Cal
ulations of site 
hemi
al potentials ��iand 
orrelators bpijTo �nd expli
it expressions for the site 
hemi
al po-tentials ��i = ��i (
j) determined by Eqs. (17) and forthe 
orrelators bpij = bpij(
k) determined by Eqs. (33),we should use some approximate method of statisti
alphysi
s, su
h as the MFA or 
luster methods [12℄. Asdis
ussed in detail in [15, 21, 29℄, using the MFA for 
al-
ulations of 
hemi
al potentials ��i in real alloys oftenleads to large errors, while the pair 
luster approxima-tion (PCA) usually 
ombines simpli
ity of 
al
ulationswith high a

ura
y, parti
ularly for dilute alloys. As anillustration (used also below for interstitial alloys), wepresent the PCA expressions for ��i in a binary A�B�valloy with host atoms h = A and minority atoms � = B(omitting the index B at �Bi = �i and 
Bi = 
i forbrevity):�i = T 24ln(
i=
hi ) +Xj 6=i ln(1� gij
j)35 ; (35)
�vi = T 24ln(
vi =
hi )�Xj 6=i ln(1 + gvij
j)35 : (36)Here, the fun
tion gij or gvij is expressed in terms ofthe Mayer fun
tion fij = [exp(��vij) � 1℄ or fvij == [exp(��vvBij )� 1℄ for the potential vij � vBBij or vvBijde�ned in (5) asgij = 2fij=[Rij + 1 + fij(
i + 
j)℄;gvij = 2fvij=[Rij + 1 + fij(
i � 
j)℄;Rij = �[1+(
i+
j)fij ℄2�4
i
jfij(fij+1)	1=2 : (37)For a multi
omponent alloy A�B1� : : : Bm�v, the PCAmethods of 
al
ulations of site 
hemi
al potentials ��iare des
ribed in [21℄.In 
al
ulating the 
orrelators bpij in (33), for sim-pli
ity, we �rst 
onsider the 
ase of 
on�guration-inde-pendent saddle-point energies when the di�eren
es �̂p�and �p� in Eqs. (10), (11) and (33) are zero and the
orrelators bpij = bij are independent of the kind of ajumping atom p. Using Eqs. (2) and the identityexp(xn�l ) = 1 + n�l f(x); f(x) = ex � 1; (38)whi
h follows from (2), we 
an rewrite Eq. (33) as

bij = *nhi nhj ktYl=1(1 +X� f�l n�l )+ == ktXk=0 Xl1 6=:::lk X�1:::�k Dnhi nhj n�1l1 : : : n�klk E�� f�1l1 : : : f�klk ; (39)where we set f�l = f(�u�il + �u�j l) (40)with f(x) de�ned in (38), and kt is the total numberof sites with nonzero values of potentials u�il+u�j l. Forexample, for the nearest-neighbor or next-to-nearest-neighbor intera
tion models in a BCC latti
e [15℄,kt = 14 or kt = 20.In �nding the averages in (39), we re
all that thefun
tions f�l in Eqs. (39) and (40) are typi
ally ratherlarge for real alloys. For example, for the BCC Fe�Cu-valloys 
onsidered in [15℄, f(�u1) � 5 and f(�u2) � 1(where the intera
tions u1 and u2 
orrespond to thenearest and next-to-nearest neighbors). Hen
e, theleading 
ontributions to sum (39) 
ome from averagesof produ
ts of many di�erent operators n�l 
orrespon-ding to well-separated and weakly 
orrelated sites l. Inparti
ular, for the BCC latti
e, these produ
ts (even forthe nearest-neighbor intera
tion model) in
lude termswith the neighbors from �rst to tenth, most often thirdand fourth. Correlations of o

upations of so distantsites should typi
ally be weak. Therefore, using thesimple MFA that negle
ts su
h 
orrelations should gen-erally be admissible in 
al
ulations of averages (39), in
ontrast to the 
al
ulations of 
hemi
al potentials �imentioned above.In the MFA, ea
h operator npl in Eq. (39) is repla
edby its mean value 
pl . Hen
e, the 
orrelator bij 
an beexpli
itly written asbij = 
hi 
hj ktYl=1 1 +X� 
�l f�l ! == 
hi 
hj exp" ktXl=1 ln 1 +X� f�l 
�l !# : (41)When the di�eren
es �p� in Eqs. (11) and (33) arenonzero, the 
orrelator bpij in Eq. (33) 
an be 
al
ulatedin the same way as bij in (39)�(41). The di�eren
earises only for sites l = lijnn adja
ent to the ij bond, forwhi
h the fa
tor f�l de�ned in Eq. (40) is repla
ed byan analogous fa
tor f�pl� de�ned asf�pl� = f(�u�il + �u�j l � ��p�lÆl;lijnn); (42)725
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orrelator bpij isgiven by Eq. (41) with ea
h f�l repla
ed by f�pl� :bpij = 
hi 
hj exp" ktXl=1 ln 1 +X� f�pl� 
�l !# : (43)We �nally remark about the MFA-type approxima-tion in (27) used in the derivation of QKE (28). If wedo not use this approximation, then Eqs. (28), insteadof the 
orrelators bpij in (43), in
lude similar 
orrelators~bpij di�ering from bpij by the presen
e of additional inter-a
tion renormalization terms �hv�jl n�l in the exponents:~bpij = 
hi 
hj exp ktXl=1 ln(1 +X� �exp ��u�il + �u�j l �� ��p�l � �hv�jl �� 1� 
�l ) ; (44)where we write the fun
tion f(x) de�ned in (38) ex-pli
itly. For the di�usional transformations under 
on-sideration, the intera
tion renormalization e�e
ts seemto be most signi�
ant in those spatial regions wherethe lo
al 
on
entration 
�l is 
lose to unity. This is il-lustrated by the 
ase of pre
ipitation in Fe�Cu alloys,where these e�e
ts arise due to the strong trapping ofva
an
ies by the Cu-based pre
ipitates for whi
h 
Culis 
lose to unity [15℄. For su
h 
�l , the argument ofthe logarithm in (44) redu
es to a single exponential,and relation (27) be
omes exa
t. We also note thatfor simulations of di�usional transformations based onEq. (28), the details of va
an
y distributions are a
-tually insigni�
ant due to the �adiabati
ity prin
iple�and the �time res
aling� pro
edure dis
ussed in Se
. 2.3.Therefore, approximation (27) appears to be su�
ientfor the use in su
h simulations.2.3. Redu
ing kineti
 equations (28) toequations for some dire
t ex
hange modelQuasi-equilibrium kineti
 equations (28) 
an beused for modeling most di�erent phase transformations,in parti
ular, pro
esses of pre
ipitation, whi
h attra
tgreat attention in 
onne
tion with numerous appli
a-tions [30�32℄. However, in their original form (28),these equations are not suitable for using in 
omputersimulations due to very small values of va
an
y 
on-
entration 
v in real alloys. Be
ause atomi
 ex
hangespi � vj o

ur only with a va
an
y, this smallnessleads to a great di�eren
e in the relaxation times �between atoms � and va
an
ies v: �� � �v=
v � �v .

