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EXCITATION OF HELIUM ATOMS IN COLLISIONS
WITH PLASMA ELECTRONS IN AN ELECTRIC FIELD
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The rate constants are evaluated for excitation of helium atoms in metastable states by electron impact if
ionized helium is located in an external electric field and is supported by it, such that a typical electron energy
is small compared to the atom excitation energy. Under these conditions, atom excitation is determined both
by the electron traveling in the space of electron energies toward the excitation threshold and by the subsequent
atom excitation, which is a self-consistent process because it leads to a sharp decrease in the energy distribution
function of electrons, which in turn determines the excitation rate. The excitation rate constant is calculated
for the regimes of low and high electron densities, and in the last case, it is small compared to the equilibrium
rate constant where the Maxwell distribution function is realized including its tail. Quenching of metastable
atom states by electron impact results in excitation of higher excited states, rather than transition to the ground
electron state for the electric field strengths under consideration. Therefore, at restricted electron number den-
sities, the rate of emission of resonant photons of the wavelength 58 nm, which results from the transition from
the 21 P state of the helium atom to the ground state, is close to the excitation rate of metastable atom states.
The efficiency of atom excitation in ionized helium, i. e., the part of energy of an electric field injected in ionized
helium that is spent on atom excitation, is evaluated. The results exhibit the importance of electron kinetics
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for an ionized gas located in an electric field.
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1. INTRODUCTION

An ionized gas located in an external electric field,
i.e., a gas discharge plasma, is a nonequilibrium system
because, first, the energy is transferred from the elec-
tric field to electrons and, second, it is transferred to
the gas as a result of collisions of electrons and atoms.
Therefore, this system cannot be described by a univer-
sal thermodynamic method, and its properties depend
on the properties of a certain gas and processes in this
ionized gas (see, e.g., [1-4]). Therefore, types of gas-
discharge plasmas are divided into many groups and
conditions determined by certain processes [5]. But
along with elementary processes, kinetics of electrons
is of importance in an ionized gas under the action of
an external electric field. The goal of this paper is to
find the parameters of excitation of metastable atom
states for ionized helium placed in an electric field at
low electric field strengths where kinetics of electrons
is of importance for atom excitation.
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To demonstrate in what way electron kinetics may
influence the atom excitation in a weakly ionized
plasma located in an electric field, we analyze a gen-
eral formula for the rate constant of atom excitation by
electron impact in a plasma. We represent the rate of
atom excitation by electron impact in an ionized gas as

d(]i\t[* = Na/kex(‘g)fO(E) dV,

where dN, /dt is the number of excited atoms formed
per unit volume and per unit time, ¢ is the electron en-
ergy, N, is the atom number density, v is the electron
velocity, fo(e) is the distribution function of electrons,
which is normalized to the electron number density N,

i.e.,
/fo(E) dv = Ne,

and ke, (e) is the rate constant of atom excitation by
electron impact. It is convenient to express this rate
constant through the rate constant k, of quenching of
an excited atom by electron impact on the basis of the
principle of detailed balance because the quenching rate
constant is independent of the electron energy for slow
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electrons. The principle of detailed balance gives (see,

e.g., [6])
g« e — Ac
kex =ky— s
(5) ng AS

where go and g, are the respective statistical weights
for the ground and excite states and Ae is the atom ex-
citation energy. In the case of the Maxwell distribution
function of electrons,

e (-2

where T, is the electron temperature, we obtain the
excitation rate as

dN, Jx ( As)
= NyNk,—exp | —— |,
< dt )eq qgo P Te

which relates to the thermodynamic equilibrium of
atoms in the ground and excited states, and the av-
erage excitation rate constant k., is given by

95 o (_E>
go P Te .

We analyze the assumptions used in deriving for-
mula (1.2) for the excitation rate constant under equi-
librium conditions in a plasma where the average elec-
tron energy is small compared with the excitation en-
ergy. The first is the assumption of a high rate of forma-
tion of fast electrons on the tail of the distribution func-
tion because of electron diffusion in the electron energy
space due to electron collisions and interaction with an
external electric field. Second, we ignore a decrease
in the electron distribution function with an increasing
electron energy above the excitation threshold owing to
atom excitation. We below drop these assumptions and
accurately take the indicated factors into account for
the excitation of helium atoms in metastable states 2% 9
and 21S by electron impact in weakly ionized uniform
helium.

