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The analysis in this paper shows that the Hohenberg—Kohn theorem is the constellation of two statements:
i) the mathematically rigorous Hohenberg—Kohn lemma, which demonstrates that the same ground-state den-
sity cannot correspond to two different potentials of an external field, and ii) the hypothesis of the existence of
the universal density functional. Based on the obtained explicit expression for the nonrelativistic particle energy
in a local external field, we prove that the energy of the system of more than two noninteracting electrons
cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting
electrons. It means that the Hohenberg—Kohn lemma cannot provide justification of the universal density func-
tional for fermions. At the same time, statements of the density functional theory remain valid when considering
any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of
the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional
corresponds to the cases of noninteracting particles and to interaction in the Hartree—Fock approximation.
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1. INTRODUCTION

The main point of the Hohenberg—Kohn seminal
paper [1], devoted to the justification of the density
functional theory (DFT), is the statement that the ex-
ternal field potential “v(r) is (to within a constant)
a unique functional of n(r)”. The function n(r) is
an inhomogeneous ground-state density of the electron
gas placed in an external static field v(r). On the
ground of this statement, the second statement is for-
mulated [1]: “since, in turn, v(r) fixes H, we see that
the full many-particle ground state is a unique func-
tional of v(r)”, where H is the explicit Hamiltonian of
the interacting electron system in the static external
field v(r). The second statement in quotes is trivial
if the first one is true. Below, we show that the first
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(and the main) statement that v(r) is a unique func-
tional of n(r) is not equivalent to the statement, proved
in [1], that the same inhomogeneous density n(r) can-
not correspond to two different local potentials vy (r)
and vz (r) of the external field in the ground state of
the nonrelativistic system of electrons (except the case
v1(r) —v2(r) = const) [1,2]. The last statement is rigor-
ous and we call it the Hohenberg—Kohn lemma in what
follows. Hence, the inhomogeneous density n(r) of the
ground-state nonrelativistic electron system uniquely
corresponds to the potential v(r) (to within an additive
constant). In the case of ground state degeneration, the
lemma relates to the density n(r) of any ground state.
At the same time, the statement “v(r) is (to within a
constant) a unique functional of n(r)” is not true for
the system of more than two interacting electrons (or,
more general, Fermi particles).

According to the Hohenberg—Kohn paper [1], it fol-
lows from the statement of the lemma that the external
field potential v(r) is an inhomogeneous density func-
tional
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n(r) = n(r,[v]) = v(r) = v(r,[n]) + const. (1)
The existence of the functional (the square brackets in
(1)) means that there is a universal rule according to
which the value of the external field potential v(r) at
each point r can be found if the inhomogeneous density
n(r) corresponding to the ground state of the system is
known. This means that, in principle, there exists (al-
though cannot be explicitly found or indicated) a rule
for determining the function v(r) by the known func-
tion n(r) whose structure is independent of the explicit
form of v(r) and n(r). We emphasize that this very
strong statement has not yet been called into question.
In fact, in the general case, there is no one-to-one cor-
respondence between the Hohenberg-Kohn lemma and
relation (1) on a functional dependence. Tt only follows
from the Hohenberg—Kohn lemma that quite a definite
external field v(r) can be put in correspondence with
each function n(r) (up to a constant factor). But this
does not mean that such a correspondence is estab-
lished by the unified rule v(r) = v(r,[n]) universal for
any external field [3].

In other words, each external field determines a
unique density (it is clear, e.g., on the basis of the
universal rules of the perturbation theory), and each
density determines a unique external field on the ba-
sis of the Hohenberg—Kohn lemma. However, the rule
for the last correspondence can be nonuniversal. This
rule in general depends on the concrete form of the
density. The possibility of such a nonuniversality of
the rule of correspondence for the “inverse” functional
v(r) = v(r, [n]) was not considered in [1]. The existence
of this nonuniversality violates the Hohenberg—IKohn
theorem, although the Hohenberg—Kohn lemma is un-
doubtedly correct. Below, we show that the universal
density functional does not exist in the case where the
number of fermions is greater than two.

2. FORMULATION OF THE PROBLEM

For the reasons discussed in the Introduction, we
note that the inhomogeneous density n(r) is a func-
tional n(r, [v]) by definition,

n(r) = (To|¥F(r) T(r)[To).

