
ÆÝÒÔ, 2013, òîì 143, âûï. 4, ñòð. 729�734 

 2013
THE PROBLEM OF THE UNIVERSAL DENSITY FUNCTIONALAND THE DENSITY MATRIX FUNCTIONAL THEORYV. B. Bobrov a;b*, S. A. Trigger a;
**aJoint Institute for High Temperatures Russian A
ademy of S
ien
es125412, Mos
ow, Russiab National Resear
h University �MPEI�111250, Mos
ow, Russia
Eindhoven University of Te
hnologyP.O. Box 513, MB 5600 Eindhoven, The NetherlandsRe
eived O
tober 4, 2012The analysis in this paper shows that the Hohenberg�Kohn theorem is the 
onstellation of two statements:i) the mathemati
ally rigorous Hohenberg�Kohn lemma, whi
h demonstrates that the same ground-state den-sity 
annot 
orrespond to two di�erent potentials of an external �eld, and ii) the hypothesis of the existen
e ofthe universal density fun
tional. Based on the obtained expli
it expression for the nonrelativisti
 parti
le energyin a lo
al external �eld, we prove that the energy of the system of more than two nonintera
ting ele
trons
annot be a fun
tional of the inhomogeneous density. This result is generalized to the system of intera
tingele
trons. It means that the Hohenberg�Kohn lemma 
annot provide justi�
ation of the universal density fun
-tional for fermions. At the same time, statements of the density fun
tional theory remain valid when 
onsideringany number of nonintera
ting ground-state bosons due to the Bose 
ondensation e�e
t. In the framework ofthe density matrix fun
tional theory, the hypothesis of the existen
e of the universal density matrix fun
tional
orresponds to the 
ases of nonintera
ting parti
les and to intera
tion in the Hartree�Fo
k approximation.DOI: 10.7868/S00444510130401251. INTRODUCTIONThe main point of the Hohenberg�Kohn seminalpaper [1℄, devoted to the justi�
ation of the densityfun
tional theory (DFT), is the statement that the ex-ternal �eld potential �v(r) is (to within a 
onstant)a unique fun
tional of n(r)�. The fun
tion n(r) isan inhomogeneous ground-state density of the ele
trongas pla
ed in an external stati
 �eld v(r). On theground of this statement, the se
ond statement is for-mulated [1℄: �sin
e, in turn, v(r) �xes H , we see thatthe full many-parti
le ground state is a unique fun
-tional of v(r)�, where H is the expli
it Hamiltonian ofthe intera
ting ele
tron system in the stati
 external�eld v(r). The se
ond statement in quotes is trivialif the �rst one is true. Below, we show that the �rst*E-mail: vi
5907�mail.ru**E-mail: satron�mail.ru

(and the main) statement that v(r) is a unique fun
-tional of n(r) is not equivalent to the statement, provedin [1℄, that the same inhomogeneous density n(r) 
an-not 
orrespond to two di�erent lo
al potentials v1(r)and v2(r) of the external �eld in the ground state ofthe nonrelativisti
 system of ele
trons (ex
ept the 
asev1(r)�v2(r) = 
onst) [1; 2℄. The last statement is rigor-ous and we 
all it the Hohenberg�Kohn lemma in whatfollows. Hen
e, the inhomogeneous density n(r) of theground-state nonrelativisti
 ele
tron system uniquely
orresponds to the potential v(r) (to within an additive
onstant). In the 
ase of ground state degeneration, thelemma relates to the density n(r) of any ground state.At the same time, the statement �v(r) is (to within a
onstant) a unique fun
tional of n(r)� is not true forthe system of more than two intera
ting ele
trons (or,more general, Fermi parti
les).A

ording to the Hohenberg�Kohn paper [1℄, it fol-lows from the statement of the lemma that the external�eld potential v(r) is an inhomogeneous density fun
-tional729
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onst: (1)The existen
e of the fun
tional (the square bra
kets in(1)) means that there is a universal rule a

