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We investigate the propagation regions of electromagnetic plane waves with negative phase velocity in the
ergosphere of static charged black strings. For such a propagation, some conditions for negative phase velocity
are established that depend on the metric components and the choice of the octant. We conclude that these
conditions remain unaffected by the negative values of the cosmological constant.
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1. INTRODUCTION

The phenomenon of negative phase velocity (NPV)
propagation is important due to one of its conse-
quences, negative refraction [1, 2]. This is the property
of light propagation in a medium that occurs when the
phase velocity of a plane wave has a negative projec-
tion onto the time-average Poynting vector. Alterna-
tively, it is the plane wave propagation mode in which
the wave vector and the time-average Poynting vec-
tor are oppositely aligned [3-5]. Negative refraction
is an electromagnetic phenomenon in which light rays
are refracted at the interface in a sense reverse to that
normally expected. This property of negative refrac-
tion has generated considerable attention in the elec-
tromagnetic, optics, and material research communi-
ties [2, 3, 6].

Metamaterials are synthetic materials with unusual
refractive index properties used to obtain the nega-
tive refraction effect. Negative values of the permittiv-
ity € and permeability p are responsible for these un-
usual refractive index properties. This was originally
proposed by Veselago [7]. The direct consequence of
this property is the development of a wave propagation
medium called the Veselago medium. The presence of
the Veselago medium alters the propagation of plane
waves such that the electric field, the magnetic field,
and the wave vector follow a left-hand rule instead of
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the right-hand rule. This leads to the construction of
left-handed metamaterials [8]. Lenses with extremely
low distortion are one of the most useful applications
of NPV supporting artificial metamaterial. These are
widely used in the modern optics, for communication,
entertainment, and data storage as well as for retrieval
purposes [9-12].

The characteristics of NPV materials lead to the
concept of anisotropic and bianisotropic materials that
provide industrial benefits in modern technology [2, 4,
13]. The application of NPV propagation in astro-
physical scenarios has been explored in the last few
years. It was shown in [14, 15] that the vacuum can sup-
port NPV propagation for particular spacetimes. The
same authors [13] proved that the de Sitter spacetime
supports NPV propagation, whereas the anti-de Sit-
ter metric does not admit such a propagation. The
propagation of electromagnetic plane waves with NPV
in the Schwarzschild—de Sitter spacetime was investi-
gated in [16]. Some regions supporting NPV propa-
gation within the ergosphere of an uncharged rotat-
ing and charged rotating black holes were explored
in [17,18]. Plasma wave properties of the Schwarzschild
and Schwarzschild—de Sitter horizons in a Veselago
medium were discussed in [19].

In this paper, we investigate propagation of elect-
romagnetic plane waves of static charged black strings
described by a cylindrical symmetric spacetime with
a negative cosmological constant. The regions of NPV
propagation are explored. The format of the paper is as
follows. In the next section, we review the mathemati-
cal formalism. Section 3 describes the static charged
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black strings and plane wave propagation in R. In
Sec. 4, we investigate the conditions of NPV. Finally,
we discuss and summarize the results in the last sec-
tion.

2. REVIEW OF THE MATHEMATICAL
FORMALISM

In this section, we review the mathematical formu-
lation needed to discuss the propagation of electromag-
netic waves in the vacuum in a curved spacetime. This
is based on the formal analogy between electromagnetic
waves in a flat spacetime in a fictitious instantaneously
responding medium and in the curved spacetime in free
space. Tamm [20] originally proposed this approach
which was used by many authors [21-26].

The source-free covariant Maxwell equations for a
curved spacetime are

Fopw + Fguvia + Fuap =0, F';%a =0,
a,f=0,1,2,3.

For a flat spacetime, these equations reduce to

Fapw + Fava + Fras =0, (—g)"2F5" =0. (1)

Here, F*# and F,5 are the contravariant and covariant
electromagnetic field tensors and

g = det[gas]-

The semicolon (;) and comma (,) respectively indicate
covariant and ordinary derivatives. These equations
can be rewritten as

B;; =0, Bio+ecijuEjr=0, D;; =0,

2
_Di,() +5iijj,k = 07 iajak = 172737 ( )

where B;, E;, D;, and H; are the components of the
magnetic field vector B, electric field vector E, dis-
placement field vector D, and magnetizing field vector
H and ¢;j;, is the three-dimensional Levi-Civita sym-
bol.