The ground-state wave function ¥y is a functional of
the external field v(r), ¥y = Uo[v]. Here, ¥f(r) and
U(r) are the field creation and annihilation operators.
This means that at each point, the inhomogeneous
density is determined by the external field potential.
Hence, the correspondence rule between the density
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n(r) and the field v(r) is established based on the solu-
tion of the corresponding Schrodinger equation for the
wave function ¥y in a given external field v(r) and on
finding the inhomogeneous density n(r).

Then, it only follows from the lemma proved by
Hohenberg and Kohn [1] that the functional n(r,[v]) is
unique (taking the condition n(r, [v]) = n(r, [v+const])
into account). It is clear that the functional n(r,[v]) is
essentially nonlinear in the external field v(r). This
means that two possibilities are admissible without vi-
olating the Hohenberg—Kohn lemma: (i) the inverse
problem of finding the dependence of v(r) on n(r) has
individual solutions for each pair of functions n(r) and
v(r) (or for certain types (classes) of pairs of functions
n(r) and v(r)); (ii) the inverse problem has a universal
solution v(r) = v(r,[n]). As noted above, this dilemma
is not usually considered, and it is assumed that there
is the universal solution v(r,[n]) valid for any external
field and any number of particles, i.e., possibility (ii)
is always realized [3].

The essence of the problem under consideration can
be expressed in other words. We introduce the operator
P that establishes the relation between the functions
n(r) and v(r):

n(r) = Pou(r).

The operator P then provides the equality
Pu(r) = P{v(r) + const}.

In addition, it follows from the definition of the inhomo-
geneous density n(r) that the operator P is nonlinear.
Therefore, the problem of finding the inverse opera-
tor P! that establishes the relation between v(r) and
n(r), v(r) = P~ !n(r), has no unique solution. The
difficulty is just in the nonlinearity of the relation bet-
ween the functions n(r) and v(r), otherwise the inverse
operator P71, as is known, should be unique.

In fact, as follows from the above, the Hohenberg—
Kohn lemma is insufficient for the statement about the
existence of the universal solution v(r,[n]). However,
it seems impossible to disprove the statement about
the universality in the general form. We therefore use
the proof by contradiction. We assume that the func-
tional v(r) = v(r, [n]) exists and analyze consequences
of this statement. With the example of noninteracting
fermions, we show that such an assumption leads to a
contradiction.

If we accept the validity of statement (1), then the
ground-state energy Ej of the system of N interacting
electrons with a Hamiltonian H in the external field
with the potential v(r), which is characterized by the
wave function ¥y, can be written as
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Eo = (Vo|H|¥o) = Eo(N, [Yo], [v]) =

= Ey([n],[v]), N = /

Here, it is taken into account that (¥o|¥g) = 1 and
Uy = Uy[v] = ¥o[v+const]. In turn, it immediately fol-
lows from (2) that the quantity F[n] = (¥o|T + U|¥y),
which defines the system ground-state energy
Bl (o) = Flnl + [ ot e, ()
is a functional of only the density n(r) (“universal” den-
sity functional). In this case, it is admissible to use the
term "universal" in the sense of the independence of
its explicit form of the external field potential [1, 2], al-
though this requires considering the v-representability
and N-representability of the inhomogeneous density.
The operators T and U are respectively the kinetic
and interparticle interaction energy operators. State-
ment (3) is the basis of the DFT widely used in var-
ious areas of physics and chemistry (see, e.g., [4,5]).
However, the exact form of this universal functional is
still unknown even for noninteracting electrons (U = 0,
N > 1). Tt is clear that there is a one-to-one corre-
spondence between the statements about the existence
of the functionals v(r, [n]) and F[n], i.e., the existence
of one of the these functionals predetermines the ex-
istence of the other. Hence, if the functional F[n] in
(3) does not exist, the functional v(r, [n]) also does not
exist [3].