ording towhi
h the value of the external �eld potential v(r) atea
h point r 
an be found if the inhomogeneous densityn(r) 
orresponding to the ground state of the system isknown. This means that, in prin
iple, there exists (al-though 
annot be expli
itly found or indi
ated) a rulefor determining the fun
tion v(r) by the known fun
-tion n(r) whose stru
ture is independent of the expli
itform of v(r) and n(r). We emphasize that this verystrong statement has not yet been 
alled into question.In fa
t, in the general 
ase, there is no one-to-one 
or-responden
e between the Hohenberg�Kohn lemma andrelation (1) on a fun
tional dependen
e. It only followsfrom the Hohenberg�Kohn lemma that quite a de�niteexternal �eld v(r) 
an be put in 
orresponden
e withea
h fun
tion n(r) (up to a 
onstant fa
tor). But thisdoes not mean that su
h a 
orresponden
e is estab-lished by the uni�ed rule v(r) = v(r; [n℄) universal forany external �eld [3℄.In other words, ea
h external �eld determines aunique density (it is 
lear, e. g., on the basis of theuniversal rules of the perturbation theory), and ea
hdensity determines a unique external �eld on the ba-sis of the Hohenberg�Kohn lemma. However, the rulefor the last 
orresponden
e 
an be nonuniversal. Thisrule in general depends on the 
on
rete form of thedensity. The possibility of su
h a nonuniversality ofthe rule of 
orresponden
e for the �inverse� fun
tionalv(r) = v(r; [n℄) was not 
onsidered in [1℄. The existen
eof this nonuniversality violates the Hohenberg�Kohntheorem, although the Hohenberg�Kohn lemma is un-doubtedly 
orre
t. Below, we show that the universaldensity fun
tional does not exist in the 
ase where thenumber of fermions is greater than two.2. FORMULATION OF THE PROBLEMFor the reasons dis
ussed in the Introdu
tion, wenote that the inhomogeneous density n(r) is a fun
-tional n(r; [v℄) by de�nition,n(r) = h	0j	y(r)	(r)j	0i:The ground-state wave fun
tion 	0 is a fun
tional ofthe external �eld v(r), 	0 = 	0[v℄. Here, 	y(r) and	(r) are the �eld 
reation and annihilation operators.This means that at ea
h point, the inhomogeneousdensity is determined by the external �eld potential.Hen
e, the 
orresponden
e rule between the density

n(r) and the �eld v(r) is established based on the solu-tion of the 
orresponding S
hrödinger equation for thewave fun
tion 	0 in a given external �eld v(r) and on�nding the inhomogeneous density n(r).Then, it only follows from the lemma proved byHohenberg and Kohn [1℄ that the fun
tional n(r; [v℄) isunique (taking the 
ondition n(r; [v℄) = n(r; [v+
onst℄)into a

ount). It is 
lear that the fun
tional n(r; [v℄) isessentially nonlinear in the external �eld v(r). Thismeans that two possibilities are admissible without vi-olating the Hohenberg�Kohn lemma: (i) the inverseproblem of �nding the dependen
e of v(r) on n(r) hasindividual solutions for ea
h pair of fun
tions n(r) andv(r) (or for 
ertain types (
lasses) of pairs of fun
tionsn(r) and v(r)); (ii) the inverse problem has a universalsolution v(r) = v(r; [n℄). As noted above, this dilemmais not usually 
onsidered, and it is assumed that thereis the universal solution v(r; [n℄) valid for any external�eld and any number of parti
les, i. e., possibility (ii)is always realized [3℄.The essen
e of the problem under 
onsideration 
anbe expressed in other words. We introdu
e the operatorP that establishes the relation between the fun
tionsn(r) and v(r): n(r) = Pv(r):The operator P then provides the equalityPv(r) = Pfv(r) + 
onstg:In addition, it follows from the de�nition of the inhomo-geneous density n(r) that the operator P is nonlinear.Therefore, the problem of �nding the inverse opera-tor P�1 that establishes the relation between v(r) andn(r), v(r) = P�1n(r), has no unique solution. Thedi�
ulty is just in the nonlinearity of the relation bet-ween the fun
tions n(r) and v(r), otherwise the inverseoperator P�1, as is known, should be unique.In fa
t, as follows from the above, the Hohenberg�Kohn lemma is insu�
ient for the statement about theexisten
e of the universal solution v(r; [n℄). However,it seems impossible to disprove the statement aboutthe universality in the general form. We therefore usethe proof by 
ontradi
tion. We assume that the fun
-tional v(r) = v(r; [n℄) exists and analyze 
onsequen
esof this statement. With the example of nonintera
tingfermions, we show that su
h an assumption leads to a
ontradi
tion.If we a

ept the validity of statement (1), then theground-state energy E0 of the system of N intera
tingele
trons with a Hamiltonian H in the external �eldwith the potential v(r), whi
h is 
hara
terized by thewave fun
tion 	0, 
an be written as730



