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We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small
scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon
scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between
particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons
may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational in-
teractions mediates an additional short-range potential between neutrons and bulk matter. These interactions
between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves.
We estimate the sensitivity and systematic effects of possible experiments.
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1. INTRODUCTION

It is believed that the Standard model is a low-
energy approximation of some more fundamental the-
ory. Most popular extensions of the Standard Model,
supersymmetric and superstring theories, predict the
existence of new particles and hence new interactions.
These new particles were not detected up to now be-
cause of their too large mass, or too weak interaction
with ordinary matter. This last case is of interest in
our discussion of a search for new hypothetical weak
interactions of a different nature.

The possible existence of new interactions with
macroscopic ranges and weak coupling to matter cur-
rently attracts increasing attention. A large number
of experiments have been performed to search for new
forces in a wide range of distance scales. Here, we
consider the possibilities of the neutron Lloyd’s mir-
ror interferometer in searching for some of these new
interactions.

The Lloyd’s mirror interferometer (Fig. 1), well
known in the light optics, has not yet been discussed
in the experimental neutron optics.

The geometric phase shift is determined by the dif-
ference of path lengths of the reflected and nonreflected
beams:
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Pgeom = PIl,geom — Pl,geom =

—k [\/L2+(b+a)2—\/L2+(b—a)2] ~ 2kab/L, (1)

where k is the neutron wave vector, L, b and a are
given in the Fig. 1 caption. The last equality is valid
with the relative precision better than ab/L?. The geo-
metric phase shift linearly depends on the interference
coordinate b. This means that the interference pat-
tern I o< sin?(wab/\,L) in the absence of any poten-
tials is sinusoidal with high precision ab/L? ~ 10~% at
a~b~10"2 cm and L = 1 m. The period of oscil-
lations in the interference pattern is Ayse = A\pL/2a,
where A, is the neutron wavelength, and is approxi-
mately 1 pum for the energy range of thermal neutrons
and reasonable parameters of the interferometer. But
for very cold neutrons in the peV-energy range, the pe-
riod of the interference oscillations approaches dozens
of um, and an interference picture can be registered
with a narrow (about 1pum) slit at a detector window
or with modern high-resolution position-sensitive neu-
tron detectors.

The idea of a possible application of the Lloyd’s
mirror interferometer for the search for new hypothet-
ical interactions between matter and particles consists
in measuring the neutron wave phase shift produced by
a hypothetical mirror-neutron potential. We here con-
sider three actively discussed hypothetical interactions:
the cosmological scalar fields proposed to explain the
accelerated expansion of the Universe, the axion-like
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Fig.1. Three possible configurations of the neutron

Lloyd's mirror interferometer: (A) the standard Lloyd's
mirror geometry; (B) interferometer with two mirrors,
only the bottom one is reflecting; (C') the length of
the reflecting mirror is decreased twice to avoid multi-
ple reflections. All planes are vertical, and hence the
effect of gravity on interference is reduced. The height
of the slit above the reflecting plane is a, L is the dis-
tance from the slit to the detector surface, b is the
distance of the detector coordinate from the reflecting
plane, | = aL(a+0) is the = coordinate of the beam-II
reflection point from the mirror

spin-dependent pseudoscalar nucleon—nucleon and/or
nucleon—electron interaction, and hypothetical devia-
tion of the gravitation law from the Newtonian one at
small distances (non-Newtonian gravity).

2. CHAMELEON SCALAR FIELD

There is evidence of the accelerated expansion of
the Universe. The nature of this effect is one of the
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most exciting problems in physics and cosmology. It is
not yet clear whether the explanation of the fact that
gravity becomes repulsive at large distances should be
found within general relativity or within a new theory
of gravitation. One possibility to explain this fact is
to modify the general relativity theory, and there are
a number of proposals of this kind. Among various
ideas proposed to explain this astronomical observa-
tion in an alternative way, one of popular variants is a
new matter component of the Universe, a cosmological
scalar field of the quintessence type [1] dominating the
present-day density of the Universe (see [2, 3] for the
recent reviews).