3. THE DENSITY FUNCTIONAL PROBLEM
FOR NONINTERACTING ELECTRONS

In view of the foregoing, we consider one nonrel-
ativistic electron of mass m in a static external field
v(r). Then the electron steady state characterized by
a certain set of quantum numbers «, including the spin
quantum number o, is completely defined by the wave
function ®,(r) that satisfies the Schrodinger equation

{

where €, is the electron energy in the corresponding
state. Because the electron energy is independent of
spin, each value of €, is doubly degenerate in the spin
quantum number, as are other physical quantities, in-
cluding the inhomogeneous density n, (r). It is custom-
ary to solve Eq. (4) for eigenvalues with the boundary
condition ®,(Jr|] = o0) = 0 (the so-called condition
at infinity [6]). With the possibility of considering the

—h—2A + v(r)

» 4

b o) = coalr),
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system in a finite volume V', the boundary condition
for Eq. (4) in the most general form is written as

Bo(r—S) =0 (5)

where S is the surface bounding the volume V. We
further take into account that the wave function @, (r)
can be considered a real function [6]. Then

na(r) = 8o (r)]” = (r), (6)

Veng(r) = 28, (r)V,®, (1),
Apng(r) =28,(r)A P, (r) +
+2(Vy @, (r))(VeDq(r)).

It immediately follows from Eqs. (4)—(7) that the in-
homogeneous density nq(r) satisfies the equation for

(7)

eigenvalues

2

h h?
— EATTLO[ (I‘) +

8mng(r)
X (Vena(r)) + v(r)

with the boundary conditions

Ve (r)|r—s = 0. 9)

We now integrate Eq. (8) over the volume occupied by
the system, using the normalization condition

/na(r) v =1

that immediately follows from (6). From (8), we then
find the density functional for the energy €,:

(Veng(r)) x
(8)

N (r) = €ang(r)

ne(r = S) =0,

(10)

a([n) [o]] = FO[n] + / o(E)na(r)dV, (1)
FOng] = FyV el + By [nal, (12)

Fo(l)[n | = ——2 Apng(r)dV,
/ (13)

(V 14 (1)) (Vena(r))

na(r)

W [na] = dv,

where F(l)[na] is the universal density functional F[n]
in Eq. (3) for one particle (superscript (1)). The func-
tional F([n,] is written in (12) in the form of two
terms for two reasons. First, because of the Gauss for-
mula and the second boundary condition in (9), the
functional Fo(l)[na] vanishes,

/AnOZ

F(l)[na

Vena(r)dS = 0. (14)

4m
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Second, the functional explicit form Fv(é) [na] in (13) is
formally exactly identical to the so-called Weizsécker
correction to the Thomas—Fermi kinetic energy func-
tional [7] (see Refs. [4,5] for more details). In contrast
to the Weizsicker correction, the expression Fv(;) 4]
in (13) in this problem is an exact expression for the
“universal” functional of the inhomogeneous density for
one particle. Hence, in this case, the “universal” den-
sity functional F(V[n,] exists, is found exactly, and is

written as
FO[ng] = Fi [na). (15)

By direct calculation (see, e.g., [5]), it is easy to verify
that

5FIS[}') [na] _ h2 e
Sna(r) — 4mna(r) Artia(r) +
h2
+m(vr”a(r))(vrna(r)). (16)

Therefore, Eq. (8) for energy eigenvalues €!) of one
particle in the external field v(r) with boundary condi-
tions (9) is a consequence of the variation equation for
the energy ¢ ([n"), [v]) as the inhomogeneous density
functional n() (r) of one particle in the specified exter-
nal field v(r),

seMmM] = o. (17)

Indeed, using normalization condition (10) and the
Legendre transform, from (17), we find

56(1)[n(1)]
on()
To determine the constant in Eq. (18), we take into
account that, according to (11)—(16),
SFM M
on) (r)

= const. (18)

+ v(r) = const = ). (19)
Thus, variation equation (17) is equivalent to (8) and
is completely identical to the corresponding equation
for the wave function functional in quantum mechanics
(see, e.g., [6]). Hence, in the one-particle case under
consideration, there exists a density functional v(r,[n])
for the external field potential, determined up to a con-
stant factor,

6F(1)[n(1)]
(1) S (L
v(r, [n'"]) + const = ()
h? h?
= Wfpy -
4mn™) (r) A (r) 8m[n)(r)]? 8

x (Vo™ (0))(VenM(r)).  (20)
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Therefore, as noted above, the existence of the func-
tional F(M[p(M] in (15) predetermines the existence of
the functional v(r, [n("]) in (20), and vice versa.