ÆÝÒÔ, òîì 143, âûï. 4, 2013 The problem of the universal density fun
tional : : :E0 � h	0jH j	0i = E0(N; [	0℄; [v℄) == E0([n℄; [v℄); N = Z n(r) d3r: (2)Here, it is taken into a

ount that h	0j	0i = 1 and	0 = 	0[v℄ = 	0[v+
onst℄. In turn, it immediately fol-lows from (2) that the quantity F [n℄ = h	0jT +U j	0i,whi
h de�nes the system ground-state energyE0([n℄; [v℄) = F [n℄ + Z v(r)n(r) d3r; (3)is a fun
tional of only the density n(r) (�universal� den-sity fun
tional). In this 
ase, it is admissible to use theterm "universal" in the sense of the independen
e ofits expli
it form of the external �eld potential [1; 2℄, al-though this requires 
onsidering the v-representabilityand N -representability of the inhomogeneous density.The operators T and U are respe
tively the kineti
and interparti
le intera
tion energy operators. State-ment (3) is the basis of the DFT widely used in var-ious areas of physi
s and 
hemistry (see, e. g., [4; 5℄).However, the exa
t form of this universal fun
tional isstill unknown even for nonintera
ting ele
trons (U = 0,N > 1). It is 
lear that there is a one-to-one 
orre-sponden
e between the statements about the existen
eof the fun
tionals v(r; [n℄) and F [n℄, i. e., the existen
eof one of the these fun
tionals predetermines the ex-isten
e of the other. Hen
e, if the fun
tional F [n℄ in(3) does not exist, the fun
tional v(r; [n℄) also does notexist [3℄.3. THE DENSITY FUNCTIONAL PROBLEMFOR NONINTERACTING ELECTRONSIn view of the foregoing, we 
onsider one nonrel-ativisti
 ele
tron of mass m in a stati
 external �eldv(r). Then the ele
tron steady state 
hara
terized bya 
ertain set of quantum numbers �, in
luding the spinquantum number �, is 
ompletely de�ned by the wavefun
tion ��(r) that satis�es the S
hrödinger equation�� ~22m�r + v(r)���(r) = ����(r); (4)where �� is the ele
tron energy in the 
orrespondingstate. Be
ause the ele
tron energy is independent ofspin, ea
h value of �� is doubly degenerate in the spinquantum number, as are other physi
al quantities, in-
luding the inhomogeneous density n�(r). It is 
ustom-ary to solve Eq. (4) for eigenvalues with the boundary
ondition ��(jrj ! 1) = 0 (the so-
alled 
onditionat in�nity [6℄). With the possibility of 
onsidering the

system in a �nite volume V , the boundary 
onditionfor Eq. (4) in the most general form is written as��(r! S) = 0; (5)where S is the surfa
e bounding the volume V . Wefurther take into a

ount that the wave fun
tion ��(r)
an be 
onsidered a real fun
tion [6℄. Thenn�(r) = j��(r)j2 = �2�(r); (6)rrn�(r) = 2��(r)rr��(r);�rn�(r) = 2��(r)�r��(r) ++2(rr��(r))(rr��(r)): (7)It immediately follows from Eqs. (4)�(7) that the in-homogeneous density n�(r) satis�es the equation foreigenvalues� ~24m�rn�(r) + ~28mn�(r) (rrn�(r)) �� (rrn�(r)) + v(r)n�(r) = ��n�(r) (8)with the boundary 
onditionsn�(r! S) = 0; rrn�(r)jr!S = 0: (9)We now integrate Eq. (8) over the volume o