This is illustrated by the presen
e of va
an
y a
tivi-ties �vi = exp(�~�vi ) in the right-hand side of QKE (28).This a
tivity is proportional to the va
an
y 
on
entra-tion 
vi , whi
h is a general relation of thermodynami
sof dilute solutions illustrated by Eq. (36). Therefore,the time derivatives of mean o

upations are propor-tional to the lo
al va
an
y 
on
entration, 
vi or 
vj . Thisis natural for the va
an
y-mediated kineti
s and leadsto the strong inequality between �� and �v mentionedabove. Therefore, the type of temporal evolution foratoms and va
an
ies is quite di�erent, whi
h makes thedire
t numeri
al solution of Eqs. (28) for 
vi (t) and 
�i (t)unsuitable and time 
onsuming.At the same time, the inequality �� � �v al-lows using the �adiabati
� approa
h en
ountered inmany �elds of physi
s, in
luding the well-known Born�Oppenheimer approa
h in the quantum me
hani
al de-s
ription of the motion of atoms in mole
ules and solids.In this approa
h, the e�e
tive driving for
e for a slowmotion is obtained by its averaging over a rapid mo-tion. Therefore, to fully des
ribe the slow motion, onlya few averaged 
hara
teristi
s of the rapid motion areneeded. In quantum me
hani
s, this is the appropri-ate ele
troni
 energy (�ele
troni
 term�) 
al
ulated at�xed positionsRi of atoms. In our problem, this meansthat at a given atomi
 distribution f
�i g, the lo
al va-
an
y 
on
entration 
vi adiabati
ally fast (i. e., in a time�v � 
v�� � ��) rea
hes its �quasi-equilibrium� value
vi f
�i g for whi
h the right-hand side of the se
ond equa-tion in (28) vanishes. Therefore, dis
arding small 
or-re
tions of the relative order 
vi � 1, we 
an approxi-mate this equation by its adiabati
 version0 =Xj(i) "�vj  
hvbhij +X� 
�vb�ij��i ! �� fi! jg# ; (45)whi
h 
an be 
alled �the adiabati
ity equation� for theva
an
y a
tivity �vi . Solving this linear equation for�vi , we 
an, in prin
iple, express it in terms of 
�j .Substituting these �vi (
�j ) in the �rst equation in (28)then yields the QKE for some equivalent dire
t-atomi
-ex
hange (DAE) model.To illustrate these 
onsiderations, we �rst 
on-sider models with 
on�guration-independent saddle-point energies. For su
h models, the parameters �p�in (11) are zero, the 
orrelators bpij = bij are indepen-dent of the spe
ies p of the jumping atom, and adia-bati
ity equation (45) takes the simple form726
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al derivation of basi
 equations : : :Xj(i) bij �vi �vj " 
hv+X� 
�v��i !.�vi �fi! jg# == 0: (46)If we let 1=�i denote the �rst term in the square bra
k-ets, then the di�eren
e in these bra
kets takes the form��1i � ��1j . Hen
e, a solution of Eqs. (46) is given by�i being a 
onstant independent of the site number i(although possibly depending on time as well as on tem-perature and other external parameters):�i = �vi. 
hv +X� 
�v��i ! = �(t): (47)Relation (47) determines the above �quasi-equilibrium�va
an
y distribution 
vi f
�i g, whi
h adiabati
ally fastfollows the atomi
 distribution f
�i g. Substituting itin the �rst equation in (28), we obtain an expli
it ki-neti
 equation for atomi
 distributions f
�i g for whi
hthe evolution of the va
an
y distribution is 
hara
ter-ized by a single parameter �(t) being a �spatially self-averaged� quantity:d
�idt =Xj(i) bij�(t)24
�v
hv ���j � ��i � ++ X� 
�v
�v ���j ��i � ��i ��j �35 : (48)Equations (48) 
an also be rewritten in the form usedin DAE models [12℄:d
�idt =Xj(i) M�hij 2 sh��2 (��j � ��i )�++ Xj(i); �M��ij 2 sh��2 (��j + ��i � ��i � ��j )� ; (49)where the generalized mobilitiesMpqij des
ribing the in-tersite ex
hanges �� h and �� � are given byM�hij = 
�v
hv�(t) bij exp ��(��i + ��j )=2� ; (50)M��ij = 
�v
�v�(t) bij �� exp h�(��i + ��j + ��i + ��j )=2i : (51)Comparing these expressions with expression (32) in[10℄, whi
h des
ribes the mobility Mpqij in an alloy withthe nearest-neighbor dire
t-ex
hange rate 
pqij = 
pq ,we see that Eqs. (50) and (51) 
orrespond to a DAEmodel with the e�e
tive dire
t ex
hange rates


eff�h = 
�v
hv�(t); 
eff�� = 
�v
�v�(t): (52)Be
ause �(t) in (47) is proportional to 
vi , the e�e
-tive DAE rates in (52) are by a fa
tor 
v smaller thanthe va
an
y ex
hange rates 
pv , in a

