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Scattering by magnetic impurities is known to destroy coherence of electron motion in metals and semiconduc-
tors. We investigate the decoherence introduced in a single act of electron scattering by a magnetic impurity
in a quantum Hall system. For this, we introduce a fictitious nonunitary scattering matrix S for electrons
that reproduces the exactly calculated scattering probabilities. The strength of decoherence is identified by the
deviation of eigenvalues of the product SST from unity. Using the fictitious scattering matrix, we estimate
the width of the metallic region at the quantum Hall effect inter-plateau transition and its dependence on the
exchange coupling strength and the degree of polarization of magnetic impurities.
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1. INTRODUCTION

This paper is organized as follows. In Sec. 2, we
consider a toy model and show that the nonunitarity

of the scattering matrix is related to the uncertainty in
the phase of the wave function. The exact scattering

Scattering by magnetic impurities can affect trans- matrix for an electron in a saddle-point potential in the

port properties of electron systems substantially. Apart
from the prominent Kondo effect, magnetic impurities
provide a strong source of decoherence at temperatures
exceeding the Kondo temperature [1, 2]. The deco-
herence effect is manifested especially strongly in sup-
pressing the Anderson localization in disordered sys-
tems [3, 4]. In particular, scattering by magnetic im-
purities can create a finite metallic region near the
inter-plateaux transition in the integer quantum Hall
effect (IQHE) [5]. The characterization of the degree
of decoherence introduced by magnetic impurities and
evaluation of the corresponding phase coherence length
provide an important information for the interpretation
of transport experiments. In the presence of decoher-
ence, the dynamics of a physical system ceases to be
unitary [6]. In this paper, we introduce a measure of
decoherence based on the nonunitarity of a fictitious
scattering matrix constructed after averaging the scat-
tering probabilities over magnetic impurities.
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quantum Hall regime and in the presence of magnetic
impurities is calculated in Sec. 3. Our main results are
given in Secs. 4 and 5, where we calculate the fictitious
scattering matrix, use it to determine the degree of de-
coherence induced by magnetic impurities, and finally
estimate the width of the inter-plateaux transition. In
Sec. 6, we summarize our results and discuss possible
further applications of the presented method.

2. NONUNITARITY OF THE SCATTERING
MATRIX AS A MEASURE OF
DECOHERENCE

In this section, we show with a simple illustrative
example that the deviation of eigenvalues of the prod-
uct SSt (where S is a fictitious scattering matrix) from
unity serves as a measure of the decoherence introduced
by scattering. For this, we consider a simple scattering
problem with a two-dimensional Hilbert space. Two
orthogonal incoming states are parameterized as
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We assume that in the act of scattering, the states ex-
perience both a potential scattering described by the
transmission amplitude ¢ and the reflection amplitude
r, (r? + 1> = 1), and random phase shifts a; and a»
that describe the decoherence effect. Then the outgo-
ing states are given by

Tout __

g \/_ {rcos(p + ay) + tsin(p + as)}, (3)

Tout __

g \/_{ tcos(p+aq) +rsin(p+as)}. (4)

In this model, the decoherence violates the orthogo-
nality of the outgoing states. The completely coherent
scattering is realized in the case a; = ay. The degree of
decoherence increases with the difference a; — an. It is
maximal for ay —as = £7/2, when initially orthogonal
states become linearly dependent after scattering. In
the notation used, a state goes into itself by coherent
reflection (the amplitude r), and it goes into the other
state by coherent transmission (the amplitude t). We
now introduce a (nonunitary) scattering matrix for an
incoherent scattering process according to the relation

pout Py
~ = Sinco =
(Wﬁ) ' ( wz>
fooh 1
= - . (5
(—tz ><w> o

The comparison with Eqs. (3) and (4) allows identify-
ing the elements of the matrix S;,con as

71 = () = rcosay + tsinas, (6)
t1 = (" ehy) = tcosay — rsinay, (7)
= (9" |¢p1) = tcosay — rsinay, (])
= (3" |1hs) = rcosas + tsinay. 9)

The deviation of the scattering matrix S;peon from
unitarity can be characterized by the products of this
matrix with its hermitian conjugate. We note that for
incoherent scattering, the matrices Sipeon and Smcoh no
longer commute. However, explicit calculation shows
that the products Smcohsmcoh and Smcthmcoh have
the same eigenvalues, which are given by
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AL = 1+sin(ag —az), Ay =1—sin(a;—az). (10)

Therefore, our toy model shows that the deviation of
the eigenvalues of the product SS* from unity is de-
termined by the phase uncertainty after one scattering
event, and hence it is directly related to the strength
of decoherence. Moreover, those deviations are inde-
pendent of the parameters r and ¢ characterizing the
coherent potential scattering in the chosen model.