upied bythe system, using the normalization 
onditionZ n�(r) dV = 1 (10)that immediately follows from (6). From (8), we then�nd the density fun
tional for the energy ��:��([n℄; [v℄℄ = F (1)[n�℄ + Z v(r)n�(r) dV; (11)F (1)[n�℄ = F (1)0 [n�℄ + F (1)W [n�℄; (12)F (1)0 [n�℄ = � ~24m Z �rn�(r) dV;F (1)W [n�℄ = ~28m Z (rrn�(r))(rrn�(r))n�(r) dV; (13)where F (1)[n�℄ is the universal density fun
tional F [n℄in Eq. (3) for one parti
le (supers
ript (1)). The fun
-tional F (1)[n�℄ is written in (12) in the form of twoterms for two reasons. First, be
ause of the Gauss for-mula and the se
ond boundary 
ondition in (9), thefun
tional F (1)0 [n�℄ vanishes,F (1)0 [n�(r)℄ = � ~24m Z �rn�(r) dV == � ~24m I rrn�(r) dS = 0: (14)731
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ond, the fun
tional expli
it form F (1)W [n�℄ in (13) isformally exa
tly identi
al to the so-
alled Weizsä
ker
orre
tion to the Thomas�Fermi kineti
 energy fun
-tional [7℄ (see Refs. [4; 5℄ for more details). In 
ontrastto the Weizsä
ker 
orre
tion, the expression F (1)W [n�℄in (13) in this problem is an exa
t expression for the�universal� fun
tional of the inhomogeneous density forone parti
le. Hen
e, in this 
ase, the �universal� den-sity fun
tional F (1)[n�℄ exists, is found exa
tly, and iswritten as F (1)[n�℄ = F (1)W [n�℄: (15)By dire
t 
al
ulation (see, e. g., [5℄), it is easy to verifythatÆF (1)W [n�℄Æn�(r) = � ~24mn�(r)�rn�(r) ++ ~28mn2�(r) (rrn�(r))(rrn�(r)): (16)Therefore, Eq. (8) for energy eigenvalues �(1) of oneparti
le in the external �eld v(r) with boundary 
ondi-tions (9) is a 
onsequen
e of the variation equation forthe energy �(1)([n(1); [v℄) as the inhomogeneous densityfun
tional n(1)(r) of one parti
le in the spe
i�ed exter-nal �eld v(r), Æ�(1)[n(1)℄ = 0: (17)Indeed, using normalization 
ondition (10) and theLegendre transform, from (17), we �ndÆ�(1)[n(1)℄Æn(1) = 
onst: (18)To determine the 
onstant in Eq. (18), we take intoa

ount that, a

ording to (11)�(16),ÆF (1)[n(1)℄Æn(1)(r) + v(r) = 
onst = �(1): (19)Thus, variation equation (17) is equivalent to (8) andis 
ompletely identi
al to the 
orresponding equationfor the wave fun
tion fun
tional in quantum me
hani
s(see, e. g., [6℄). Hen
e, in the one-parti
le 
ase under
onsideration, there exists a density fun
tional v(r; [n℄)for the external �eld potential, determined up to a 
on-stant fa
tor,v(r; [n(1)℄) + 
onst = ÆF (1)[n(1)℄Æn(1)(r) == ~24mn(1)(r)�rn(1)(r) � ~28m[n(1)(r)℄2 �� (rrn(1)(r))(rrn(1)(r)): (20)

Therefore, as noted above, the existen
e of the fun
-tional F (1)[n(1)℄ in (15) predetermines the existen
e ofthe fun
tional v(r; [n(1)℄) in (20), and vi
e versa.We note an essential 
ir
umstan
e. A

ordingto (20), in the 
ase of one ele
tron, the fun
tionalv(r; [n(1)℄) is lo
al: v(r; [n(1)℄) = v[n(1)(r)℄, i. e., thevalue of the potential v(r) at a point r is determined (upto a 
onstant) by the inhomogeneous density n(1)(r) atthat 
oordinate. In the general 
ase, if we assume theexisten
e of the density fun
tional, this lo
ality is evi-dently absent.Taking into a

ount that the Hohenberg�Kohnlemma proof, as well as statements (1) and (3), areby no means independent of a parti
ular value of thenumber of parti
les N in the system, the assumptionon the existen
e of the �universal� density fun
tionalallows extending the results obtained to the 
ase of anarbitrary number of nonintera
ting ele
trons.For this, we 
onsider a system of N nonintera
tingele
trons in the external �eld v(r). To a