(1.1)

Few = ky (1.2)

2. KINETICS OF ATOM EXCITATION BY
ELECTRON IMPACT IN A GAS LOCATED
IN AN EXTERNAL ELECTRIC FIELD

We first determine the rate of formation of fast
electrons that are able to excite atoms. We assume in
this consideration that each electron that reaches the
excitation threshold excites an atom and becomes slow.
In other words, these fast electrons are absorbed near
the excitation threshold, i.e., the distribution function
is zero,
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f(Ag) =0,

at this boundary. To find the excitation rate under
these conditions, it is necessary to analyze electron ki-
netics in the space of electron energies. The kinetic
equation for the electron distribution function f below
the excitation threshold has the form

°r g = Iee(f) + Iea(f)a

o (2.1)
where E is the electric field strength, v is the elec-
tron velocity, m. is the electron mass, and I..(f) and
I..(f) are the collision integrals for electron—electron
and electron—atom elastic collisions. Depending on the
electron number density, there are two regimes of elec-
tron motion in the energy space of electrons. In the
regime of a high electron number density, Eq. (2.1) has
the form I..(f) = 0 and its solution is the Maxwell
distribution function (as it was used above)

3/2 mev2
) ()
e

where v is the electron velocity. In another limit case,
one electron moves in an atomic gas, and a small pa-
rameter m. /M (M is the atom mass) allows expanding
the distribution function over spherical harmonics and
restricting by two harmonics, whence

fv) = fov) + vz fi(v).

This problem was solved both for electrons of a semi-
conductor [7-10] and for a weakly ionized gas [11-16],
and the results were summarized in [17]. The set of
equations for spherical harmonics takes the form

a% 3;;2%“3171 = ILea(fo),
where a = eE/m,, the rate of electron-atom colli-
sions is Ve, = Nyvok,(v), and o, (v) is the diffusion
cross section of electron—atom scattering. The colli-
sion integral from the isotropic part of the distribution
function I, (fo) has the form of the right-hand side
of the Fokker—Planck equation because of a small en-
ergy variation in a single collision with atoms. This
collision integral is zero for the Maxwell distribution
function [18, 19].

Thus, because of a small energy change in elect-
ron—atom collisions, the velocity distribution of elect-
rons moving in a gas in an external electric field is
nearly symmetric with respect to directions of electron
motion and can be represented in the form

o (3]

fo=N. (;:i (2.2)

(2.3)

= _Veavfla

10

[ea,(fO) = ; de

(2.4)
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and the analog of the diffusion coefficient in the space
of electron energies is given by

2,2
mgv

Beu(e) = TTZ/&I, (2.5)
where ¢ = m.v?/2 is the electron energy.

In considering elastic electron scattering on a he-
lium atom, we use the fact that the diffusion elect-
ron-atom cross section [20] is almost constant at low
collision energies, and it is convenient to approximate
the measured cross section [20] with an accuracy of

about 20 % as

6+ 1)A%,

A
~. Ax60 VA%

10 eV < e < 40 eV.

e <10 eV,
(2.6)

The electron—electron collision integral, or the Landau
collision integral [21], has a nonlinear form. But if
we extract fast electrons from thermal electrons with
the Maxwell distribution function, i.e., divide the elec-
tron subsystem into two, the collision integral for fast
electrons has the diffusion form similar to collision in-
tegral (2.4) because of the relatively small variation
of the electron energy in single electron—electron colli-
sions. Correspondingly, in the regime of a high electron
number density, the electron—electron collision integral

is (see, e.g., [22])
(;1 [vBee(s) (% + ;—Z)] ; o)

4
B..(¢) = ?ﬂ-e%Ne InA,

Iee(fO) = %

where In A is the Coulomb logarithm; below, we use its
typical value for a glow gas discharge plasma In A = 7.

The regime of low electron number densities cor-
responds to the Druyvesteyn case [23, 24], where the
electron—atom diffusion cross section is independent of
the electron energy, and the distribution function, as a
solution of the set of equations (2.3) in the regime of
low electron number densities, has the form

g2 M
=C - = EA. 2.8
fo exp< 6%)’ €o 3m68 ( )
Here
1
n Na0§a7

C' is the normalization coefficient, and in the helium
case,

0 = 0.82z, (2.9)
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where the characteristic energy ¢ is measured in eV
and the reduced electric field strength x = E/N, is
always expressed in Td (1 Td = 1077 V- cm?).

We now determine the rate of atom excitation under
the assumption that each electron transferred through
the excitation threshold loses its energy as a result of
atom excitation and becomes slow. This corresponds
to the boundary condition

fo(Aa) =0.