Acting at cosmological distances, the mass of this
field should be of the order of the Hubble constant:
hHy/c?* = 10733 eV /c2.

The massless scalar fields appearing in string and
supergravity theories couple to matter with gravita-
tional strength. Because of the direct coupling to mat-
ter with the strength of gravity, the existence of light
scalar fields leads to a major violation of the equiva-
lence principle. In the absence of self-interaction of the
scalar field, the experimental constraints on such a field
are very strict, requiring its coupling to matter to be
unnaturally small.

The solution proposed in Refs. [4-9] consists in the
introduction of the coupling of the scalar field to mat-
ter of such a form that as a result of self-interaction
and the interaction of the scalar field with matter, the
mass of the scalar field depends on the local matter
environment.

In the proposed variant, the coupling to matter is of
the order of one expected from string theory, but is very
small on cosmological scales. In the environment of the
high matter density, the mass of the field increases, the
interaction range strongly decreases, and the equiva-
lence principle is not violated in laboratory experiments
for the search for the long-range fifth force. The field
is confined within the matter that screens its existence
from the external world. In this way, the chameleon
fields evade tests of the equivalence principle and the
fifth force experiments even if these fields are strongly
coupled to matter. As a result of the screening effect,
the laboratory gravitational experiments are unable to
set an upper limit on the strength of the chameleon—
matter coupling.

The deviations of results of measurements of grav-
ity forces at macroscopic distances from calculations
based on Newtonian physics can be seen in the exper-
iments of Galileo, E6tvos or Cavendish type [10] per-
formed with macro-bodies. At smaller distances (1077
1072) cm, the effect of these forces can be observed
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in measurements of the Casimir force between closely
placed macro-bodies (see [11] for a review) or in the
atomic force microscopy experiments. Casimir force
measurements may to some degree evade the screening
and probe the interactions of the chameleon field at the
micrometer range despite the presence of the screening
effect [9, 12, 13].

At even smaller distances, such experiments are not
sensitive enough, and high-precision particle scattering
experiments may play their role. In view of the absence
of electric charge, experiments with neutrons are more
sensitive than with charged particles; electromagnetic
effects in scattering of neutrons by nuclei are gener-
ally known and can be accounted for with high preci-
sion [14, 15].

As regards the chameleon interaction of elementary
particles with bulk matter, it was mentioned in [16]
that a neutron should not show a screening effect: the
chameleon-induced interaction potential of bulk mat-
ter with neutron can be observed. It was also proposed
in [16] to search for a chameleon field through the en-
ergy shift of ultracold neutrons in the vicinity of a re-
flecting horizontal mirror. From the already performed
experiments on the observation of gravitational levels
of neutrons, the constraints on parameters characteriz-
ing the strength of chameleon—matter interaction were
obtained in [16].

Chameleons can also couple to photons. It was pro-
posed in [17, 18] to search in a closed vacuum cavity
for the afterglow effect resulting from the chameleon—
photon interaction in a magnetic field. The GammeV-
CHASE [19, 20] and ADMX [21] experiments based on
this approach are intended to measure (constrain) the
coupling of the chameleon scalar field to matter and
photons.

In the approach proposed here only, the chameleon—
matter interaction is measured, irrespective of the ex-
istence of the chameleon—photon interaction. The ap-
proach is based on the standard method of measuring
the phase shift of a neutron wave in the interaction
potential.

Irrespective of any particular variant of the theory,
testing the interaction of particles with matter at small
distances may be interesting.

In one of popular variants of the chameleon scalar
field theory [4-9], the chameleon effective potential is

Verr(9) = V(9) + exp(Bo/Mpi)p, (2)
where
Vi =4t T 3)

is the scalar field potential, Mp; is the Planck mass,
p is the local energy density of the environment, A =
= (B3c3pge)'/* = 2.4 meV is the dark energy scale,
pd.e. = 0.7-107% erg/cm? is the dark energy density,
and (3 is the interaction parameter not predicted by the
theory.

The chameleon interaction potential of a neutron
with bulk matter (mirror) was calculated in [16]:

V() = .
2+n>2/(2+n) (i)z/(2+n)
V2

m <2 +n>2“”") (2
MpA \ V2 B

=£-09-1072" eV
8 : ( :

—V (;)WM) :

54\ 2/
ﬁ) L B)

where A = hic/A = 82 ym and m is the neutron mass.