ordan
e with theabove-dis
ussed adiabati
ity relations.For more realisti
 models with 
on�guration-depen-dent saddle-point energies, the basi
 adiabati
ity equa-tion (45) for va
an
y a
tivities �vi 
annot be solvedanalyti
ally in general, and hen
e either numeri
al orsome approximate analyti
 methods should be used.For the �rst-prin
iple model of Fe�Cu�v alloys devel-oped in [14℄, su
h an approximate treatments in [15℄have shown that equivalen
e relations (48)�(52) usu-ally preserve their form, but the 
orrelator bij is re-pla
ed by some other quantity, bCuij or bFeij . Physi
ally,the possibility to redu
e the va
an
y-mediated kineti
sto the equivalent dire
t atomi
 ex
hange kineti
s is re-lated with the above-mentioned fa
t that in the 
ourseof evolution of an alloy, the distribution of va
an
iesfollows that of the main 
omponents adiabati
ally fast.Therefore, it 
an be assumed that this equivalen
e isa
tually a general feature of va
an
y-mediated kine-ti
s, while for more general models, the 
orrelators bijin (50) 
an be repla
ed by some other expressions withsimilar properties.The fun
tion �(t) in Eq. (52) determines theres
aling of time between the initial va
an
y-mediatedex
hange model and the equivalent DAE modelEqs. (48)�(52). Temporal evolution of this DAE modelis a
tually des
ribed by the dimensionless �redu
edtime� tr related to the real time t by the di�erential orintegral relationsdtr = 
eff�h dt = 
�v
hv�(t) dt;tr = tZ0 
eff�h (t0) dt0;t = trZ0 dt0r�eff�h (t0r); (53)
where �eff�h = 1=
eff�h has the meaning of the mean timeof an atomi
 ex
hange � � h and tr has the meaningof an e�e
tive number of su
h atomi
 ex
hanges.The form of the fun
tion t(tr) in (53) depends onthe boundary 
onditions for va
an
ies adopted in si-mulations. In parti
ular, if we adopt the �va
an
y 
on-servation� model for whi
h the intera
tion renormaliza-tion e�e
ts 
an be expe
ted to be insigni�
ant, then we
an use Eqs. (47) and (36) to express the lo
al va
an
y
on
entration 
vi via �(t) and 
�i (tr). Then the va
an
y727
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onservation 
ondition Pi 
vi (t; tr) = Nv = 
onst 
anbe used to expli
itly �nd the dependen
e t(tr). How-ever, in view of a possible 
reation of va
an
ies at vari-ous latti
e defe
ts (grain boundaries, dislo
ations, et
.),the kineti
 Monte Carlo (KMC) simulations [14, 26℄taking into a

ount su
h pre
esses appear to be morerealisti
. Then the dependen
es t(tr) 
an be found by
omparing the results of the DAE-based simulationsdes
ribed above with the appropriate KMC results, aswas illustrated in [15℄; these dependen
es seem to berather simple and universal. In more detail, appli
a-tions of Eqs. (48)�(53) to studies of pre
ipitation inspe
i�
 alloys will be des
ribed elsewhere.3. EQUATIONS FOR DIFFUSION OFINTERSTITIAL ATOMS IN INTERSTITIALALLOYSIn binary interstitial alloys Me�X, where X is an in-terstitial atom, and in iron�
arbon steels in parti
ular,di�usion of atoms X is realized via thermo-a
tivatedjumps of these atoms between their interstitial sites(�pores�). Therefore, this di�usion 
an be des
ribed bythe general equations in Se
. 2 for a parti
ular 
ase ofa substitution binary alloy X�v that 
onsists of atoms� = X and va
an
ies v in the 
rystal latti
e of pores,with the �host� atoms h being va
an
ies v. The to-tal 
on�gurational Hamiltonian (3) here in
ludes X�Xintera
tions between atoms X, but not X�v and v�v in-tera
tions. Therefore, only V XXij terms are nonzero informulas (3)�(5):V ��ij = V XXij 6= 0; V �hij = V hhij = 0: (54)The only meaningful index � = X is usually omittedbelow, for example, 
Xi = 
i and V XXij = vij , and hen
ethe e�e
tive Hamiltonian (19) takes the formHeff = �Xi �ini +Hint;Hint = 12Xij vijninj : (55)The mean o

upation 
i = hnii of a pore i by an atomX is related to the lo
al 
hemi
al 
on
entration xi bythe relation depending on the geometry of pores [2℄,e. g., 
 = x=(1 � x) for a uniform austenite stru
tureMeX
 with the FCC latti
e of o
to-pores.An important prin
ipal feature whereby the di�u-sional kineti
s in the interstitial Me�X (i. e., substitu-tion X�v) alloys di�ers from that in the substitutonA�B�v alloys is the validity for Me�X alloys of rela-tion (14), that is, the absen
e of the intera
tion renor-malization e�e
ts. This follows, �rst, from the physi
al


onsiderations presented after Eqs. (14) and (15) and,se
ond, from the thorough analysis of intera
tion renor-malization e�e
ts for A�B�v alloys in [11, 13℄. It wasfound there that these e�e
ts are des
ribed by terms an-tisymmetri
 with respe
t to the transposition of A andB atoms, hABij �hBAij , whi
h vanish in a binary X�v alloy,where A = B = X. Therefore, the di�usional kineti
sin Me�X alloys 
an be des
ribed by quasi-equilibriumrelations (14) and (15).For a uniform Me�X alloy, the site 
hemi
al poten-tial �i = � in (55) 
oin
ides with the thermodynami

hemi
al potential �X, in 
ontrast to the 
ase of substi-tution alloys, where the analogous quantity ��, as men-tioned in Se
. 2.1, is equal to the di�eren
e �� � �h.To show this, we generalize Eqs. (21)�(24) and (40)�(43) in Ref. [21℄ to the 
ase of interstitial alloys Me�X. Quasi-equilibrium Gibbs distribution (15) and thegeneralized grand 
anoni
al potential 
g for e�e
tiveHamiltonian (55) are given byP = exp"�(
g +Xi �ini �Hint)# ; (56)
g = �T ln Xfn�ig exp"� Xi �ini �Hint!# ; (57)while the mean o

upation 
i is related to 
gf�ig bythe formula obtained by di�erentiating equality (57):
i = hnii = ��
g=��i: (58)Therefore, if we de�ne the generalized free energy F bythe equality F = 
g +Xi �i
i (59)then the site 
hemi
al potential �i is related to F bythe relations generalizing those for a uniform alloy:�i = �F=�
i: (60)To relate �i and 
g in Eqs. (56)�(60) to the thermo-dynami
 
hemi
al potentials, we 
onsider the 
ase of auniform alloy Me�X, where 
i and �i in Eqs. (56)�(60)are independent of i: 
i = 
 and �i = �. For de�nite-ness, we dis
uss the austenite stru
ture for whi
h thetotal number of interstitial sites (o
to-pores) is equalto the total number NMe of Me atoms. Then insteadof the total thermodynami
 potentials 
g and F , it is
onvenient to 
onsider the analogous quantities per oneMe atom, 
 and f :
 = 
g=NMe; f = F=NMe = 
+ �
;
 = NX=NMe: (61)728