In the regime of a high electron number density, this
corresponds to the distribution function [25]

mclen(5) - (%)

instead of formula (2.2). Reducing the kinetic equa-
tion to the isotropic part of the distribution function,
we have

(2.10)

fo 1

0
E-FU%(UJ)—O, (211
L M AR
T B0, O “\oe T

and hence the electron flux in the velocity space is the
sum of two parts due to the electric field and elect-
ron—electron collisions. We note that because of a small
electron concentration in ionized helium, we assume
that variation of the electron momentum results from
electron—atom collisions. This gives the excitation rate
due to electron diffusion in the space of electron ener-
gies in the form

AN, [ o 0fe . 2 £
7 —/471'1) dvﬁ = Eﬁ T§/2 X
N
€0 4met 2mecoa’
_0 NoIn A 4 220 ) (9 19
xexp( TE)< 3 voNe In A + o ) ( )

where we use formula (2.10) for the distribution func-
tion. We can introduce the excitation rate constant k.
as

dN,
dt

= koN.N,. (2.13)
Taking o, = 6 A2, according to [20], in the basic part
of the electron distribution, we have the electron tem-
perature

T, =041z, T,>T. (2.14)

Because o, (Ac) = 2.7 A2, these results lead to the rate
constant of excitation of the metastable state 23S
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7.6-1073
he=—m

48
X exp <—?> (ce +2.0-10772%), (2.15)

where ¢, = N, /N, is the concentration of electrons.
We now analyze the character of excitation of the
metastable state for the helium atom by electron im-
pact above the excitation threshold, assuming that the
excitation affects the distribution function and leads to
its strong decrease in the course of removal from the
excitation threshold. Then the electron distribution
function fo of electrons satisfies the kinetic equation

v dfo)) | me 1
v dv M v2?

We use the semiclassical solution of this equation that
is based on a sharp decrease of the distribution function
at removal from the excitation threshold; the distribu-
tion function is then taken in the form

a d

W % (Usyeaf[)) -

- Veach =0.

4
dv
(2.16)

fo=Aexp(S)
and in the semiclassical approach, we have (S")2 > S".
Near the excitation threshold, Eq. (2.16) then
vields [26]
fo(v) = f(vo) exp(=5),
e—Ae\*
S =k ,
Ae (2.17)
_ 200 [ 9«
=5 390 VgVea,

where vy is the electron velocity at the excitation
threshold, the quenching rate is v, = Nyk,, and g,
and go are statistical weights of the helium atom in
the ground and excited states. This regime is valid at
k> 1, and in the case of excitation of the metastable
23S state, this parameter is x ~ 270/x, and this regime
is realized in the region # < 12 Td under consideration.
Introducing the excitation rate constant

1 dN,

k< =
>~ N,N, dt’

we obtain hence this excitation rate as

ks = Ni/kex (v) fo(v) - 4mvdv =

46 g« 3. 1o
= —UVqUgJok 7,
NaNe 9o ! Of

(2.18)
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Fig.1. The character of electron fluxes near the atom
excitation threshold. The flux of electrons toward the
excitation boundary k. is proportional to the deriva-
tive of the electron distribution function at the excita-
tion threshold and is hence expressed through the dis-
tribution function ¢ with the absorption process for
fast electrons ignored. The reflected electron flux k.
is proportional to the electron distribution function at
the absorption boundary

where fo = fo(vo) is the electron distribution func-
tion at the excitation threshold. We note that for-
mula (2.18) for the excitation rate constant is valid
both for regimes of low and high electron number densi-
ties. In this formula, we substitute the Maxwell distri-
bution function of electrons, which applies in the regime
of a high electron number density and is conserved at
the distribution function tail at k- > k-, to obtain
the atom excitation rate by electron impact for elect-
ron energies above the excitation threshold,

. Ac\ 3/2 A
ks = O.SBz—qu <?‘E) exp (—?‘E) k12 (2.19)
e e

where the electron distribution function at the excita-
tion threshold fo coincides with the Maxwell distribu-
tion function ¢q. Formula (2.19) gives the rate constant
k- of excitation of the metastable 23S state by electron
impact in the regime of a high electron number density:

(%)
exp —? .

We thus obtain formula (2.15) for the rate constant
k< of electrons traveling in the space of electron ener-
gies to the excitation threshold in the limit where the
electron flux to the excitation threshold is relatively
small and hence the electron distribution function at
the excitation threshold is zero. This rate constant k.