To reduce the strong effect of Earth’s gravity, the
mirror of the interferometer is vertical. The neutron
wave vector k' in potential V' is

2mV ,

— e k_k_W' (6)

The phase shift due to the chameleon-mediated in-
teraction potential of a neutron with the mirror, de-
pending on the distance from the mirror, is obtained
by integration along trajectories p = § k'ds = o —¢r,
where @1 and 7 are the phases obtained along trajec-
tories T and IT (see Fig. 1):

Vo=p53-09-10"% eV(
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Here, | = aL/(a+b) is the = coordinate of the beam-IT Yrepi = 2arccos(k [ky) = T — 0Qresi, (12)
reflection point from the mirror, v = mVyL/kh?, and
an = (44n)/(2+n). where

The phase shift from the chameleon neutron—mirror k, Ea+b
potential is Oprefi = 2k_b AT Qk_b 7 (13)

Peham = PIl,cham — Pl,cham =

B 0% b — an (b—a)?
C\en—lqy, b—a 1+ L2
b + a®n (b + a)?
S Y S R Y
b+a * L2
N v ban—l _ aan—l
~ N Tan 2ab g (9)

For a nonstrictly vertical mirror, the component of
the Earth’s gravity normal to the surface of the mirror
produces the potential Vg, = smgz, where g is the ac-
celeration of gravity and the coefficient > depends on
the angle 6 between the gravity vector and the mirror
plane. At # = 10", we have s ~ 5-107°. This linear
potential leads to the additional phase shift

B B _ xgm? "
Por = Pllgr = PLor = 912 (0 4 b)
x [(b+a)2\/L2 T 0b—a? -
2
»gm” abL
- W+ WD H B aP |~ T (10)

calculated in analogy with Eqs. (6)—(9).
The Coriolis phase shift due to Earth’s rotation [22]
is
2m

h

where € is the vector of angular rotation of Earth and
A is the vector of the area enclosed by the interferom-
eter beams.

With A = abL/(a+b), for the location of the Insti-
tute Laue—Langevin (where a good very cold neutron
source has been constructed [23]), we have

0.16abL
a+b

PCor = (Q ' A)7 (11)

PCor =

b

where a, b, and L are expressed in centimeters. As
expected, it is similar to the gravitational phase shift
in its dependence on both the slit and the interference
coordinates.

We must also calculate the phase shift of the neu-
tron wave along beam II at the point of reflection. Ne-
glecting the imaginary part of the potential of the mir-
ror, we write the amplitude of the reflected wave as
r = exp(—igyes) with the phase
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k, is the neutron wave vector component normal to
the mirror surface, and kj, is the boundary wave vector
of the mirror. This phase shift linearly depends on b,
similarly to the geometric phase shift @geom-

The reflected and nonreflected beams follow slightly
different paths in the interferometer. Therefore, in
the vertical arrangement, of the reflecting mirror, they
spent different times in Earth’s gravitational field, with
At = 2ab/Lv, where v is the neutron velocity. The
difference in vertical shifts of the reflected and nonre-
flected beams is Ah = 2gab/v?, and the phase shift due
to this difference is

AQpert = kg2abL/v4. (14)

With our parameters of the interferometer, this value
is of the order of 107%.

The total measured phase shift is

P = Pgeom T Pcham T Pgr + PCor + Prefi- (15)
The gravitational phase shift can be suppressed by in-
stalling the mirror vertically with the highest possible
precision. On the other hand, the gravitational phase
shift may be used for calibration of the interferome-
ter by rotation around the horizontal axis. The phase
shifts due to Earth’s rotation ¢co, and reflection ey
may be calculated and taken into account in the anal-
ysis of the interference curve.

Figure 2 shows the calculated phase shift @cpam
for an idealized Lloyd’s mirror interferometer (strictly
monochromatic neutrons, the width of the slit is zero,
the detector resolution is perfect), the gravitational
phase shift ¢, at s = 5-1075 (the deviation of the mir-
ror from verticality is 10”), and §¢pep (ky = 10% em™").