3. EXACT SOLUTION FOR THE ELECTRON
SCATTERING PROBABILITIES AVERAGED
OVER MAGNETIC IMPURITIES

We study the effect of spin-flip scattering by mag-
netic impurities on the IQHE transition. We adopt the
model of point-like exchange interaction between spins
of impurities and electron spins H;,; = JI -s, where I
and s respectively denote the spins of impurities and of
the electron. Throughout the paper, we assume spin-
1/2 impurities. In the absence of spin-flip scattering,
there are two Zeeman-split critical energies for each
Landau level, where the QH delocalization transition
occurs. It was found in Ref. [5] that the spin-flip scat-
tering results in the appearance of a finite region of
delocalized states around the critical QHE states. In
this paper, we estimate the width of the inter-plateaux
transition analytically based on the evaluation of the
coherence length due to scattering by magnetic impu-
rities.

In general, scattering of electrons by impurity spins
induces many-electron Kondo correlations. In this pa-
per, however, we consider the regime when the Kondo
temperature is very low and Kondo correlations are
suppressed. Scattering of an electron by a saddle-point
potential in a strong perpendicular magnetic field and
in the presence of a magnetic impurity was studied in
Ref. [5].

Following Ref. [7], we introduce the dimensionless
measure of energy ¢ = (E + J/4)/E;, where E; is
the energy parameter characterizing the shape of the
saddle-point potential. Furthermore, we let § = J/E;
denote the dimensionless strength of exchange interac-
tion. This interaction results in two exchange-split en-
ergies €1 5 = €F0/2. Using the expressions for transmis-
sion and reflection coefficients, we construct the scat-
tering matrix at the node relating the incoming and
outgoing waves as (see Fig. 1)
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Fig.1. Incoming and outgoing states at a single node.

Up and down arrows indicate z-components of the elec-

tron (subscript €) and impurity (subscript I') spins cor-
respondingly

o ( R T ) _
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(11)

where the 4 x 4 blocks R and T describe the reflec-
tion and transmission amplitudes. Here, we use the

notation
t1o = ﬁ, rie=4/1-1t],, (12)
Soo = (r1 +1r2)/2, S23 = (r1 —1r2)/2, (13)
S26 = (t1 +t2)/2,  So7r = (t1 — t2)/2. (14)

The absolute value squared of a scattering matrix ele-
ment in Eq. (11) gives the quantum scattering proba-
bility between the corresponding initial and final states
of the electron and impurity. Given the density matrix
of the impurity spin, we can calculate the scattering
probability for the electron only, averaged over the im-
purity states. In what follows, we assume the density
matrix of the magnetic impurity to have the diagonal
form

pr = diag(wy,w,). (15)

754

The difference w4 — w denotes the polarization degree
of the magnetic impurity. After averaging over mag-
netic impurities, the resulting system loses quantum
coherence, and it can be described in terms of scatter-
ing probabilities. Using the density matrix in Eq. (15),
we can write the averaged probability of the electron
entering in the state with spin o to be reflected (trans-
mitted) into the state with spin o’ as

Ry = Z p?s|Ra"s’,a's|27

s,8'

2 (16)
Ta’a = Zp?s|7;"s’,as| )

where s and s’ denote the initial and final spin states of
the impurity. We note that the averaging applies only
to the initial spin state of the impurity. Finally, the
averaged probability matrix for the electron takes the

form
R T
P = , (17)
T R
where
R [ Wit wss, wi s
w835 wyrt + wy s, (18)

wit} + w536 w3y

2 2 2
W) S37 W] + wrssg

Tz( )

4. INTRODUCTION OF A FICTITIOUS
SCATTERING MATRIX

We now define a fictitious scattering matrix for the
quantum mechanical amplitude of the electron, which
corresponds to the exact probability matrix obtained
after averaging over the magnetic impurity states. For
this, we construct a scattering matrix with elements
satisfying the following condition: the squared modu-
lus of each element must be equal to the corresponding
probability of matrix (17). Furthermore, we choose the
opposite signs of the elements in the two off-diagonal
blocks, which ensures that the scattering matrix be-
comes unitary in the absence of spin—spin interaction,
that is, for 4 = 0. Schematically, the scattering matrix

acquires the form
S— vR VT
“\ vt vE)

where the square root is taken element-wise.