_3.1-107°

ks =~ (2.20)



B. M. Smirnov

MKITD, Tom 143, Bemm. 1, 2013

is determined by the distribution function ¢g near the
excitation threshold, where absorption on this bound-
ary is not essential, and therefore the second term in
formula (2.10) for the electron distribution function is
relatively small. In addition, in the expression for the
excitation rate constant, we neglect the reflection of
electrons in the electron energy space from the absorp-
tion boundary. The excitation rate constant k~ is pro-
portional to the current distribution function fy of elec-
trons at the excitation threshold. We can combine the
rate constants k- and k~ into the total excitation rate
constant as is shown in Fig. 1; the parameters in this
figures are

k<
®o’

k-

fo

Evidently, from the conservation of the excitation rate,
we have

b=

k< =kl<+k>

This gives the connection between the nondistorted dis-
tribution function ¢y and the current distribution func-
tion fo at the excitation threshold, and the excitation
rate constant

oy = k<k>

= <P 2.21

where the excitation rate constant k. is taken under
the boundary condition fy = 0, whereas the evaluation
of the rate constant k- corresponds to the boundary
condition fy = ¢g. This formula shows that the mech-
anisms of electron traveling to the excitation rate and
the excitation rate above the excitation threshold do
not compete, but they determine the distribution func-
tion at the excitation threshold, and the combination
of these mechanisms gives the total excitation rate con-
stant. We use formula (2.21) to find the excitation rate
constant ke, of the metastable state He(22S) by elec-
tron impact in an external electric field on the basis of
formulas (2.15) and (2.20) in the regime of high electron
number densities:

3.1-107%ce +2.0-107722) "
203 (ce +2.0-107 722 + 4.2 - 107 722-2)

X exp (—%) . (2.22)

kea: =

The same can be done to find the excitation rate con-
stant of atoms by electron impact in the regime of a
low electron number density. Based on formulas (2.18)
and (2.8), we obtain the rate constant of excitation of
the metastable 23S helium atom by electron impact in
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an external field in the regime of a low electron number

density:
280
exp | — x—2 .

For simplicity, we continue the nonperturbed distribu-
tion function (2.8) up to the excitation threshold.

To find the rate constant k. in the limit of high
electron number densities, we use the nonstationary ki-
netic equation in the regime of a low electron number
density, which has the form

161077

ks =
20-3

(2.23)

dfo a® 9 (v Ofo\
E‘I‘f“(ﬁ)“ﬁ%(?%) =

9 (me fo Ma?

~ v20v (Mv g [f0+mev81) <T+ 3v2 )])

From this, in the limit As > T and with the boundary
condition fo = 0, we find the excitation rate constant
owing to electron diffusion in the electron energy space
from small electron energies

1 dN.
=4

_ Me 3 Vea(V0)$ (Vo)
N,N, dt

k
< MO NN,

(2.24)

For the excitation of metastable helium atoms in the
23S state in the regime of a low electron number den-

sity, formula (2.24) gives
( 580)
exp ([ —— ).
x

From the above formulas, it follows that the total exci-
tation rate constant for metastable 23S helium atoms
in the regime of a low electron number density is given
by

k. =38-10""

=7 (2.25)

b = 1.6 exp(—580/22)
F 203(1 4 0.4321-2)

(2.26)

We note that the transition from the regime of low
electron number densities to the regime of high electron
number densities for excitation of the lowest metastable
state He(23S) proceeds at the electron concentration [3]

Ce = No/Ng ~ 1077,

The above results correspond to the assumption
that the diffusion cross section of the electron—atom
cross section is independent of the electron velocity. We
now drop this assumption and use approximation (2.6)
for this cross section. We start from the regime of low
electron number densities where a typical electron en-
ergy exceeds a typical atom energy significantly, and
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hence the solution of Eq. (2.3) with the use of relations
(2.4) and (2.5) has the form

g
2
6m, edeoy,

fole) = Cexp |~ [ 5

0

e2x2

Using expression (2.6) for the electron-atom cross sec-
tion .4, we reduce this formula to the form

)]

n\ — )

Ec

where we set e. = 10 eV and A = 60 eV - A2 in ac-
cordance with formula (2.6), and the electron distri-
bution function ¢(e.) is determined by Druyvesteyn
formula (2.8). This gives the distribution function of

electrons in helium located in an electric field at the
excitation threshold Ae in the form

6 A2 )

fole) = olee) exp (-2

N m 3/2
Ae) — e [Me
folAe) = TFa 7D (25()) 8
2
X exp {—E—; (1 +21nf>} ,
€ Ee
co =eEX M . (2.27)
3m,

and this distribution function differs from the Druyve-
steyn one (2.8). Based on this distribution function,
we obtain the excitation rate constants

1 350
— -9
k< =3.8-10 m exp <_1‘_2> 5

1.6-107° 350
k> = T exp <_;)’;—2> N (228)
1.6 exp(—350/22)
kex =

203(1 + 0.43212)

instead of those given by formulas (2.25), (2.23),
and (2.26). Figure 2 contains the excitation rate con-
stants in the regime of low number densities according
to formulas (2.28).