It is essential that the sought phase shift due to
hypothetical chameleon potential depends on the in-
terference coordinate nonlinearly. The effect of the hy-
pothetical interaction has to be inferred from analysis
of the interference pattern after subtracting the effects
of Earth’s gravity, Coriolis force, and reflection.

Figure 3 demonstrates the calculated interference
pattern for the same parameters of the interferometer
as in Fig. 2 for two cases: (1) with the geometrical
phase shift @geom, the gravitational phase shift g4, at
% =15-1077, and the phase shift of ray II at reflection
SPreft =T —repr (ky = 10% em™!) taken into account;
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Fig.2. The neutron wave phase shifts pcpam in the
Lloyd's mirror interferometer with the neutron wave
length X\, = 100 A (the neutron velocity v = 40 m/s),
L =1m, and a = 100 pm, and with the interaction pa-
rameters of the chameleon field with matter 3 = 107,
n = 1, and n = 6. Also shown: the gravitational
phase shift ¢, at ¢ = 5-107°; the Coriolis phase shift
¢cor, and the effect of reflection dprefr = T — Yregi

at ky = 10°cm~!. The period of oscillations in the
interference pattern is Aose = A\nL/2a =50 um

(2) the same plus the phase shift due to the chameleon
field with the matter interaction parameters f = 107
and n = 1.

After subtracting all the phase shifts except the
purely geometrical one, the interference pattern should
be strongly sinusoidal with the period of oscillations de-
termined by the geometric phase shift: Ayse = A\ L/2a.
The number of oscillations in the interference pattern
with the coordinate less than b is nys. = 2ab/A, L.

It follows from these calculations that the effect of
the chameleon interaction of a neutron with matter
may be tested in the strong-coupling range with the
interaction parameter down to 3 ~ 107 or lower.

The existing constraints on the parameters 3 and
n can be found in Fig. 1 in Ref. [16]. For example,
the allowed range of parameters for the strong-coupling
regime # > 1 are 50 < 8 < 510 for n = 1,
10 < < 2-10'° for n =2, and B < 10'° for n > 2. It
can be seen that Lloyd’s mirror interferometer may be
able to constrain the chameleon field in a large domain
of the coupling parameters.
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Fig.3. The calculated interference pattern for the
neutron—mirror interaction via the chameleon field (the
parameters of the interferometer are the same as in
Fig. 2): (1) the geometrical phase shift @geom the
gravitational phase shift o, at ¢ = 5-107°, and the
phase shift of the ray Il at reflection d¢gcom the gravi-
tation phase shift ¢, at ¢ = 5-1077, and the phase
shift of the ray Il at reflection dprefi = T — Pref
(kp = 10° cm™*) are taken account; (2) the same plus
the phase shift due to the chameleon field with the
matter interaction parameters 5 =107 and n =1

3. AXION-LIKE SPIN-DEPENDENT
INTERACTION

There are general theoretical indications of the ex-
istence of interactions coupling mass to particle spin
[24-28]. Experimental search for these forces is a
promising way to discover new physics.

On the other hand, a number of concrete propos-
als were published of new light, scalar or pseudoscalar,
vector or pseudovector weakly interacting bosons. The
masses of these new hypothetical particles and their
coupling to nucleons, leptons, and photons are not pre-
dicted by the proposed models.

The popular solution of the strong CP problem is
the existence of a light pseudoscalar boson — the ax-
ion [29]. The axion coupling to fermions has the general
form gopp = Cymy/ fa, where Cy is a model-dependent
factor. Here, f, is the Peccei-Quinn symmetry break-
ing scale, which is not predicted, and hence the ax-
ion may a priori have a mass in a very wide range,
10712 &V < m, < 10% eV. The main part of this mass
range from both low and high mass boundaries was
excluded as a result of numerous experiments and con-
straints from astrophysical considerations [30]. Astro-
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physical bounds are based on some assumptions con-
cerning the axion and photon fluxes produced in stellar
plasma.