ount for theidentity of ele
trons, it is most 
onvenient to use these
ondary quantization formalism (see Refs. [4�6℄ formore details). We note that this 
onsideration is fullyequivalent to the use of Slater determinants to des
ribethe wave fun
tion of the system of nonintera
ting ele
-trons and to implement the Young s
heme [5; 6℄. Anystate of the system of N nonintera
ting identi
al ele
-trons is then 
hara
terized by a set of the so-
alled �o
-
upied� single-parti
le states �1; : : : ; �N (see (4)) and,by virtue of the Pauli prin
iple,�i 6= �j for i 6= j: (21)Then the energy E(0) and inhomogeneous densityn(0)(r) in a 
orresponding state are given by [5; 6℄E(0)(�1; : : : ; �N ) =X�i ��i ;n(0)(r; �1; : : : ; �N ) =X�i n�i(r): (22)Here, ��i = ��i([n�i ℄; [v℄) (see (11)�(13)), and ��i1 == N . It then immediately follows from (21) and (22)that the energy E(0) of the system of N(N � 3) nonin-tera
ting identi
al ele
trons, in
luding the ground-stateenergy E(0)0 , 
annot be the density fun
tional n(0)(r)in the spe
i�ed external �eld due to the nonlinearity ofthe fun
tional F (1)W [n�i ℄ in (13). It is 
lear that a sim-ilar statement also holds for the universal fun
tionalh	0jT j	0i. This is a 
onsequen
e of the fa
t that theexternal �eld potential v(r) for N � 3 
annot be pre-sented as the density fun
tional n(r) (see (20)).In the 
ase of two nonintera
ting ground-stateele
trons, the DFT statements remain valid due to732
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tional : : :the double degenera
y in the spin quantum number(n(r) = 2n(1)(r); see, e. g., [8℄). We also note that theseresults are dire
tly asso
iated with the Pauli prin
iple,whi
h applies only to fermions. In the 
ase of ground-state bosons, whi
h are �a

umulated� at one lowestenergy level (Bose 
ondensation), the DFT statementsremain valid at an arbitrary number of nonintera
tingbosons.Thus, for more than two nonintera
ting fermionsin the inhomogeneous ground state, the external �eldpotential v(r) is not the density fun
tional n(r), i. e.,v(r) 6= v(r; [n℄).4. THE DENSITY FUNCTIONAL PROBLEMFOR INTERACTING ELECTRONSWe now show that the obtained results leadstraightforwardly to the validity of an analogous 
on-
lusion for the system of intera
ting ele
trons. TheHamiltonian of the system of inhomogeneous ele
trons
an be written asH� = T + Z dr v(r)n̂(r) + �U; (23)where n̂(r) is the ele
tron density operator,h	0jn̂(r)j	0i = n(r), and U is the operator ofthe ele
tron intera
tion energy. Then the energy E0(�)of the ground state 	0(�) satis�es the equality (see,e. g., [9℄)�E0(�)�� = h	0(�)j�H��� j	0(�)i == h	0(�)jU j	0(�)i: (24)This straightforwardly implies an expli
it relation forthe ground-state energy of the system of intera
tingele
trons: E0 �E(0)0 = 1Z0 d�� hUi�; (25)where E(0)0 is the ground-state energy of the inhomoge-neous ele
tron gas without intera
tion, whi
h has been
al
ulated above, and hUi� is the average potential en-ergy of the inhomogeneous ele
tron system with Hamil-tonian (23). We next re
all that if the density fun
-tional v(r; [n℄) exists, the average kineti
 energy, as wellas average potential energy, of the inhomogeneous ele
-tron system is the universal density fun
tional [10℄. Itis obvious that presen
e of the parameter � in Hamil-tonian (23) has no e�e
t on this statement as well asthe integration in Eq. (25). It then dire
tly follows