In the regime of a high electron number density, the
second term in expression (2.6) for the electron—atom
cross section affects the electron temperature, in con-
trast to the regime of a low electron number density
where it changes the tail of the distribution function.
Therefore, formulas (2.20), (2.15), and (2.22) remain
valid at small electric field strengths where the elec-
trons predominantly have an energy below ¢, and the
electron temperature T, is related to the reduced elec-
tric field strength = by Eq. (2.14). In the general case,
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k, cm®/s
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10

12
z, Td

Fig.2. Rate constants of the excitation of the

metastable state He(23S) by electron impact in a con-

stant electric field in the regime of low electron num-

ber densities in accordance with formula (2.28). Filled

squares correspond to k., filled circles correspond to
k-, and open circles correspond to ke

the electron temperature 7, in a gas is related to the
electric field strength x as [27]

_ Ma? (v%]Veq)

Te )
3 (V2eq)

(2.29)

where an averaging in brackets is done with the
Maxwell distribution function, v., is the rate of elect-
ron—atom collisions, and T, > T. Using cross section
(2.6) in formula (2.29), we reduce it to the form

5300 2—e*(2+2)
22 14e 3 (142/2)

(2.30)

where
z=¢./T. =10 eV/T,.

This formula is transformed into formula (2.14) in the
limit z > 1. According to this relation, formulas (2.14)
and (2.30) coincide for # < 6 Td; T, = 6 €V at « =
=10 Td, and T, depends on z sharply at larger . As
a result, in the general case, instead of formulas (2.20),
(2.15), and (2.22), we obtain

_198)
Pl

x (ce +2.0-10"2?),

(%)

8.1-10°%
e =
< Te5/2

(2.31)

1.2
ke =83 10*10% exp
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10—14 [
10715 s
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Fig.3. Rate constants of the helium atom excitation
to the metastable state He(23S) by electron impact
in a constant electric field in the regime of a high
electron number density at the electron concentration
ce = 107° evaluated based on formulas (2.31), where
the relation between the electron temperature and the
electric field strength is given by (2.30). Closed squares
correspond to k<, closed circles correspond to k-, and
open circles correspond to k..

kex, cm®/s
10-11

10—12 i
10713 L
107"L
10715 L
10716 L

10—17 o
10—18 o
1019

Fig.4. Rate constants k., of the helium atom excita-
tion to the metastable state He(23S) by electron im-
pact in a constant electric field. Filled squares corre-
spond to the regime of low electron number densities in
accordance with formula (2.28), the rate constants for
the regime of high electron number densities are deter-
mined by formula (2.31). Filled circles correspond to
the electron concentration ¢, = 10~% and open circles
correspond to ¢, = 107°
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kez, cm3/s

Fig.5. Rate constants ke, of the helium atom excita-
tion to the metastable state He(2%S) by electron im-
pact in a constant electric field. Open circles corre-
spond to thermodynamic equilibrium according to for-
mula (1.2). The excitation rates for the regime of
high electron number densities in accordance with for-
mula (2.28) are represented by filled squares for the
electron concentration ¢, = 107% and by filled circles
for cc. =107°

For electron temperatures below (2-3) eV, where
formula (2.14) for the electron temperature is valid, for-
mulas (2.31) are converted into formulas (2.20), (2.15),
and (2.22). Figure 3 contains the excitation rate con-
stants of helium atoms by electron impact under the
action of an external electric field on weakly ionized
helium in the regime of a high electron number density
in accordance with formulas (2.31). In addition, the
excitation rate constants ke, are compared in Fig. 4
in the regimes of low and high electron number densi-
ties. These rate constants in the regime of high elec-
tron number densities are compared in Fig. 5 with ther-
modynamic rate constant (1.2), where along with the
equilibrium inside the electron system, electrons estab-
lish thermodynamic equilibrium between atoms in the
ground and excited states.