More recent constraints limit the axion mass to
107° eV < mg < 1073 eV with accordingly very small
coupling constants to quarks and photons [30].

The axion is one of the best candidates for the cold
dark matter of the Universe [31, 32].

Axions can mediate a P- and T-reversal violat-
ing monopole—dipole interaction potential between spin
and matter (polarized and unpolarized nucleons or elec-

trons) [33]:
(

where g; and g, are dimensionless coupling constants of
the scalar and pseudoscalar vertices (unpolarized and
polarized particles), m,, is the nucleon mass at the po-
larized vertex, s = ho /2 is the nucleon spin, o is the
Pauli matrix, r is the distance between the nucleons,
A = h/mgc is the range of the force, m, is the axion
mass, and n = r/r is a unit vector.

Several laboratory searches (mostly by the torsion
pendulum method) provided constraints on the prod-
uct of the scalar and pseudoscalar couplings at macro-
scopic distances A > 1072 cm (see reviews [34-37]).

There are also experiments on the search for the
monopole—dipole interactions in which the polarized
probe is an elementary particle: a neutron [38-41] or
atoms and nuclei [42,43] (see the correction in [44]).

For the monopole—monopole interaction due to ex-
change by a pseudoscalar boson [33],

L4

Ar 2

o -n

Vmonfdip (I‘) = 9s9p W
n

95 e

- T r (17)

Vmonfmon(r)
the limit on the scalar coupling constant gs; can be
inferred from the experimental search for the “fifth
force” in the form of the Yukawa-type gravity poten-
tial Us(r) = asGMme "/ /r:

,  4rGmias
N he
where aj is the “fift-force” Yukawa-type coupling con-
stant.

It follows from the experimental tests of gravita-
tion at small distances (see reviews in |34, 35]) that g2
is limited by a value 107%°~1073® in the interaction
range 1 ecm > A > 107* em. The sensitivity of these
experiments decreases with decreasing the interaction
range below approximately 1 cm.

The pseudoscalar coupling constant is restricted by
gp < 107? from astrophysical considerations [37,45].

g: ~ 10" as, (18)
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It follows that the constraints obtained and ex-
pected from further laboratory searches are weak com-
pared to the limit on the product gsg, < 1072 inferred
from the above-mentioned separate constraints on g
and gp. Although laboratory experiments may not
lead to bounds that are strongest numerically, measure-
ments made in terrestrial laboratories produce the most
reliable results. The direct experimental constraints
on the monopole—dipole interaction may be useful for
limiting a more general class of low-mass bosons irre-
spective of any particular theoretical model. In what
follows, the constraint on the product gsg, may be used
for the limits on the coupling constant of this more gen-
eral interaction.

It follows from (16) that the potential between the
layer of substance and a nucleon separated by the dis-
tance x from the layer surface is

RENA
Vinon—dip() = £g5 eff/)\_ef(z+d)/,\ _
d:D( ) 9s9p 4m,, ( )
=+Voe ** (d>N), (19)

where Vo = gsgp,h> NA/4m,,, N is the nucleon density
in the layer, and d is the layer thickness. The “4” or
“—" depends on the nucleon spin projection on z axis
(the surface normal).

Phase shifts of beams I and IT due to the interaction
in Eq. (19) are calculated similarly to Eqs. (7) and (8):

5., mVo 12
+ kh2L +

b—a
L

or = kv L2+ (b—a)

F 1
X /exp [_X (a +
0
mVO
kh?

(b —a)? x

$>:| dx = Pl,geom

L2+(b—a)2b)\

= a(e—a/)\ _ e—b/A) —

+
= $PI,geom + P1,pot (20)

and

mVo
kh?L

VL2 + (b+a)? x

o) s+

o =k L2+ (b+a)?+

_b+a
L

mVo

kh?
e—a/X _ efb/)\)

A
L2 b 2
+ (b+a) T

= PI1,geom + X

X (2 — = @T1,geom T PI1,pot - (21)
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Fig.4. The neutron wave phase shift §,, at different

interaction ranges A\ of the axion-like spin-dependent

interaction with the product of the coupling constants

gsgp = 1078, Lloyd's mirror interferometer has the
same parameters as in Fig. 2

For the spin-dependent potential in Eq. (19), the
signs of the potential 1, and, accordingly, the phase
shift ¢por are opposite for the two spin orientations with
respect to the mirror surface normal. The difference in
these phase shifts, measured in the experiment, is

(o — i) — (o1 —em) =2(e1 — on) = 6. (22)

The geometric, gravitational phase shifts and the phase
shift of beam II at reflection calculated previously are
independent of spin.