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Statisti
al derivation of basi
 equations : : :Here, NX is the total number of atoms X, and hen
e
 is the mean o

upation of an interstitial site, and,a

ording to Eq. (60),� = �f=�
: (62)The quantities 
 and � in Eqs. (61) and (62) are simplyrelated to the partial 
hemi
al potentials �X and �Mede�ned by the thermodynami
 relations�X = �F=�NX; �Me = �F=�NMe: (63)Substituting relations (61) for 
 and F = NMef(
) inEqs. (63) and taking Eq. (62) into a

ount, we obtain� = �X; 
 = �Me: (64)Hen
e, the quantities � and 
 in Eqs. (61) and (62)have the respe
tive meaning of the 
hemi
al potentialsof X atoms and Me atoms.Kineti
 equation des
ribing di�usion of atoms X inan interstitial alloy Me�X (treated as a binary substitu-tion alloy X-v) 
an be derived analogously to Eqs. (28)with the simpli�
ations implied by Eqs. (54) and (55).Taking into a

ount Eqs. (34), (27), (54), (55) and re-lations v = h, �vi = �hi = 0, this equation 
an alsobe obtained simply putting �vi = 1 in the �rst equa-tion (28):d
idt =Xj(i) 
ijbXij [exp(��j)� exp(��i)℄ : (65)The jump probability 
ij and the 
orrelator bXij in (65)are de�ned by relations analogous to (29) and (33):
ij = !effij exp(��Eija
); (66)bXij = *(1� ni)(1� nj) exp ��Xk �ijk nk!+ : (67)The pre-exponent !effij in (66) is determined by Eq. (8)with the repla
ement p ! X, and the a
tivation en-ergy Eija
 redu
es to the term Eph = EXv in (10), unlikethe more 
omplex expression (31) in a substitutionalalloy. The index �ij� at the quantities !effij and Eija
in (66) allows for a possible nonuniformity of an alloy;for a uniform alloy, this index 
an be omitted. Thequantity �ijk in (67) is an analogue of �pij in Eqs. (10)and (11); it des
ribes the 
hange of the saddle-pointenergy ESPXi;vj for an inter-site X-atom jump i! j dueto the presen
e of another atom X at site k.Kineti
 equation (65) 
an also be written in a formanalogous to Eq. (49):d
idt =Xj(i) 2Mij sh ��2 (�j � �i)� ; (68)

where the generalized mobility Mij , a

ording to (65),is determined by the relationMij = 
ijbXij exp ��2 (�i + �j)� : (69)In usual di�usion problems, the spatial dependen
eof the fun
tions 
i = 
(ri), �i = �(
i), and bXij == bXij(
i; 
j) in Eqs. (65)�(69) is supposed to be smooth.Therefore, variations of these fun
tions under the re-pla
ements 
i ! 
j (or ri ! rj = ri + rji, whererji = rj � ri is the interpore distan
e) are small. Thenkineti
 equation (65) or (68) 
an be expanded in po-wers of rjir
. This yields a 
ontinuous version of thiskineti
 equation in the form of a �
ontinuity equation�for the �ux j of atoms X:�
�t + div j = 0; j� = �X� D��(
)r�
: (70)Here, � and � are Cartesian indi
es and the di�usivityD�� is determined by the expressionD��(
) = ���bX �aX�
 ; (71)��� = 12Xj(i) 
ijr�ijr�ij ; (72)where aX = aX(
; T ) = exp[��(
; T )℄ is the thermo-dynami
 a
tivity of X atoms and bX = bX(
; T ) is the
orrelator bXij in Eq. (67) at 
i = 
j = 
.The site 
hemi
al potential �i in a binary alloy 
anbe written as �i = �idi + �inti ; (73)where �idi = T ln[
i=(1 � 
i)℄ 
orresponds to the idealsolution and �inti des
ribes intera
tion e�e
ts, see,e. g., (35). Therefore, for the ideal solution for whi
hboth �inti in (73) and �ijl in (67) are zero, we haveaX = 
=(1 + 
), bX = (1� 
)2, and bX�aX=�
 = 1 andEq. (70) be
omes the simple linear di�usion equation�
�t =X�� Did��r2��
 (74)with the 
on
entration-independent di�usivity Did��equal to ��� in (72). However, when X�X intera
tionsvij and �ijl are signi�
ant, kineti
 equation (70) is non-linear and the di�usivityD in (71) should vary with thelo
al 
on
entration 
 = 
X(r).For a uniform 
ubi
 alloy, su
h as austenite, the ten-sor ��� redu
es to a s
alar Æ��
a2, where 
 is given by729



V. G. Vaks, I. A. Zhuravlev ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012Eq. (66) (with the index ij omitted) and a is the FCCiron (
-iron) latti
e 
onstant, when
e D�� = Æ��D.A

ording to (71), the di�usivity D 
an then be writ-ten as D = 
a2bX �aX�
 ; (75)where 
 is de�ned by Eqs. (66) and (8) with the appro-priate 
hange of indi
es:
 = !effX exp(��Ea
); !effX = !X exp ��SSPX � : (76)For a uniform alloy with 
i = 
, PCA expression (35)for the lo
al 
hemi
al potential �(
) is simpli�ed [29℄:�(
; T ) = TXn zn ln(1� gn
);gn = 2fn=(Rn + 1 + 2
fn);fn = exp(��vn)�1; Rn = [1+4
(1�
)fn℄1=2; (77)where zn is the 
oordination number and vn is the 
on-�gurational intera
tion for the nth 
oordination sphere.In the 
ase of weak intera
tion, �vn � 1, Eq. (77) re-du
es to the MFA expression �MFA = (Pn znvn) 
. Butfor the realisti
 values of the intera
tions vn, su
h asthose in Table 1, using the MFA 
an lead to signi�
anterrors [29℄.The 
orrelator bX(
; T ) for a uniform alloy, a

ord-ing to Eqs. (67) and (44), 
an be written asbX(
; T ) = (1� 
)2 exp"Xn=1 zspn ln(1 + fspn 
)# ;fspn = exp(���n)� 1; (78)where zspn is the 
oordination number and �n is thesaddle-point intera
tion for the nth 
oordination sphereof the saddle point 
onsidered. If these intera
tions areweak, ��n � 1, then Eq. (78) takes its MFA formbX(
; T ) = (1� 
)2 exp ��
Xn=1 zspn �n! : (79)But for the realisti
 saddle-point intera
tions �n, su
has those in Table 2 below, using the MFA 
an lead tosigni�
ant errors, just as for � in Eq. (77).Mi
ros
opi
 relation (75) 
an be 
ompared with var-ious phenomenologi
al models for di�usivity [1�4℄. Inparti
ular, it 
an provide a statisti
al expression for thephenomenologi
al mobility MCVa introdu
ed by Ågrenin his dis
ussion of di�usion of 
arbon in austenite[1�3℄. Comparing Eq. (75) with the de�nition of MCVain Eq. (9) in [2℄, we �ndMCVa = 
a2bX aC
(1� 
)VmT ; (80)