3. ATOM QUENCHING BY ELECTRON
IMPACT IN A GAS LOCATED IN AN
EXTERNAL ELECTRIC FIELD

To find the concentrations of metastable helium
atoms in a given field, it is necessary to include the
quenching of excited atoms by electron impact into con-
sideration. This parameter is known sufficiently well
for atom transition 23S — 1S and its averaging over
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Fig.6. The lowest excited states of a helium atom

and the rates of transitions involving these states [28],

where the rate constants k of atom quenching by elect-
ron impact are given in cm®/s

ke /kq
18
16
14
12
10

8
6
4
2

4.0 5.0

Te, eV

Fig. 7. The ratio of the total rate constant of quenching

of the metastable state He(2%S) of the helium atom

by electron impact in a helium gas discharge plasma to

the rate constant in the absence of transitions between

excited states as a function of the electron tempera-
ture T.

some measurement gives k, = 3.1-107% em?®/s [29)].
But quenching of metastable states may also proceed
through excited states, and Fig. 6 gives the scheme of
processes involving lower excited states of the helium
atoms with the rates of these processes. We consider
the number densities of electrons if the decay of 2'P
state results from its radiation rather than quenching
by electron impact, and then the number density of
atoms in this state is small compared with that under
thermodynamic equilibrium.

Using the parameters in Fig. 6, we obtain the effec-
tive rate of quenching of the metastable state 23S by
electron impact in cm?/s as

5 ZK9T®, Beim. 1
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51077 exp(—1.398/T,)
3 + 5exp(—0.602/T,)

kep =3-107° + (3.1)
Figure 7 gives the ratio of the effective quenching rate
constant k. of the metastable atom He(23S) by elect-
ron impact to the quenching rate constant k, with tran-
sition into the ground atom state. As can be seen, ex-
citation of the metastable atom He(23S) by electron
impact in higher excited states with subsequent ra-
diation of the He(2!P) gives the leading contribution
to the quenching of an He(23S) atom at temperatures
T, ~ 1 eV that are of interest for gas discharge plasma.

From this, we can determine the concentration of
metastable atoms He(22S) in the regime of high elec-
tron number densities if excitation and quenching of
metastable atoms in weakly ionized helium result from
collisions with free electrons and excitation of this gas
proceeds due to the action of a constant electric field.
The concentration of metastable 23S helium atoms is
given by

Fer

c(228) =
ey

(3.2)

In this case, formation of metastable atoms He(23S)
is determined by collision with fast electrons whose
energy exceeds the excitation threshold, and the ex-
citation rate constants ke, are determined by for-
mula (2.31). Because the energy distribution function
of electrons decreases sharply as the electron energy in-
creases above the excitation threshold of the metastable
state 23S, excitation of other excited states proceeds in
a stepwise way through the metastable state 23S. In
particular, according to the scheme of transitions be-
tween excited states given in Fig. 6, the concentration
of helium atoms ¢(2'S) in the metastable state 23S is
given by

exp(—0.796/T)
3+ 5exp(—0.602/T,)"

c(2'S) = ¢(239) (3.3)
Figure 8 shows the concentrations of metastable atoms

in an ionized helium according to formulas (3.2)
and (3.3).

4. RESONANT RADIATION OF IONIZED GAS

We consider the regime of excitation of metastable
helium states for ionized helium in an external electric
field where quenching of metastable states results from
excitation of the resonantly excited He(2! P) state and
a subsequent atom transition to the ground He(1'S)
state owing to radiation of a resonant photon of the
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10
z, Td

Fig.8. Concentrations of metastable helium atoms in
an ionized helium placed in an external electric field
as a function of the reduced electric field at the elec-
tron concentration ¢. = 107%. Open circles corre-
spond to ¢(22S), Eq. (3.2), filled squares correspond to
c(2'9), Eq. (3.3). For comparison, the concentrations
of metastable atoms He(225) (filled circles) where the
contribution to the decay of metastable atoms as a re-
sult of their ionization in collisions with electrons taken
into account

wavelength about 58 nm. Then the number of reso-
nant photons created per unit time and unit volume
is
dN (2! P)
dt

ker — k
M ~ NeNakex7
ef

where the total rate constant k.z of quenching of the
metastable 23S state is given by formula (3.1) and
greatly exceeds the rate constant of metastable atom
quenching k, with a transition to the ground state
under appropriate electron temperatures, as is shown
in Fig. 7. Formula (4.1) means that each formed
metastable atom is subsequently transformed into a
resonantly excited atom and produces a resonant pho-
ton. Below, we estimate the conditions for this case,
being guided by a glow gas discharge plasma with the
parameters [2] N, ~ 10'9-10'* em™3, N, ~ 10'%-
10'7 em~2 and the plasma size L ~ 1 cm.