from (25) that for the existen
e of the universal den-sity fun
tional F [n℄ (see (3)) requires the existen
e ofthe universal density fun
tional for the inhomogeneousele
tron system without intera
tion. This is impossible,as was shown above, for more than two Fermi parti
les.In a di�erent way, the impossibility of the exis-ten
e of the density fun
tional of an inhomogeneousele
tron system follows from the fa
t that the terms inthe perturbation theory series for energy, whi
h 
ontainthe intera
tion potential, have a di�erent nature thanthe terms without intera
tion. Therefore, they 
annot
ompensate the �non-universality� of the kineti
 energyof nonintera
ting ele
trons.5. THE DENSITY MATRIX FUNCTIONALTHEORYAs a result, we 
ome to the 
on
lusion that theHohenberg�Kohn lemma [1; 2℄ 
annot be a justi�
ationof the existen
e of a �universal� density fun
tional as apre
ise statement or a theorem. At the same time, invarious approximations (e. g., in the limit of weak inho-mogeneity of the external �eld or in the semi
lassi
allimit for the ele
tron gas), the �universal� fun
tional
an exist. In this relation, we note the following. Theleading approximation for density fun
tional 
onstru
-tion is the so-
alled lo
al density approximation (LDA)(see [4; 5; 10℄ for the details). The basis of LDA is thedependen
e of the energy of a homogeneous ele
trongas on the average density n, whi
h is equal to the ra-tio of the total number N of ele
trons to the volumeV , n = N=V . The analysis of an homogeneous ele
-tron gas is in turn based on use of the thermodynami
limit transition N ! 1, V ! 1, N=V ! n 6= 0 (see,e. g., [9℄). This means that the model of a homogeneousele
tron system 
annot be used as the initial approa
hfor 
onsidering a �nite number of ele
trons in an exter-nal �eld (in parti
ular, in the 
ase of ele
trons in the�eld of one or several nu
lei, when the 
onditions of thethermodynami
 limit transition are not valid even fora nu
lear 
harge Z � 1).In this relation, we note that the Hohenberg�Kohnlemma is 
orre
t not only for an inhomogeneous densityn(r) but also for the single-parti
le density matrix�(1)(r; r0) = h	0j	y(r)	(r0)j	0i (26)(see [11; 12℄ for the details). This is easy to verifytaking into a

ount that the inhomogeneous densityn(r) = �(1)(r; r) is 
ompletely determined if the den-sity matrix is known (the opposite statement is, in gen-eral, in
orre
t). Then, instead statement (1) whi
h, as733
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an use asimilar statement for the single-parti
le density matrix�(1)(r; r0),�(1)(r; r0) = �(1)(r; r0; [v℄)! v(r) + 
onst == v(r; [�(1)℄): (27)6. CONCLUSIONSThe approa
h in this paper is the basis of the theoryof the density matrix fun
tional (TDMF), originatedfrom Hilbert's theorem [13℄ (the abbreviation TDMFmust be distinguished from DMFT for the dynami
mean �eld theory). In the TDMF framework, the valueF in (3) be
omes the universal density matrix fun
-tional: F = F [�(1)℄ [14℄. However, as in 
ase (1), it isimpossible to prove statement (27) in the general 
ase.Nevertheless, the TDMF has a wide appli
ation for thestudy of the inhomogeneous ele
tron gas properties(see, e. g., [15; 16℄ and the referen
es therein). Thisis be
ause the TDMF, in 
ontrast to the DFT [17℄,provides the 
orre
t des
ription of the inhomogeneousele
tron gas in both the ideal gas approa
h and theself-
onsistent Hartree�Fo
k approximation [14�16℄.The situation under 
onsideration is similar to the onefor 
lassi
al liquids, where numerous 
losed equationsfor the pair 
orrelation fun
tion 
an be formulatedwith various 
hoi
es for the generating fun
tionals(see, e. g., [18℄). Su
h a 
hoi
e is limited only bythe 
onditions of a 
onsistent theory and agreementwith experimental data. The ful�llment of the se
ondrequirement in the 
ase of an inhomogeneous ele
trongas is restri
ted be
ause there is no dire
t way toexperimentally measure the inhomogeneous densityn(r) (and the single-parti
le density matrix �(1)(r; r0))as a fun
tion of the 
oordinate. We 
an be guidedonly by the energeti
 
hara
teristi
s of the systems ofintera
ting parti
les, whi
h are integral values basedon lo
al fun
tions n(r) and �(1)(r; r0). Therefore, the
ondition of a self-
onsistent theoreti
al foundationplays a primary role. The above 
onsideration showsthat the TDMF approa
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