where Vm is the volume per atom Me. In more detail,the mi
ros
opi
 and phenomenologi
al des
riptions ofdi�usion of 
arbon in austenite are 
ompared in Se
. 4.We now 
onsider a multi
omponent interstitial al-loy (Me1Me2 : : : )-X with several spe
ies atoms p inthe metal sublatti
e, su
h as an Fe�Mn�C alloy. Theinterstitial sites are denoted by indi
es i, j, and k, whilethe sites in the metal sublatti
e, by indi
es l, m, and n.The total 
on�gurational Hamiltonian 
an be writtenin the form generalizing Eq. (3):Ht = 12Xij vijninj +Xp;il V pilninpl ++ 12 Xpq;lmV pqlmnpl nqm; (81)where we again omit the index X for an interstitialatom, setting nXi = ni, V Xpil = V pil , and V XXij = vij . Asabove, we dis
uss di�usion of only interstitial but notmetal atoms, and the presen
e of va
an
ies in the metalsublatti
e is negle
ted. Therefore, o

upation opera-tors nhl for host metal h 
an be expressed in terms ofthose for the minority metals � similarly to Eq. (1):nhl = 1�P� n�l . The e�e
tive Hamiltonian for statis-ti
al averaging, instead of (19), takes the formHeff = �Xi �ini �X�;l ��l n�l + 12Xij vijninj ++X�;il v�ilnin�l + 12 X��;lm v��lmn�l n�m; (82)where v�il = V �il �V hil , and v��lm is related to V pqlm in (81)similarly to Eq. (5).The equations des
ribing di�usion of X atoms 
anagain be derived using Eqs. (6)�(26) with appropriategeneralizations and simpli�
ations. In parti
ular, the�rst equation in (18) here takes the formd
idt = Xfnk;n�l gXj(i) !effX h(1� ni)nj �� exp��Êinij � �ÊSPij �� fi! jgi�� exp [� (
�Heff )℄ : (83)Here, the saddle-point energy ÊSPij , instead of Eqs. (10)and (11), is given by the expressionÊSPij = Eh +Xk �ijk nk +X�l �ij�ln�l ; (84)where �ijk and �ij�l are analogues of �ijk in (67). Usingrelations (20) and (26), we again redu
e Eq. (83) to730
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al derivation of basi
 equations : : :Table 1. Con�gurational intera
tions vn (in kelvin) of 
arbon atoms in austeniten 1 2 3 4 5 6 7 8 9 10 112Rn=a 110 200 211 220 310 222 321 400 330 411 420Rn=R1 1 1.41 1.73 2 2.24 2:45 2:65 2.83 3 3 3.16zn 12 6 24 12 24 8 48 6 12 24 24vBn , Blanter [16℄ 1334 1961 �487 46 46 267 �23 �139 58 �12 �23vn, this work 1400 1180 �322 46 46 267 �23 �139 58 �12 �23Table 2. Saddle-point intera
tions �n = �(Rspn ) (in kelvin) of 
arbon atoms in austenite for ve
tors Rspn = R0n�Rsp,where Rsp is the saddle-point position of the 
arbon atomn 1 2 3 4 5 6 7 8 9 10Rspn =R1 0.87 1.12 1.32 1.5 1.66 1:80 1:94 2.06 2.18 2.29zspn 4 4 8 6 4 12 8 8 12 8�n 1470 1336 1228 229 �924 �929 �543 133 133 286n 11 12 13 14 15 16 17 18 19Rspn =R1 2.40 2.50 2.60 2.70 2.78 2.87 2.96 3.04 3.12zspn 8 14 16 4 16 16 8 20 8�n 622 564 144 �160 �310 �269 34 �43 �59form (65). However, the a
tivation energy Ea
 in (66)and the 
orrelator bXij in (67) are now de�ned asEa
 = Eh �Xl V hil ;bXij = *(1� ni)(1� nj) �� exp ��Xk �ijk nk � �X�l �ij�ln�l !+ ; (85)
and Eqs. (83) and (85) now in
lude statisti
al averag-ing over various distributions of �-spe
ies atoms in themetal sublatti
e.4. CALCULATIONS OF DIFFUSIVITY ANDACTIVITY OF CARBON IN AUSTENITEFOR SIMPLE MODELS OFCARBON�CARBON INTERACTIONSTo 
al
ulate the di�usivity D in a

ordan
e withmi
ros
opi
 expression (75), we should use some theo-reti
al model of X�X intera
tions in an alloy, both for

the 
on�gurational intera
tions vn in (77), whi
h deter-mine the 
hemi
al potential �, and for the saddle-pointintera
tions �n in (79), whi
h determine the 
orrela-tor bX. For substitution Fe�Cu alloys, su
h a �rst-prin
iple model for both vn and �n was developedin [14℄, and simulations of pre
ipitation in Fe�Cu al-loys based on this model 
on�rmed its relevan
e andreliability [14℄. For intera
tions of 
arbon in austen-ite, reliable �rst-prin
iple 
al
ulations are still absentdue to the well-known di�
ulties of taking magneti
intera
tions in 
-iron into a