The phase shift due to the axion interaction is

2vAa
B2 — g2
where v = gsg,NAL/4k. For b = a and A/a < 1, we
have @u. — Y\ /a.

Figure 4 shows the neutron wave phase shift @,
for different interaction ranges A. Lloyd’s mirror inter-
ferometer has the following parameters: neutron wave
length 100 A (neutron velocity v = 40 m/s), L = 1 m,
a = 100 ym, and the interaction strength gsg, = 10718,
The possible sensitivity seen from this figure shows
that constraints on the monopole—dipole interaction
that can be obtained with the method of the neutron
Lloyd’s mirror interferometry are competing with the
best constraints currently obtained by other methods
(see Ref. [37]).

Figure 5 shows the calculated interference pattern
due to an axion-like spin-dependent interaction. The
gradient of the external magnetic field V(u,, - B) nor-
mal to the mirror plane (u,, is the neutron magnetic

(23)

oz = (=) b1 =™,

0.8

0.6

0.4

0.2

|
400
b, um

|
30 325 350 375

Fig.5. Calculated interference pattern due to an axion-

like spin-dependent interaction with gsg, = 107'®

and the interaction range A = 500 pum (the inter-

ferometer has the same parameters as in Fig. 2):
(1) Vimon—dip = 0; (2) spin up; (3) spin down

moment) may produce the phase shift effect on polar-
ized neutrons, similar to the effect of the gravitational
force F,, = myg (see Eq. (10)). Simple calculation gives
that the magnetic field gradient 0.01 Oe/cm is equiva-
lent to approximately 5 - 10~° of Earth’s gravitation.

A significant increase in sensitivity may be achieved
in the range of small A (A/a < 1) if the geometry shown
in Fig. 1B is used, where the slit is located in close
vicinity to the surface of an additional (upper) nonre-
flecting mirror. The axion-like potential is produced in
this case by both mirrors, but with opposite signs in
accordance with Eq. (19).

To avoid multiple reflections, the boundary wave
vector of the reflecting mirror must satisfy the condi-
tion k, < 2ka/L, or the neutron beam incident on the
slit must be collimated such that the first half of the
reflecting mirror is not illuminated by the neutrons.
In this geometry, the phase shift due to the axion-like
monopole—dipole interaction of the neutron with both
mirrors is

2yAa
Pax = 2

I:e(bfa)//\ —e Mg eTVA 1| (24)

— a2

In this case, @qr — Y(1 —e %*) = vy as b — a for
A/a < 1 compared to yA/a in the case of one mirror
(Eq. (23)).

The gain in sensitivity at A\/a < 1 compared to the
case in Fig. 4 is illustrated in Fig. 6.
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Yax, rad

0.1}

0.01 L

Fig.6. Neutron wave phase shift ., at different in-
teraction ranges \ of the axion-like spin-dependent in-
teraction with the product of the coupling constants
gsgp = 1078, Lloyd's mirror interferometer has the
geometry shown in Fig. 1B with the same parameters
asin Fig. 2, and the distance between mirrors 100 zm

4. NON-NEWTONIAN GRAVITY

New short-distance spin-independent forces are fre-
quently predicted in theories extending the Standard
Model. These interactions can violate the equivalence
principle if they depend on the composition of bodies
or the type of particles.

Precision experiments to search for deviations from
Newton’s inverse square law and for violation of the
weak equivalence principle have been performed in a
number laboratories (reviews can be found in [10,34-
37].