We note an essential circumstance. According
to (20), in the case of one electron, the functional
v(r,[n(M]) is local: v(r,[nM]) = v[n(r)], i.e., the
value of the potential v(r) at a point r is determined (up
to a constant) by the inhomogeneous density n(!)(r) at
that coordinate. In the general case, if we assume the
existence of the density functional, this locality is evi-
dently absent.

Taking into account that the Hohenberg—Kohn
lemma proof, as well as statements (1) and (3), are
by no means independent of a particular value of the
number of particles N in the system, the assumption
on the existence of the “universal” density functional
allows extending the results obtained to the case of an
arbitrary number of noninteracting electrons.

For this, we consider a system of N noninteracting
electrons in the external field v(r). To account for the
identity of electrons, it is most convenient to use the
secondary quantization formalism (see Refs. [4-6] for
more details). We note that this consideration is fully
equivalent to the use of Slater determinants to describe
the wave function of the system of noninteracting elec-
trons and to implement the Young scheme [5,6]. Any
state of the system of N noninteracting identical elec-
trons is then characterized by a set of the so-called “oc-
cupied” single-particle states aq,... ,an (see (4)) and,
by virtue of the Pauli principle,
for i#j.
Then the energy E© and inhomogeneous density
n(©(r) in a corresponding state are given by [5, 6]

E :GOZM

e
nO(r,ay,... ay) = Znai (r).

(6 7] 75 ay (21)

E(O)(ala“' 7aN)

(22)

Here, €, = €q,; ([na;],[v]) (see (11)—(13)), and £,,1 =
= N. Tt then immediately follows from (21) and (22)
that the energy E(®) of the system of N(N > 3) nonin-
teracting identical electrons, including the ground-state
energy E(SO), cannot be the density functional n(® (r)
in the specified external field due to the nonlinearity of
the functional F[Sé) [Ma,] in (13). It is clear that a sim-
ilar statement also holds for the universal functional
(Uo|T|¥g). This is a consequence of the fact that the
external field potential v(r) for N > 3 cannot be pre-
sented as the density functional n(r) (see (20)).

In the case of two noninteracting ground-state
electrons, the DFT statements remain valid due to



MITD, Tom 143, Bhm. 4, 2013

The problem of the universal density functional ...

the double degeneracy in the spin quantum number
(n(r) = 2n(V(r); see, e. g., [8]). We also note that these
results are directly associated with the Pauli principle,
which applies only to fermions. In the case of ground-
state bosons, which are “accumulated” at one lowest
energy level (Bose condensation), the DFT statements
remain valid at an arbitrary number of noninteracting
bosons.

Thus, for more than two noninteracting fermions
in the inhomogeneous ground state, the external field
potential v(r) is not the density functional n(r), i.e.,

o(r) # o(r, [n]).

4. THE DENSITY FUNCTIONAL PROBLEM
FOR INTERACTING ELECTRONS

We now show that the obtained results lead
straightforwardly to the validity of an analogous con-
clusion for the system of interacting electrons. The
Hamiltonian of the system of inhomogeneous electrons
can be written as

Hy=T +/drv(r)ﬁ(r) + AU, (23)

where n(r) is the electron density operator,
(Toli(r)|Po) n(r), and U is the operator of
the electron interaction energy. Then the energy Eq())

of the ground state ¥y(\) satisfies the equality (see,
e.g., [9])

9Eo(M)
o\

0H)
oA

= <‘I’0(/\)| |‘I’0(/\)> =

= (Wo(M[UTo(A)).  (24)

This straightforwardly implies an explicit relation for
the ground-state energy of the system of interacting
electrons:

1

By — By = /

0

A

i\ (U,

(25)

where E(()O) is the ground-state energy of the inhomoge-
neous electron gas without interaction, which has been
calculated above, and (U), is the average potential en-
ergy of the inhomogeneous electron system with Hamil-
tonian (23). We next recall that if the density func-
tional v(r, [n]) exists, the average kinetic energy, as well
as average potential energy, of the inhomogeneous elec-
tron system is the universal density functional [10]. It
is obvious that presence of the parameter \ in Hamil-
tonian (23) has no effect on this statement as well as
the integration in Eq. (25). It then directly follows
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from (25) that for the existence of the universal den-
sity functional F[n] (see (3)) requires the existence of
the universal density functional for the inhomogeneous
electron system without interaction. This is impossible,
as was shown above, for more than two Fermi particles.