We first estimate the lifetime of a resonant photon
inside an ionized gas. The broadening of the spectral
line for the transition

= N,Nykes (4.1)

He(2'P) — He(1'S) + hw (4.2)

has the Lorenz character for large frequency shifts and
is determined by the dipole—dipole interaction of atoms.
The spectral line width v is given by [30]
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1

v==

2

where o; is the total cross section of atom collision,

and the average is taken over the atom distribution

function. The total cross section of collision for atoms

in states 'S and ' P due to the dipole-dipole atom in-
teraction is given by [31]

(Nqvoy), (4.3)

_ 4.87wd>
ot = i
where d is the matrix element of the atom dipole mo-
ment that is taken between the states of collided atoms.
It is connected with the oscillator strength f of the ra-
diative transition between these states as

2med?Ae

(4.4)

(4.5)

and Ac is the transition energy between 'S and 'P
states. As a result, we find the absorption coefficient
for resonant photons in the line center of the transi-
tion (4.2):

ko =1.8-10% cm ™t (4.6)

It is important that the absorption coefficient at the
line center is independent of both the number density of
atoms and the electron temperature. We assume here
that the criterion of the Lorenz broadening of spectral
lines holds.

The probability of propagation of resonant radia-
tion at a distance L for the Lorenz shape of the spectral
line is given by [32]

1
vV ﬂ'koL

and a typical lifetime 7. of resonant photons inside a
gas is

P(L) = (4.7)

-
P(L)’
Here, 7 = 0.56 ns is the radiative lifetime of an isolate
helium atoms in the state 2'P. From this, we have
that for helium with the indicated parameters, the ra-
diation lifetime of resonant photons inside a uniform
gas increases by three orders of magnitude compared
to an isolated atom and is estimated as 7, ~ 1 pus.
The criterion of the above regime of atom excitation
by electron impact in weakly ionized helium located in
the electric field is given by [26]

Tr X

Nekqrr < 1, (4.8)

where kg 5-1077 c¢m?/s is the rate constant of
quenching of He(2!P) state with the transition into
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the 215 state. Under the above conditions, this cri-
terion has the form N, <« 2-10'? ecm ™3, and therefore
the above description is suitable for a glow discharge
plasma.

We note that this regime resembles the capillary
discharge (see, e.g., [33]), which is the source of reso-
nant radiation when an ionized gas is located inside a
filament of a diameter of hundreds microns. But the
capillary discharge plasma is characterized by higher
number densities of atoms and electrons compared with
those parameters, and hence corresponds to another
plasma regime.

5. PROPERTIES OF IONIZED GAS LOCATED
IN ELECTRIC FIELD

The above analysis allows discussing the character
of excitation of an ionized gas under the action of an
electric field. It follows that a helium gas discharge
plasma exists in the regime under consideration in a
restricted range of electric field strengths that corre-
sponds to typical electron energies approximately be-
tween 1 and 5 eV. At lower electric field strengths, pro-
cesses of atom excitation and ionization are weak and
are not able to support this system, while these pro-
cesses proceed fast at larger electric field strengths and
lead to the ionization instability of an ionized gas.

We estimate the conditions under which an ionized
gas is a thermodynamic system and the excitation rate
constant of atoms is given by formula (1.2). This holds
if

ke > ks, (5.1)
and hence the excitation does not disturb the electron
distribution function at the excitation threshold. In
addition, for the conservation the electron distribution
function above the excitation threshold, the criterion

k<1 (5.2)
is required, where the parameter k is given by for-
mula (2.17). As can be seen, criteria (5.1) and (5.2)
are not fulfilled in the helium case under consideration.

We now evaluate one more parameter of the exci-
tation process, the efficiency of the excitation process
&, i.e., the part of energy that is introduced into the
ionized gas and is consumed for the excitation process.
This quantity is given by

Acke, N,

e —— 5.3
Del ‘I'Agkez]\/va7 ( )

Fig.9. Efficiency of the excitation of the metastable
state 225 in ionized helium located in an external elec-

tric field. Filled squares correspond to the regime of low

electron number densities; open and filled circles corre-

spond to the regime of high electron number densities

with the respective electron concentration ¢. = 10 °
and . =10°°

where Ae is the atom excitation energy, pe; = eEw,
is the power per electron that is consumed on elastic
electron scattering on atoms, and w, is the electron
drift velocity in the gas under the action of the elec-
tric field. Using the expressions for the electron drift
velocity (see, e.g., [27]), in helium in the regime of low
electron number density, we have

Bl —5.3-107"%%7,

a

(5.4)

and in the regime of high electron number density,

2
Pl — 371072 =.

Na VTe

Here the reduced power pe;/N, for the electron elas-
tic scattering on helium atoms is given in eV - cm?/s.
Formulas (5.4) and (5.5) are based on the assumption
that the diffusion cross section of the electron—atom
elastic scattering is independent of the electron energy.
Figure 9 contains the values of the efficiency ¢ of the
excitation of helium atoms in ionized gas under the ac-
tion of an electric field.