The electromagnetic field vectors E, B, D, and H
are

E; = Fi,
Di = (_g)l/ZFz’O’

Bi = (1/2)51’ij]’1€7

Hi = (1/2)ziji(—g)" /2 FI*. ®)

These vectors satisfy the constitutive relations of an
equivalent instantaneously responding medium that
can describe the electromagnetic response of the vac-
uum in a curved spacetime. These constitutive rela-
tions are

D =eE, B=puH, (4)
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where ¢q 8.854 - 1072 Fm~! and uo 47 x
x 107" Hm™" in SI units. The dyadic y can be ex-
pressed in the metric form B

129"
goo

Yab = —(=9) (5)
In the 3x 3 dyadic form, Eqs. (2) and (4) can be written
as [15, 17]

OB(ct,r)

o0 7
OD(ct,r)
o 7

V x E(ct,r) +

V x H(et,r) —

3. CHARGED BLACK STRINGS AND WAVE
PROPAGATION

Static charged black strings with a negative cos-
mological constant have the line element of the form

[27, 28]
2
ds?> = — [ a?r? = — + ¢ dt* +
ar  a?r?
b 2\t
2 2 2
+<ar T a2r2> dr” +
+r2df? + a*r?dz?, ()
where
2 A 2 2
« =-3 b=4GM, ¢ =4GQ",

2
h(r) = 20 + const,
ar

—x0o<t<oo, 0<r<oo,

—o<z<oo, 0<6<27.

Here, M is the mass and @ is the linear charge density
per unit length of the z line of the black strings, G is
the gravitational constant, and A < 0 is the cosmo-
logical constant. The black hole horizons are found by
setting goo = 0,

b%\/s-l- 2(s2 —4p? — s5)
B 200 '

(9)

r+

where
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Here, r_ and ry represent the inner and outer event
horizons. In order to have a physical region, we take
r4 only and neglect the inner event horizon.

For Q = 0, Eq. (8) yields the line element of static
black strings

b b\7!
ds? = — <a2r2——> dt>+ <a2r2——> dr® +
ar ar
+r2df* + o®r?dz?,  (10)

where mass is the only parameter and the respective
event (outer) horizon is

S
W=

r=ry= (11)

2|

Because v is a second-rank Cartesian tensor [13, 22, 23],

we convert metric (8) into Cartesian coordinates as

Gab =
—f 0 0 0
0 Ay wl-f)
2 2
- ’“f ’"f L (2)
o wl-p ytefo
r2f r2f
0 0 0 a?r?
where
g = —a2T4,
b &
_ 2.2
f=ar" — v + 22

The constitutive relations provide global description of
the cylindrically symmetric spacetime. To approximate
a nonuniform metric 7, by a uniform metric 7,5, we
consider the partition of the global spacetime into suf-
ficiently small and adjoining neighborhoods R. at ar-
bitrary locations (&,7,%). We usually solve differen-
tial equations with nonhomogeneous coefficients by this
method. The uniform metric is defined as [16, 17]

259

H/ab] =
of 2 +5° a1+ hig
f f
= Cl(—l}-f)l‘y afg}-l- i? 0 . (13)
0 0 1
af
where
dot ~] alf22 + 72) (& + [5°)
’y - Jz.’3 b)
~ N C2
f=aP -2t o

To discuss the propagation of plane waves in the
medium defined by constitutive relations (7), we con-
sider the plane-wave solutions

E =ReEpexpli(k - r — wt)], (14)

H = ReHjexp[i(k - r — wt)],
where k is the wave vector, r is the position vector
within the neighborhood R containing an arbitrary lo-
cation (Z,7, Z), t denotes the time and w is the angular
frequency. Also, Eg and Hy represent complex-valued
amplitudes. When Eq. (14) is used in Eq. (6), an eigen-
vector equation is obtained after some algebraic manip-
ulations. The resulting equation is given by