In a different way, the impossibility of the exis-
tence of the density functional of an inhomogeneous
electron system follows from the fact that the terms in
the perturbation theory series for energy, which contain
the interaction potential, have a different nature than
the terms without interaction. Therefore, they cannot
compensate the “non-universality” of the kinetic energy
of noninteracting electrons.

5. THE DENSITY MATRIX FUNCTIONAL
THEORY

As a result, we come to the conclusion that the
Hohenberg—Kohn lemma [1, 2] cannot be a justification
of the existence of a “universal” density functional as a
precise statement or a theorem. At the same time, in
various approximations (e. g., in the limit of weak inho-
mogeneity of the external field or in the semiclassical
limit for the electron gas), the “universal” functional
can exist. In this relation, we note the following. The
leading approximation for density functional construc-
tion is the so-called local density approximation (LDA)
(see [4,5,10] for the details). The basis of LDA is the
dependence of the energy of a homogeneous electron
gas on the average density n, which is equal to the ra-
tio of the total number N of electrons to the volume
V, n = N/V. The analysis of an homogeneous elec-
tron gas is in turn based on use of the thermodynamic
limit transition N — oo, V = 0o, N/V — n # 0 (see,
e.g., [9]). This means that the model of a homogeneous
electron system cannot be used as the initial approach
for considering a finite number of electrons in an exter-
nal field (in particular, in the case of electrons in the
field of one or several nuclei, when the conditions of the
thermodynamic limit transition are not valid even for
a nuclear charge Z > 1).

In this relation, we note that the Hohenberg-Kohn
lemma is correct not only for an inhomogeneous density
n(r) but also for the single-particle density matrix

pM (x,2') = (T | T (2) T (x")|To) (26)
(see [11,12] for the details). This is easy to verify
taking into account that the inhomogeneous density
n(r) = p((r,r) is completely determined if the den-
sity matrix is known (the opposite statement is, in gen-
eral, incorrect). Then, instead statement (1) which, as
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shown above, is the basis of the DFT, we can use a
similar statement for the single-particle density matrix

) (r,1),
pV(r,r') = pO(r, s [o]) = v(x) + const =

=v(r; [pM]). (27)

6. CONCLUSIONS

The approach in this paper is the basis of the theory
of the density matrix functional (TDMF), originated
from Hilbert’s theorem [13] (the abbreviation TDMF
must be distinguished from DMFT for the dynamic
mean field theory). In the TDMF framework, the value
F in (3) becomes the universal density matrix func-
tional: F = F[p(M] [14]. However, as in case (1), it is
impossible to prove statement (27) in the general case.
Nevertheless, the TDMF has a wide application for the
study of the inhomogeneous electron gas properties
(see, e.g., [15,16] and the references therein). This
is because the TDMF, in contrast to the DFT [17],
provides the correct description of the inhomogeneous
electron gas in both the ideal gas approach and the
self-consistent Hartree—Fock approximation [14-16].
The situation under consideration is similar to the one
for classical liquids, where numerous closed equations
for the pair correlation function can be formulated
with various choices for the generating functionals
(see, e.g., [18]). Such a choice is limited only by
the conditions of a consistent theory and agreement
with experimental data. The fulfillment of the second
requirement in the case of an inhomogeneous electron
gas is restricted because there is no direct way to
experimentally measure the inhomogeneous density
n(r) (and the single-particle density matrix p(*) (r,r'))
as a function of the coordinate. We can be guided
only by the energetic characteristics of the systems of
interacting particles, which are integral values based
on local functions n(r) and p(*)(r,r'). Therefore, the
condition of a self-consistent theoretical foundation
plays a primary role. The above consideration shows
that the TDMF approach is preferable in this sense.
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