(5.5)

6. CONCLUSION

We are based on the position that an ionized gas
located in an electric field, i. e., a gas discharge plasma,

5*
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is a nonequilibrium system. Therefore, universal meth-
ods of the description of a gas discharge plasma [5] have
a qualitative character, and the analysis of its proper-
ties requires the rate constants for processes involving
atoms in the ground and excited states. In reality, we
face the absence of such information, but in the case of
helium, these rate constants are known, we encounter
some accuracy and the analysis of the properties of he-
lium excited by an external electric field gives us a use-
ful experience to understand the physics of this object.

We note that an ionized gas supported by an elec-
tric field exists in a restricted range of electric field
strengths. Low electric fields cannot support this sys-
tem, whereas high electric fields lead to the ionization
instability. In the case of helium, we are restricted
by a range of electric field strengths with typical elec-
tron energies 1-5 eV. We assume the rate constants of
quenching of excited atom states by electron impact to
be independent of the electron energy. This latent as-
sumption is important for the calculations fulfilled. We
note that the approximation (2.6) for the elastic cross
section of electron—atom scattering is not of principle
in the above evaluations and may be replaced by nu-
merical computer calculations, but this approximation
allowed us to obtain the results in a vivid and trans-
parent form.

We discuss the above results from the standpoint
of the general approaches of a gas discharge plasma.
We analyze excitation of helium in an external electric
field for both regimes of low and high electron number
densities, with a typical electron energy being small
compared to the atom excitation energy. Then an elec-
tron energy variation in a single collisions is relatively
small and formation of fast electrons has a stepwise
character. In this case, the universal thermodynamic
description of the excitation process is not valid for two
reasons. First, the electron energy distribution func-
tion above the excitation threshold drops sharply be-
cause the excitation process leads to a decrease in the
distribution function and this in turn decreases the ex-
citation rate, making the atom excitation above the
excitation threshold a self-consistent process. Second,
after the atom excitation, fast electrons become slow
and must be replaced by electrons accelerated in the
electric field, but this process is not fast because the
decrease in the electron energy proceeds in small steps.
As a result, the excitation rate constant is lower by one
to two orders of magnitude than that in (1.2) for an
equilibrium system (see Fig. 5).

One more experience of this analysis is that the
quenching of metastable atoms does not make them
transfer to the ground state, but follows from their sub-
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sequent excitation (see Fig. 7). This may lead to differ-
ent regimes of quenching depending on the electron and
radiative processes involving excited atoms. The num-
ber of plasma regimes increases with additional pro-
cesses involving excited atoms, for example, the Pen-
ning process that occurs if other atoms are present in
helium with a small concentration or the ionization pro-
cess results from collisions of two metastable atoms.
Thus, the complexity of the gas discharge plasma con-
sists in a large number of regimes for this nonequilib-
rium system, and our analysis of the excitation rate
constants for helium atoms by electron impact corrob-
orates this statement.

It should be noted that although we do not consider
here ionization processes that support a weakly ionized
gas, the excitation processes under consideration are
important for this. Indeed, if the decay of metastable
atoms proceeds in collisions with electrons, whose con-
centration is shown in Fig. 8, the subsequent forma-
tion of electrons results in the ionization of metastable
atoms. This process occurs at the reduced electric field
strengths 2 Td < # < 10 Td, and we used above just
this range of electric field strengths. In this regime, the
electron distribution function decreases sharply as the
electron energies increase above the excitation thresh-
old, and direct ionization of atoms by electron im-
pact is impossible. On the contrary, the classical di-
rect mechanism of atom ionization by electron impact
for self-maintaining of gas ionization [34] occurs in the
range of electric fields strengths 10 Td < 2 < 1000 Td,
and the lifetime of metastable atoms is small in this
regime. This stresses once more a variety of regimes
for a gas discharge plasma and the complexity of their
description.
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