[(k?)det [l] —k-i-k)£+kk-i] "Eo=0, (15)

where

ko = Wy/€olto-
The corresponding dispersion relation can be written
as

k2det M (kgdet [l] —k- -k)2 —0. (16)

||

Since det [j] is nonzero, this equation leads to

k-5 k = kdet [l] . (17)

With this value used in Eq. (15), it follows that
kk - 9 - Eg = 0, which shows that k - 4 and Eq are
orthogonal. B

Let the wave vector k be described as

k(ag,a,,a;)

k = kk =
3 9

(18)

4*
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where 0, @1, and 1, represent unit vectors along &, ¢,
and Z axes and £ is the magnitude of the wave vector.
Hence,

k(A1 + H21) 00 + (F12 + F22) 0y + Fa31]

k-
3

||

Furthermore,

B [(F11 4 F21) 4+ (a2 + F22) + Fss]
= 5 ,
where 311, J12, Y21, Y22, Y33 are the components of the
metric [y45]. Substituting Eq. (19) in (17), we obtain

Ok2det M

(F11 + F12) + (G12 + F22) + F33

k-

b

(19)

||t

K =

Inserting the values of :Ylh ’3’12, ’?217 ’3’22, ’733 in the
above equation, we obtain

k30> (fi? + §*) (3* +
72 [e2(F@ +9)2 + @ - 9)?)
which yields the wave numbers k = k*
Q?(f2 + ) (@ + 72f)
72 [02(F@ + 9 + @ = 9)) +1]

For propagation of waves, the values of wave num-
bers k% must be real, which lead to

P [ (F@rp2 +@-9)+1] #0. F>o.

We impose the condition f > 0 because f < 0 provides
the nonphysical region r < r,. The general solution of
Eq. (15) can be written as

k=

)
+1]

kE = 3k (20)

(21)

EO = Clel + 0262, (22)

where C and C5 are complex constants and e; and e,
are two linearly independent eigenvectors given by [15]:

er = (J11 + Yo2)We — (F11 + F12)1y, (23)
e = Y33(F11 + F12) 0y + F33(F12 + F22)0y —
— [(311 + F12)* + (a2 + F22)*] 0. (24)

The application of Fourier transformation (14) to
Eqgs. (6) and (7) leads to

k x HO = —weoj . Eo, k x EO = w,uoj . Ho. (25)

Combining Egs. (22) and (25) yields the magnetic in-
duction [15, 29]

L. l; X (Clel + 0282)

W o

Hy =

(26)
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4. CONDITIONS FOR NEGATIVE PHASE
VELOCITY

The negative phase velocity is defined by [30]

k- (P); <0, (27)

where
(P); = —Re{EO x Hi}

is the time-average Poynting vector, which gives the
associated rate of energy flow over time and HJ is
the complex conjugate of Hy. Substituting Eqs. (22)
and (26) in the above equation leads to

——[|C1]*(e1 xpxer)+|Ca|* (e x pxes)+

(P)e = 2w’u

+ 2|01||02|(62 X Pp X el)]7

where
1

=171k

p

[1=2

Inserting this value in Eq. (27), we obtain

2w“ *(e1 x p x €1) + |Caf*(e2 x p X €2) +

+2|C1|Ca)(e2 x p x e1)] -k < 0. (28)
This is satisfied if the following three inequalities hold
simultaneously:

(e1 xpxe) k<0, (exxpxey)- k<0,

. (29)
(ea xpxer) k<O
Now,
=2 | 2 F
(e1 xpxe) k= 9 (Y11 +’~Y12)2% +
Fx2 | ~2
+ (12 +’~Y22)2% +
af [(F11+12) %+ (F12+722)%] + f2 [f( 7°)? +
+ 2P (14 ) @+ + F@—9)?]| 5 +
+ [(F11 + F12) + (F12 + Fo2)°] a ai)a?g]
o’ oo, (F49)*+f(F-9)
+ F(x J+57°) (=14 £?) T ] , (30)
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(e2 xpxe) k=