ount [19℄. However, somesimpli�ed model of 
on�gurational intera
tions vn inaustenite has been suggested by Blanter [16℄, and hisestimates of these intera
tions are presented in Table 1as vBn . Below, we use this model and some its exten-sions to investigate the 
on
entration and temperaturedependen
es of the di�usivity D that follow from mi-
ros
opi
 expression (75).Blanter used the model of purely deformational
on�gurational intera
tions with the nearest-neighborKanzaki for
es for all 
onstants vBn ex
ept the �rst one.The nearest-neighbor 
onstant vB1 (whi
h 
annot be de-s
ribed by the deformational model 
orre
tly due to the731
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hemi
al� repulsion at short C�C distan
es) wastreated as a free parameter, whi
h was estimated fromthe �t of the 
arbon a
tivity in austenite with respe
tto graphite, a
�grC , 
al
ulated with these vBn to the ex-perimental values. The quantity a
�grC is related tothe �
on�gurational� a
tivity aC = exp(��C), where�C = � is the 
hemi
al potential of 
arbon in austenitedis
ussed in Se
. 3, by the thermodynami
 relation [16℄a
�grC = aC exp(��G
�grC ); (86)where �G
�grC = �G
�grC (T ) is the di�eren
e betweenthe thermodynami
 potentials per 
arbon atom in apure 
-iron and in graphite. The �t to the experimen-tal a
�grC (
; T ) values obtained with the use of bothMonte Carlo [16℄ and PCA [29℄ 
al
ulations of aC(
; T )the vBn values, and for �G
�grC (T ), some experimentalestimates, seemed to be quite satisfa
tory. This mayimply that the simple model of Blanter [16℄ 
an serveas a basis for realisti
 des
riptions of C�C intera
tionsin austenite.We estimated the 
on�gurational intera
tions vn us-ing a similar approa
h. However, in the �t to exper-imental a
�grC (
; T ) values, we estimated the fun
tion�G
�grC in (86) using the interpolation of experimentaldata suggested by Ågren [36℄:�G
�grC = 5550K� 2:31T (87)instead of the interpolation in [29℄, and we also variednot only v1 but also the next two 
onstants, v2 and v3.The vn values obtained are presented in the last lineof Table 1. Variations of our v2 and v3 with respe
t totheir �purely deformational� values vB2 and vB3 lie 
er-tainly within the real a

ura
y of the original Blantermodel be
ause, �rst, this model disregards �
hemi
al�
ontributions to v2 and v3, whi
h 
an be quite noti
e-able (whi
h is illustrated, in parti
ular, by 
omparingthe results of 
al
ulations of C�C intera
tions in ferritebased on ab initio [20℄ and on purely deformational [37℄approa
hes [33℄) and, se
ond, it negle
ts both possible
ontributions of non-nearest Kanzaki for
es [29℄ anda probable variation of phonon spe
tra with temper-ature (whi
h was not measured in 
-iron but is verypronoun
ed in BCC iron [34, 35℄). In Figs. 1 and 2,we present the 
arbon a
tivity a
�grC (xC; T ) and theequilibrium ferrite�austenite phase diagram 
al
ulatedusing PCA expression (77) for � with our vn from Tab-le 1, together with experimental data and the results of
al
ulations based on the phenomenologi
al model byÅgren [36℄.We now dis
uss the saddle-point intera
tions �n == �(Rspn ), where Rspn = R0n � Rsp, and Rsp is the
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Fig. 1. Dependen
e of the 
arbon a
tivity a
�grC inaustenite with respe
t to graphite on the 
arbon 
on-
entration xC = 
=(1 + 
) for various temperaturesT . Dots 
orrespond to the experimental data in [16℄.Solid 
urves are 
al
ulated using PCA expression (77)for � with the intera
tion 
onstants vn from Table 1.Dashed 
urves are 
al
ulated using the phenomenolog-i
al des
ription of C�C intera
tions used by Ågren [36℄
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Fig. 2. Fe�C phase diagram. Dots 
orrespond to ex-perimental phase boundaries. Solid 
urves show ferrite�austenite phase boundaries 
al
ulated using Eq. (77)with vn from Table 1. Dashed 
urves 
orrespond tothe phenomenologi
al 
al
ulations by Ågren [36℄732



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Statisti
al derivation of basi
 equations : : :saddle-point position of the 
arbon atom. In the se
ondand third lines of Table 2, we show the �rst 19 distan
esRspn = jRspn j and the 
oordination numbers zspn that
orrespond to these Rspn . To illustrate the distributionof the Rspn ve
tors in the FCC latti
e, we present thevalues of 
omponents of latti
e ve
torsR0n = Rspn +Rsp(in a=2 units) for the �rst eight 
oordination spheres ofthe point Rsp = (0:5; 0:5; 0):R01 = (0; 1;�1); (1; 0;�1);R02 = (0; 2; 0); (2; 0; 0); (1; �1; 0); (�1; 1; 0);R03 = (2; 1;�1); (1; 2;�1); (0; �1;�1); (�1; 0;�1);R04 = (2; 2; 0); (�1; �1; 0); (0; 0;�2); (1; 1;�2);R05 = (2; �1;�1); (�1; 2;�1);R06 = (0; �2; 0); (�2; 0; 0); (1; 3; 0);(3; 1; 0); (0; 2;�2);(2; 0;�2); (1; �1;�2); (�1; 1;�2); (�1; 1;�3);R07 = (0; 3;�1); (3; 0;�1); (�2; 1;�1);(1; �2;�1); (3; 0;�1);R08 = (2; �2; 0); (�2; 2; 0); (3; �1; 0); (�1; 3; 0);(0; 1;�3); (�1; �1;�1):
(88)

Models for estimating the saddle-point intera
tions�n 
an be 
onstru
ted similarly to those for the 
on-�gurational intera
tions vn. The long-range deforma-tional 
ontributions to �n 
an be 
al
ulated using thegeneral expression for deformational intera
tions witharbitrary Kanzaki for
es dis
ussed in [29℄, while theshort-range 
hemi
al 
ontributions 
an be estimatedby treating the �rst several �n as adjustable param-eters, as this was done for the vn. However, we hererestri
t ourselves by illustrative estimates of �n basedon some interpolations between the vn values in Ta-ble 1 and on several simple assumptions. First, we as-sume that both 
hemi
al and deformational 
ontribu-tions to �n depend only on the distan
e Rspn = jRspn jand vary with Rspn smoothly. Se
ond, we assume thatfor short distan
es Rspn < R2 = 1:41R1, the �n valuesare mainly determined by the 
hemi
al 
ontributions,while for Rspn > R2, these values are mainly determinedby the deformational 
ontributions. Third, we assumethat the dependen
e the saddle-point intera
tions �non Rspn is similar to the dependen
e of the 
on�gura-tional intera
tions vn on Rn, for both 
hemi
al anddeformational 
ontributions. Then the �
hemi
al� in-tera
tions �1, �2, and �3 
an be estimated using thelinear interpolation between v1 and v2 values, as shownin Figs. 3 and 4. For the �deformational� �n with n � 4
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Fig. 3. Illustration of our method of estimates ofsaddle-point intera
tions �n using the interpolation of
on�gurational intera
tions vn = v(Rn). Cir
les showthe values of vn and triangles, the values of �(0)n ob-tained as des
ribed in the textor Rspn > R2, the analogous estimate of �n in
ludes thefollowing two steps.(A) Interpolation of the dependen
e v(R) using thevn values in Table 1, whi
h yields the �preliminary�values �(0)n shown in Fig. 3.(B) S
aling of these �(0)n by some fa
tor �,�n = ��(0)n ; (89)with the value of � determined from the �t of the di�u-sivity D 
al
ulated a