The pioneering ideas of multidimensional models
first formulated in the first half of the XXth century
(G. Nordstrom, T. Kaluza, and O. Klein) received re-
newed interest in [46-48,50]. The development of su-
pergravity and superstring theories required extra di-
mensions for their consistency. A more recent promis-
ing development contained in [49-53] proposed mech-
anisms in which the standard model fields are located
on the 4-dimensional brane while gravity propagates to
the (4 4+ n)-bulk with a larger number of dimensions.
As a result, the gravitational law may be different from
the Newtonian one.

The frequently used parameterization of a new spin-
independent hypothetical short-range interaction po-
tential has the Yukawa-type form

ozGMme_T/)\

Uy uk (T) = > (25)

r
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where G is the Newtonian gravitational constant, M
and m are the masses of gravitating bodies, « is a di-
mensionless parameter characterizing the strength of
the new force relative to gravity, and A = h/myc is
the Compton wavelength of the particle with the mass
mgo. The mass mg can be the mass of the new scalar
field responsible for the short-range interaction. In this
case, a ~ g2 is the product of the scalar coupling con-
stants. Alternatively, mg can be the mass of the lightest
Kaluza—Klein state (which is the leading-order mode)
when the short-range interaction comes from an extra-
dimensional extension of the standard model.

The strength « is constrained to be below unity
for A > 100 um [37,54], but for shorter distances,
the measurements are not as sensitive, being compli-
cated by the Casimir and electrostatic forces [11]. The
sensitivity reached in the experiments aiming to test
spin-independent interactions between elementary par-
ticles and matter is by orders of magnitude worse: for
A = 100 pm, it is at the level a > 10! [55], with the
loss of sensitivity at shorter distances.

The potential following from the interaction in
Eq. (25) between a layer of substance and a neutron
separated by the distance x from the layer surface is

Vyur () = 2ram2 NG 2e™?/* = Voye /A, (26)

where N & pm,, is the nucleon density in the layer, p
is density of the mirror, and Vp = 2ram? NGA? in this
case.

The potential in Eq. (26) has the same coordi-
nate dependence as the axion-like interaction poten-
tial in Eq. (19), and therefore the expressions for
the phase shifts are similar to Eq. (23) with
= 2rap\’m2 L/kh>.

Figure 7 shows the phase shifts due to the non-
Newtonian interaction in Eq. (26) at the same parame-
ters of the interferometer as in Fig. 1 and p = 10 g/cm?®.

For the “inverted” Lloyd’s mirror geometry, when
the reflecting mirror has a much lower density such that
its gravitational effect is insignificant compared to the
effect of the upper mirror, the phase shift is

29
PYuk = 22

x |a(e” ¥ — =0/ A) 1 p(1 —e M) (27)
For b — a and A/a — 0, we have gy, — 7, with a
significant gain in sensitivity for A\/a < 1 compared to
the geometry in Fig. 14 and Eq. (23). To avoid mutiple
reflections in this case, the geometry of Fig. 1C' may be
applied, in which the reflecting mirror has only half the
length in Fig. 1A. This gain is illustrated in Fig. 8.
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Fig.7. The neutron wave phase shifts ¢y, in the
Lloyd's mirror interferometer of the geometry shown in
Fig. 1A and with the same parameters as in Fig. 2
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Fig.8. The neutron wave phase shifts ¢y, in the

Lloyd's mirror interferometer of the geometry shown in
Fig. 1C' and with the same parameters as in Fig. 2

5. FEASIBILITY

As mentioned above, the interference may be mea-
sured step by step by shifting a narrow slit with the
width 6b < Ayse. A better option is to use the coor-
dinate detector measuring all the interference picture
simultaneously in this way. The current spatial reso-
lution of position-sensitive slow-neutron detectors is at
the level of 5 pm with electronic registration [56] and
about 1 pym with the plastic nuclear track detection
technique [57]. With a B neutron converter 1 ym
thick, the registration efficiency for 100 A-wave-length
neutrons may be close to 100 %.

From Ref. [23], where the neutron phase den-
sity at the PF-2 very cold neutron (VCN) chan-
nel at the Institute Laue-Langevin was measured to
be 0.25 cm3:(m/s)"® at v = 50 m/s, it is possi-
ble to estimate the VCN flux density as ¢yveon =
=1.66-10% em™2.s7 ' (m/s)"" &~ 1-10% em™2.s7.A~!
(for the boundary velocity 6.5 m/s of the neutron
guide). On the other hand, Ref. [58] gives the larger
value dyon = 4-10% em™2:s7!(m/s)~! for the same
channel.