(19)
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Fig.2. a) Probability conservation as a sum of the elements squared in the first column in Eq. (19). The incoming wave is

scattered in the four (including spin) outgoing channels. b) Loss of the probability conservation by the sum of the elements

squared in the first row in Eq. (19). The single outgoing wave is not the sum of the four incoming channels. Angular brackets

symbolize the averaging over the initial distribution of impurity spins. Because of the angular brackets, it is impossible to
map panel (b) onto panel (@), which is in contradistinction to the reversibility of quantum mechanics

Being nonunitary in general, the fictitious scatter-
ing matrix still has some properties of a unitary ma-
trix that follow from the conservation of probability.
For example, it follows from Egs. (17), (18), and (19)
that the sum of the elements squared in each column in
Eq. (19) is equal to 1, which describes the total proba-
bility for an electron entering the node to be scattered
(see Fig. 2a). For instance, the first column gives

U)TT% + w¢s§2 + w¢s§3 + th% + ww%e + w¢s§7 =
2 42 2 2 2 2
= wi(r] +17) + wy (s + s33 + 536 + $37) =

The sum of the elements squared in each raw, which
would correspond to the probability of a time-reversed
scattering process, differs from 1 (see Fig. 2b). This
is due to the breaking of the time-reversal invariance
introduced by averaging only over the initial states of
the magnetic impurity. For example, the sum of the
elements in the first raw gives

wir] + w83, + wrs3s +wit] +wysse + wisy; =
= wi(rf +17) +wy (535 + 835 + 556 + 537) +
+ (wy—wy ) (s35+557) = 1+ (wp—w, ) (s33+5s3;).  (21)

We note that Eq. (21) gives unity in the case wy =
= wy, = 1/2, which corresponds to a completely un-
polarized magnetic impurity. In that case, the time
reversal symmetry seams to be restored. We can relate
the restoration of time reversalbility to the maximal
possible entropy of the impurity spin, which, therefore,
remains unchanged by the scattering and corresponds
to a time-reversible process in terms of thermodyna-
mics.

However, even in the case of an unpolarized impu-
rity, the fictitious scattering matrix is not unitary be-
cause of the decoherence introduced by averaging over
the magnetic impurity. Formally, the different rows
and columns of the matrix S are not orthogonal. This
is a manifestation of the violation of the orthogonality
of two quantum states by phase decoherence (the toy
model for that process is discussed in Sec. 2).

Now we apply the analysis in Sec. 2 to the ficti-
tious scattering matrix Eq. (19). The nonunitary ma-
trix S does not commute with its hermitian conjugate
St. However, it is easy to show that the products StS
and SST have the same eigenvalues. Calculating the
eigenvalues of S'S, we obtain two doubly degenerate
eigenvalues that can be written as

/\172 =1+ a2+b2, (22)

where a = (S1S),, and b = (S'S),,. We note that
the eigenvalues are symmetric with respect to unity. In
the limit of a weak spin—spin interaction, § < 1, the
deviation of the eigenvalues from unity is given by

c=\/a2+b2%%5roto [(\/w_—\/w_¢)2 +

252 1/2
+ %r%té (wi/2 + wi/2)2] , (23)
where ro and ty denote the reflection and transmission
amplitudes in Eq. (12) calculated for § = 0. Accor-
ding to the arguments given in Sec. 2, the parameter ¢
serves as a measure of the decoherence introduced by
the magnetic impurity. Moreover, comparing Eqs. (23)
and (10), we conclude that ¢ measures the phase un-
certainty acquired after a single incoherent scattering

10%*
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Fig.3. Decoherence parameter ¢ as a function of the

exchange coupling strength §. Energy e = 0. Solid line:

polarization wy — w; = 0.2. Dashed line: polarization

wy —wy = 0. The inset shows details of the behavior
of ¢(0) at small §

event. For a finite polarization of the impurity, the
decoherence parameter ¢ increases linearly with 6,
)
c = Iroto (y/wr — \Jwy ) . (24)

The dependence on § becomes stronger with the degree
of polarization of the impurity.

By contrast, for the completely unpolarized impu-
rity (wy = wy = 1/2), the decoherence parameter c
increases with ¢ much slower, as 62,

 m25hr3d
162

This result is in accord with the restoration of the time
reversal invariance of fictitious scattering matrix (19)
for an unpolarized impurity, which decreases the deco-
herence. Figure 3 shows the dependence of the deco-
herence parameter ¢ given by Eq. (23) on the exchange
strength § for the completely unpolarized (wy —w) = 0,
dashed line) and a weakly polarized (wy —w; = 0.2,
solid line) magnetic impurity. The dependence for
small 6 < 1 is shown in the inset in detail. Accord-
ing to Eq. (25), there is a purely quadratic dependence
for the unpolarized impurity (dashed line). For a weak
polarization, a solid line exhibits a transition from the
linear part in accordance with Eq. (24) to the nonlinear
behavior at larger 4, described by Eq. (23). Figure 3
shows that the decoherence parameter c saturates at
large values of ¢.