ording to Eqs. (75)�(79) to theexperimental data about the di�usivity of 
arbon inaustenite.Step A is illustrated in Fig. 3. This �gure showsthat to obtain an appropriate interpolation v(R), theregions of long and �intermediate� distan
es R shouldbe treated di�erently. At long distan
es R > R4, we
an use the simple linear interpolation between neigh-boring vn values, while at R2 < R < R4, some smooth
urve should be drawn between v2, v3, and v4 values.For these intermediate R, we interpolate v(R) by a sim-ple power law:v(R) = ( C2(R3 �R)m; R2 < R < R3;C4(R�R3)m; R3 < R < R4; (90)where 
onstants C2 and C4 are determined by the 
on-ditions v(R2) = v2 and v(R4) = v4. For the exponent733
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Fig. 4. Values of C�C intera
tions that we use. Open
ir
les: 
on�gurational intera
tions vn = v(Rn); bla
ktriangles: saddle-point intera
tions �n = �(Rspn ).Dashed lines 
onne
t the neighboring �n values toguide the eyem we tried two values, 2 and 4, and the value m = 4was found to be more suitable for the �t involved instep B. The resulting interpolation v(R) is shown inFig. 3 by the dashed 
urve.For step B, the physi
al arguments in favor of modelrelation (89) 
an be dedu
ed from the general expres-sion for deformational intera
tions in Eq. (11) in [29℄.A

ording to this expression, the deformational inter-a
tion V dij = V d(Ri � Rj) between two atoms posi-tioned at Ri and Rj is proportional to the integralover wave-numbers k in the Brillouin zone of some ex-pression that in
ludes the produ
t of two appropriateKanzaki for
es, f ik and f jk, while ea
h of these for
esis proportional to the amplitude of displa
ements ofneighboring host (iron) atoms due to the presen
e of animpurity (
arbon) atom at the site i or j. Therefore, forthe 
on�gurational intera
tions vn, the deformational
ontributions are proportional to the produ
t of twoKanzaki for
es fopi and fopj that des
ribe the displa
e-ments of iron atoms indu
ed by a 
arbon atom lo
atedin the o
to-pore. At the same time, for the saddle-point intera
tion �n, one of these fa
tors is repla
edby a Kanzaki for
e fspi that des
ribes the analogousdispla
ements of iron atoms indu
ed by a 
arbon atomin the saddle-point position, for whi
h the 
arbon�irondistan
e RFe�C is 1=p2 times that for a 
arbon atomin an o
to-pore. Therefore, this Kanzaki for
e fspi 
an
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Fig. 5. The di�usivity DC(xC; T ) of 
arbon in austen-ite. The symbols show experimental values from [38℄presented in [3℄. The solid lines are 
al
ulated usingEq. (75) and the vn and �n values from Tables 1 and2. The dashed lines show the results of 
al
ulations byÅgren [3℄ based on his phenomenologi
al modelbe expe
ted to 
onsiderably ex
eed fopi . Hen
e, the fa
-tor � in (89), whi
h qualitatively des
ribes the relatives
ale of deformational 
ontributions to the vn and �nvalues, 
an 
onsiderably ex
eed unity.The des
ription of available experimental data onthe di�usivity DC(xC; T ) [38℄ by our model with the
hoi
e � = 2:9 in Eq. (89) is shown in Fig. 5. Thisdes
ription 
orresponds to the following values of thesaddle-point energy Ea
, the produ
t !effC a2, and thefrequen
y !effC in Eqs. (75) and (76):Ea
 = 17700 K; (91)!effC a2 = 0:225 
m2=se
;!effC = 1:76 � 1014 se
�1; (92)where the value a = 3:58Å for 
-iron [40℄ is used.We note that the 
hoi
e � = 3:04 in Eq. (89) wouldyield the values of DC(xC; T ) that virtually 
oin
ide734



ÆÝÒÔ, òîì 142, âûï. 4 (10), 2012 Statisti
al derivation of basi
 equations : : :with those obtained by Ågren [3℄. However, the 
hoi
e� = 2:9 seems to better des
ribe the low-temperaturedata in [38℄, whi
h agree with those obtained in [39℄.The saddle-point intera
tions �n that 
orrespond to� = 2:9 are presented in Table 2 and Fig. 4.Both experimental and theoreti
al results presentedin Fig. 5 show that the di�usivity DC sharply in
reasesas the 
arbon 
on
entration xC in
reases. In a

or-dan
e with Eqs. (10), (11), (75), and (79), this seems toindi
ate the presen
e of a signi�
ant attra
tion in thesaddle-point intera
tions �n, be
ause this attra
tionde
reases the saddle-point energy ESPC for the inter-site jumps of 
arbon atoms. In the model estimates ofintera
tions shown in Fig.4, it 
orresponds to the pres-en
e of signi�
ant negative �n at �intermediate� C�Cdistan
es R in the range 1:6R1 . R . 2R1. The in-
rease in DC(
; T ) with xC mentioned above 
an implythat su
h a signi�
ant attra
tion is present not only inour model estimates but also in the real saddle-pointintera
tions of 
arbon atoms in austenite.We now dis
uss the values of the pre-fa
tor !effC andthe �transition state entropy� �SSPC in (8) that 
orre-spond to estimate (92). The attempt frequen
y !pvin (8) 
an be estimated in our 
ase as the frequen
y !
Cof lo
al vibrations of 
arbon in austenite. These vibra-tions have been experimentally studied in [41℄ with theresult !
C � 75meV = 1:14 � 1014 se
�1: (93)Note that this !
C ex
eeds the Debye frequen
y of
-iron, !
D = 0:43�1014 se
�1 [42℄, by about three times.Then using Eq. (8) with !pv = !
C and !effpv = !effCfrom (92), we obtain�SSPC � 0:4; �!spC � 0:9!
C: (94)These relations show that the �softening� of saddle-point frequen
ies !spC with respe
t to !
C for 
arbon inaustenite is rather weak (if any), unlike for Fe�Cu sub-stitution alloys dis
ussed in Se
. 2.1, while the saddle-point entropy �SSPC is by an order of magnitude lowerthan the analogous �SSPCuv and �SSPFev values for Fe�Cualloys (as estimated in [14℄). The di�eren
e 
an berelated (at least partly) to the above-mentioned in-equality !
C � !
D, whi
h implies that the dynami
sof 
arbon atoms in austenite is mu
h faster than theiron atom dynami
s. Under su
h 
onditions, the as-sumption of �a lo
al thermodynami
 equilibrium� forthe saddle-point transition state, as well as the entropynotion for this state, may not be fully appli
able andshould be used with 
aution.We note that Eqs. (94) 
orrespond to the pre-fa
tor!effC of the fa
tor 
 in (76) that determines diffusi-