Using the Zernike theorem, it is possible to calcu-
late the width d of the slit necessary to satisfy good
coherence within the coherence aperture w, i.e., the
maximum angle between diverging interfering beams:
x = mwdg /N, < 1, if the slit is irradiated with an
incoherent neutron flux. With w = 2b,,4,/L, the slit
width dgy < LA, /27bmas ~ 2pm for by, = 1 mm
(20 orders of interference at the period of interference
Aose = ApL/2a =50 pm at a = 100 pm).

For the monochromaticity 5 A (the coherence length
leon = 20A,), the slit width 2 um and length 3 cm,
the divergence of the incident beam is determined
by the VCN guide boundary velocity 6.5 m/s: Q =
= 6.5/100 = 0.065, the interference aperture w =
= 2b/L = 0.2/100 = 21073, and hence w/Q =
= 0.03, the count rate to all interference curves with
a width of 1 mm (20 orders of interference) is given
by 10°-5-(2-107%)-3-0.03 ~ 10 s~!. In one-day
measurements, the number of events in one period of
interference is about 4 - 10*. It is enough to observe the
phase shift of approximately 0.1 corresponding to the
effect at 5 = 107.

Distinctive feature of the Lloyd’s mirror interfer-
ometer is the possibility to register all the interference
pattern simultaneously along the z coordinate starting
from z = 0 (see Fig. 1). The measured interference
pattern is then analyzed as regards the presence of the
sought effects, after taking the known corrections for
gravity, Coriolis, and reflection phase shifts into ac-
count.

The LLL-type interferometers [59, 60] may be used
in principle to search for new hypothetical interactions
by placing a piece of matter in the vicinity of interfering
beams. But geometry of these interferometers does not
permit probing hypothetical short-range interactions,
the axion-like or non-Newtonian gravity, in this way.

We can estimate the sensitivity of the LLL-type in-
terferometer to the chameleon potential, which is actu-
ally not short-range. The phase shift in this case is

2’7 \Y4 1 + (2a/L)2 (2a)an—1

Aanfl

oLLL = (28)
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where a is the half distance between the beams of the
LLL interferometer. The sensitivity of the Lloyd’s mir-
ror and the LLL interferometers is determined by the
factor La®» ! /k, which is much in favor of the Lloyd’s
mirror interferometer.

In LLL-type interferometers [59, 60], an interference
pattern is obtained point by point by rotation of a
phase flag introduced into the beams. In the case of
the VCN three-grating interferometers (see, e.g., [61—
63]), the phase shift between the beams is realized by
the same method or by shifting the position of the grat-
ing.

The neutron Lloyd’s mirror experiments may be
performed with monochromatic very cold neutrons or
in the time-of-flight mode using a large wavelength
range, for example, 80-120 A. The pseudorandom mod-
ulation [64, 65] is used in the correlation time-of-flight
spectrometry. It was realized in the range of very low
neutron energies [66]. In this case, a two-dimensional
interference coordinate—time-of-flight registration gives
a significant statistical gain.

Ag in the VCN interferometers based on three grat-
ings, the space between the beams in the Lloyd’s mirror
neutron interferometer, is small (fractions of millime-
ters). Therefore, it can hardly be used in experiments
where some devices are introduced in the beams or be-
tween the beams (for example, to investigate nonlocal
quantum mechanical effects). But it may be applica-
ble to search for short-range interactions when they are
produced by a reflecting mirror.

The Lloyd’s mirror neutron interferometer may be
useful in a search for interactions proposed in other
recently developed theories of scalar fields where the
screening mechanism may be essential: symmetron [67—
70] and galileon [71-79]. A more detailed consideration
of the effects that may be produced by these interac-
tions on neutron waves in the Lloyd’s mirror interfer-
ometer is beyond the scope of this paper.

The author is indebted to the anonymous referee
for his or her comments on the first version of the
manuscript and suggestions.
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