~ _ ,":4a
x [(l—f)2(i2—232)—f(r?2+ﬂ2)2+ .

x (2 + 7+ (<1 + Dip)? + (f7? + 3 +

(e2xpxey)-k =

|G+ )

+ 2(1.2 _1_52)2
afrt
f F— )2+ (F+0)2
2 f(Z y)mm(x 7) N
PR+ 32+ (1 - fag
art
R+ (1= )Eg

art

w&% (7525224282 (141%) +(-1+ 2) x

_|_

+ [(Fr1+912)> +(F12+722)7]

+ Y33 (12 + F22) +

+ Y33 (11 + H12) +

(32)

s o | _fE=§)7+@E+9)’
t )]l ard

To be consistent with Eqs. (21) and (29), we con-
struct some sufficient conditions. After analyzing the
values of Eqgs. (30)—(32), it follows that sufficient con-
ditions for NPV depend on the choice of the octants

{(z<0,9<0), (>0, g>0),
(2<0,9>0), (>0, §<0)}
and the values
{(@ <), @ >}

Using Eq. (21) and the above conditions on (%, ¢), we
obtain the following four cases:

L a>0, f>0, (2<0,§<0)or(Z>0,7>0),
P2 < g?or 32 > 7,
I a>0, f>0, (£<0,§>0)o0r(>0,7<0),
B < g or & >,
M. a<0, f>0, (2<0,§<0)or(z>0,7>0),
#2 < g% or #2 > 2,
IV. a<0, f>0, (£<0,§>0)or(Z>0,7<0),

#2 < g% or #2 > 2

Further, f can be either

1) f>1,

2) f<1,

3) f=1.

From all the above cases, we conclude that if they
are taken together with option 3), there is a possibil-
ity when all the three inequalities in Eq. (29) are not
satisfied simultaneously. This leads to following possi-
bilities:

(i) If one of the terms in the square brackets in
Eq. (28) can have a negative value, then the sum of the
other two positive terms has to be less than that value,
such that Eq. (28) become negative and provide NPV
propagation.

(ii) Similarly, if two of the three terms in square
brackets in Eq. (28) have negative value, then their
sum must be greater than the remaining positive term
in order to make expression (28) negative.

Since the location of R within the spacetime is ar-
bitrary, these conditions are applied generally for NPV
propagation.

5. SUMMARY

In this paper, we have investigated some possible
conditions for NPV propagation of static charged black
string. We can summarize the result as follows.

1) f > 1 and f < 1 provide regions r; and ro for
the possible NPV propagation. We note that f = 1
yields a region r3 where all the conditions of cases (1)
and (2) do not hold and Eq. (29) cannot be satisfied.
Some other conditions have to be formulated to make
NPV propagation possible in this region. The values
of regions ry, ro, and r3 depend on the parameters of
temporal component of the given metric (8).

2) If Q@ =0, then f becomes

f=a*? - —.
ar
In this case, the conditions f < 1, f > 1, and f =1
respectively provide the possible NPV regions
1/3
- (2/3)/%a .
(9a% + V3v~4aT? + 27122 o

(905b + v/3V—4a12 + 27a125?)
(2/3)"3a ’

W=

_|_

(2/3)Pa

_|_
I
(9a%b + V/3V—4a12 + 27al2b?) 3

r>

(9a5b + v/3v/—4a12 + 27a12p? )
(2/3)1/3a ’

W=

_|_
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r =

(2/3)'*a
(9a8b + v/3v/—4a™® + 27a12h?)

_|_

Wl =

(9a5b + v/3v/—4a™® + 271252 )
(2/3)/3a

Wl =

+

This shows that NPV conditions derived for static
charged black strings can be reduced to static black

str
of

do

ings without charge by using the corresponding value
f.

It was shown in [13, 16] that negative values of A
not support NPV propagation in some spherically

symmetric spacetimes. We mention here that the con-

dit
ric

be

ions for NPV propagation in a cylindrically symmet-
spacetime remains unaffected for A < 0. It would
interesting to explore the NPV regions for regular

black holes [31].
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