vity (75) in the dilute alloy limit. Therefore, theseequations have no relevan
e to the illustrative estimatesof C�C intera
tions dis
ussed above, but they providesome de�nite information about the mi
ros
opi
 
har-a
teristi
s of di�usion of 
arbon in 
-iron.Finally, we 
ompare the mi
ros
opi
 des
riptionof thermodynami
 and di�usional 
hara
teristi
s of
arbon in austenite presented in this work withtheir phenomenologi
al des
ription developed by Ågren[2, 3, 36℄. Both approa
hes use a similar number of ad-justable parameters, and the quality of agreement be-tween the results obtained and the experimental datashown in Figs. 1, 2 and 5 is similar. But the mi
ro-s
opi
 approa
h seems to provide a better physi
al un-derstanding of the phenomena 
onsidered. It also openspossibilities of developing fully �rst-prin
iple des
rip-tions with no adjustable parameters, as was demon-strated in [14℄ for Fe�Cu alloys. In addition, mi
ro-s
opi
 expression (75) for the di�usivity seems to elu
i-date a number of prin
ipal points not dis
ussed earlier.First, it shows that the di�usivity 
an be written in theform of the produ
t of �thermodynami
� and �kineti
�(or �saddle-point�) fa
tors, and the thermodynami
 fa
-tors in
lude not only the usual, so-
alled Darken fa
tor� ln aX=� ln 
 [2℄ but also the 
on
entration derivativeof the a
tivity itself, �aX=�
. Se
ond, mi
ros
opi
 re-lations (75)�(79) allow estimating the �transition stateentropy� �SSP from experimental data, as was demon-strated for 
arbon in austenite. Third, these mi
ro-s
opi
 relations allow relating the 
on
entration depen-den
e of the a
tivity aX and the di�usivity DX to boththe 
on�gurational and saddle-point intera
tions be-tween interstitial atoms X, in parti
ular, between 
ar-bon atoms in austenite. Therefore, the analysis of ex-perimental data on aC(xC; T ) and DC(xC; T ) 
an leadto insights into the type and the s
ale of these intera
-tions. 5. CONCLUSIONSWe summarize the main results in this work. Thefundamental master equation for the probability of va-rious atomi
 distrubutions in an alloy has been used toderive the basi
 equations of di�usional kineti
s in al-loys. The mi
ros
opi
 parameters entering these equa-tions 
an be 
al
ulated by ab initio methods, as wasdemonstrated by SF for iron�
opper alloys [14℄, or us-ing various theoreti
al models. For substitution alloys,the di�usional transformation kineti
s is des
ribed bythe �quasi-equilibrium� kineti
 equation (QKE) derivedin Se
. 2.1. This equation (28) generalizes the earlier735
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tionrenormalization� e�e
ts into a

ount, whi
h 
an be im-portant for the va
an
y-mediated kineti
s [11, 13℄. InSe
. 2.2, we des
ribed the 
al
ulations of lo
al 
hemi-
al potentials �i and 
orrelators bij entering QKE (28)with the use of some analyti
 methods that 
ombine thesimpli
ity of 
al
ulations with high a

ura
y, espe
iallyfor dilute alloys. In Se
. 2.3, we redu
ed QKE (28) de-s
ribing the va
an
y-mediated kineti
s to the kineti
equation for some equivalent dire
t-atomi
-ex
hangemodel that is suitable for 
omputer simulations.The mi
ros
opi
 equations des
ribing di�usion ofinterstitial atoms X in an interstitial alloy Me�X are de-rived in Se
. 3. These equations have simple form (65)or (68), whi
h allows obtaining expli
it analyti
 ex-pressions for the di�usivity D = DX. These expres-sions for D given by Eqs. (71) or (75) have a simpleform of produ
ts of three fa
tors: the 
on
entrationderivative of the thermodynami
 a
tivity aX of atomsX, the 
orrelator bX given by Eqs. (67) or (79), whi
hdes
ribes the in�uen
e of intera
tions between atomsX on the a
tivation barrier for the intersite jumps ofatoms X, and the 
on
entration-independent fa
tor 
des
ribing the di�usivity in the dilute alloy limit. Thismi
ros
opi
 expression for D is 
onspi
uously di�erentfrom those used in phenomenologi
al treatments [1�4℄, in parti
ular, by the presen
e of the 
on
entrationderivative �aX=�
 rather than the so-
alled Darken fa
-tor � ln aX=� ln 
 that is written usually. We also deriveequations des
ribing di�usion of interstitial atoms X ina multi
omponent alloy (Me1Me2 : : : )�X.In Se
. 4, we applied the results in Se
. 3 to mi-
ros
opi
ally treat the problem of di�usion of 
arbonin austenite dis
ussed by a number of authors [1�4℄.Our treatment is based on the mi
ros
opi
 model ofC�C intera
tions in austenite suggested in [16℄, whi
hsupposes a strong �
hemi
al� repulsion at short C�Cdistan
es R and a purely deformational intera
tion atlonger R. To estimate the 
on�gurational intera
tionsv(R) that determine the 
arbon a
tivity aC and the�saddle-point� intera
tions �(R) that determine theabove-mentioned 
orrelator bX = bC, we used someplausible assumptions about the dependen
es v(R)and �(R), whi
h in
lude adjustable parameters. Theintera
tion models obtained enable us to des
ribe boththermodynami
 and di�usional properties of 
arbonin austenite at the same level of a

ura
y as thata
hieved in phenomenologi
al treatments [1�4; 36℄. Atthe same time, the mi
ros
opi
 approa
h used allowedus to make a number of qualitative 
on
lusions aboutC�C intera
tions and the 
hara
teristi
s of di�usion of
arbon in austenite, in parti
ular, about the presen
e

of a signi�
ant C�C attra
tion at intermediate Rand about a rather low value of the �transition stateentropy� �SSPC given by estimate (94).The authors are mu
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