The dependence of the decoherence parameter ¢ on
the polarization of the magnetic impurity in shown in

(25)

756

0.04

0.03

0.02

0.01

0.5

1.0
wr —w)|

—-1.0 -0.5 0

Fig.4. Decoherence parameter ¢ as a function of the
impurity polarization wy —w. Energy e = 0, exchange
coupling 6 = 0.1

Fig. 4. According to the foregoing, the decoherence is
minimal for the completely unpolarized impurity, and
it increases monotonically with the impurity polariza-
tion.

5. PHASE COHERENCE LENGTH AND THE
INTER-PLATEAUX TRANSITION
BROADENING DUE TO MAGNETIC
IMPURITIES

We now apply the results in the preceding section
to the estimation of the phase coherence length due to
scattering by magnetic impurities. In what follows, we
evaluate the energy width of the metallic region ap-
pearing at the inter-plateaux transition in the integer
quantum Hall effect.

The phase coherence length can be defined as the
length of path after which the phase uncertainty from
multiple collisions becomes of the order of 1. Because
the phase uncertainty in a single act of scattering is a
random quantity, the parameter ¢ evaluated in Eq. (23)
should be understood as the dispersion of the distribu-
tion of random scattering phases,

¢ =/(062).

The total phase uncertainty after multiple scattering
events is evaluated as a sum of random phases, and it
is given by

(26)

(0¢%) y = N (0¢°) = N,

where N denotes the number of scattering events.
Therefore, the number of scattering events needed to

(27)
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reach a complete decoherence is determined by the re-
lation N¢? ~ 1, whence N ~ 1/c%. The corresponding
phase coherence time can be estimated analogously to
the calculation of the spin relaxation time by spin—orbit
scattering due to the Elliot—Yafet mechanism [§]

T¢~N7'0~TO/02, (28)

where 79 denotes the time between two consecutive
scatteting events. The time 7y is proportional to the
distance between impurities. For a two-dimensional
quantum Hall system, 75 o ni_mp , where 1), is the
concentration of magnetic impurities.

We note that it follows from Eqs. (24) and (25) that
the inverse phase coherence time 1/7, o ¢ exhibits a
crossover as a function of the exchange strength § from
the behavior 1/74 o §* for unpolarized magnetic impu-
rities to 1/74 o 62 if the magnetic polarization is finite.
The crossover from the §* behavior in the unpolarized
system to the 62 dependence for a finite spin polariza-
tion (w4 # wy) is in accord with the previous findings
in [1, 9]. The corresponding phase coherence length
can be calcuated as the length of diffusion during the
time 74

1
L¢:\/DT¢N||71/4. (29)
c imp

The region of delocalized states in IQHE appears
when the phase coherence length for the electron be-
comes smaller than its localization length, which leads
to the metallic behavior [10-12]. The phase coher-
ence length of the electron corresponds to the length
at which the phase uncertainty of its wave function be-
comes of the order of 1. At the same time, close to the
quantum Hall inter-plateaux transition, the localiza-
tion length is known to scale with the deviation € from
the critical energy as £ ~ |e| ™" (v & 2.6) [13]. Equating
Ly and &, we obtain an estimate for the energy width
A of the metallic phase,

1/v
A~ (lelnify) (30)
Therefore, using the results in Eqgs. (23), (24), (25) we
obtain the dependence of the width of the metallic re-
gion on both the spin—spin interaction strength and the
polarization of magnetic impurities.

6. SUMMARY AND CONCLUSIONS

In this paper, we proposed a method for evaluating
the phase coherence length of an electron due to scat-
tering by magnetic impurities. The method is based

on the introduction of a fictitious nonunitary scatter-
ing matrix that describes the electron motion averaged
over the dynamics of magnetic impurities. The degree
of nonunitarity is characterized by a single parameter
¢, which is the deviation of eigenvalues of the product
STS from unity. The nonunitarity parameter is related
to the phase uncertainty acquired in a single act of
scattering, and it is inversely proportional to the phase
coherence length. Our calculation revealed a change in
the dependence of the nonunitarity parameter ¢ on the
exchange coupling from a linear dependence at strong
magnetic polarization to a quadratic one for unpolar-
ized magnetic impurities.

With the help of the proposed method, we estimate
the width of the metallic region at the IQHE inter-
plateau transition and its dependence on the exchange
coupling strength and the degree of polarization of
magnetic impurities. We believe that our method will
be especially useful for other systems that allow the
description in terms of scattering matrices and net-
work models, such as topological insulators, graphene,
quantum networks, etc. [14-16].
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