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We study the center-of-mass energy of the particles colliding in the vicinity of acceleration and event horizons
of the Plebanski and Demianski class of black holes. We calculate the collision energy of uncharged particles in
the center-of-mass frame that are freely falling along the equatorial plane of a charged accelerating and rotating
black hole with an NUT parameter. This energy turns out to be infinite in the nonextremal case, while in the
extremal case, it becomes infinitely large near the event horizon only if the particle has the critical angular
momentum. We conclude that the center-of-mass energy depends on the rotation and the NUT parameter.
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Black holes (BHs) are the most important predic-
tion of general relativity and are studied by detecting
their effects on the nearby matter. One of the inter-
esting features of BHs is that they can behave like a
particle accelerator (accelerating charged particles to
high speed). Recently, the physics of ultra-high ener-
gies in the context of particle accelerators is receiving
much attention. Therefore, the study of naturally oc-
curring processes in the vicinity of astrophysical objects
is of great significance. Collision energies up to 10 TeV
can be observed by the largest terrestrial accelerators
like the Tevatron and Large Hadron Collider. In this
regard, the center-of-mass energy (CME) provides the
collision energy required for the production of new par-
ticles. Black holes can accelerate and collide particles
with an unlimited CME. This infinite increase in en-
ergy in the center-of-mass (CM) frame is due to the
blue-shifting of particles near the horizon.

The possibility of obtaining infinite growth of en-
ergy in the CM frame due to particles colliding near
the horizon of a BH was discussed by Banados, Silk,
and West (the BSW effect) [1]. They showed that the
rotating BH can behave as a particle accelerator and
observed high CMEs for particles propelling along the
equatorial plane in the locality of the Kerr (extremal)
BH. In [2], it was pointed out that the CME is finite
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for the Kerr (nonextremal) BH. An infinite CME due
to particle scattering in the Kerr (nonextremal) BH
was found in [3]; an infinite CME for particles collid-
ing in the Kerr—de Sitter (extremal) BH was observed
in [4]. The infinite CME at the cosmological horizon of
the Reissner—Nordstrom (RN)-de Sitter BH was stu-
died in [5]. The infinite CME for the critical particles
(with fine-tuned angular momentum) colliding along
the equatorial plane of the Sen (extremal and nonex-
tremal) BH and the Kerr-Newman BH were discussed
in [6].

The BSW effect near the event horizon of the
Kerr—Taub-NUT BH was investigated in [7]. In [8],
the authors discussed the collision of particles around
the four-dimensional Kaluza—Klein (extremal) BH and
found the infinitely large CME near the horizon in both
rotating and nonrotating cases. Joshi and Patil [9]
found that the CME turns out to be high in the naked
singularity of the RN and Kerr BHs. The same au-
thors [10] proved that a high CME can also be seen
in regular BHs for particular values of the parame-
ters m and ¢q. The BSW effect for the Ayon-Beato—
Garcia—Bronnikov BH, the Einstein—-Maxwell-dilaton—
axion BH, and the Banados—Teitelboim—Zanelli BH
was discussed in [11]. In [12], the CME was general-
ized for charged particles moving in an electromagnetic
field and braneworld BHs were discussed. It was proved
in [13] that a nonrotating but charged RN (extremal or
nonextremal) BH can also serve as an accelerator with
an arbitrarily high CME of charged particles colliding
near the horizon.
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The effect of acceleration on the CME for parti-
cles involved in nonequatorial motion and colliding in
the Kerr—-Newman BH was discussed in [14]. Arbitrar-
ily high CME for colliding particles with nonequato-
rial motion near the horizon of an (extremal) Kerr—
Newman BH were obtained in [15]. In [16], nonequa-
torial motion of particles colliding in dirty BHs was
discussed and the CME was found to grow without
bound. This generalizes the results of the equatorial
motion. Collisions of the innermost orbit particle in
a nonequatorial plane of an (extremal) Kerr BH were
studied in [17], and the CME was found to be unbound-
edly high. The CME of a Plebanski-Demianski (PD)
(extremal) BH with a zero NUT parameter near the
acceleration and event horizons was studied in [18].

In a recent paper, we have studied the CME of a
PD (nonextremal) BH with a zero NUT parameter near
the event horizon [19]. In this paper, we explore the
CME for charged accelerating and rotating (extremal
and nonextremal) BHs with an NUT parameter near
the event and acceleration horizons. The particles are
assumed to be colliding in the equatorial plane. In gen-
eral, the NUT parameter is associated with the twisting
property of the BH. Plebanski and Demianski presented
a class of type-D BHs known as the family of PD BHs
[20]. These are described by the metric
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ds* = —f(r,0) dt* + dr® —2H (r,0) dt dp +

where f, g, H, ¥, and K are functions that describe
different BHs in this class.

We consider a PD BH with a NUT parameter, de-
scribed by the metric [21]
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Here, M and a respectively represent the mass and
rotation of BH, and the parameters e and g are the
electric and magnetic charges. Moreover, « is the ac-
celeration of a BH and [ is the NUT parameter. The

rotation parameter w in terms of a and k is given by
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It is interesting to mention here that all the param-
eters a, M, e, g, and a vary independently, but w
depends on the rotation and NUT parameters. For
a = 0, the metric reduces to the Kerr—-Newman BH
with an NUT parameter. In the absence of an NUT
parameter, it reduces to a charged accelerating and ro-
tating BH. Further, the limit a = 0 leads to the Kerr—
Newman BH, and a = 0 yields the RN BH. In addition,
if e = 0 = g, then we have a Schwarzschild BH, while
the limit [ = 0 = a leads to the C-metric.

The horizons of BH (1) can be found by setting
g(r,0) = 0, which yields
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which is quadratic in r with the roots
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where ry respectively represent the outer (event) and
inner horizons. For the existence of horizons, the con-
dition is

)
[(wh + € +¢) = = M >




M. Sharif, Nida Haider

MIT®, Tom 144, Bemn. 1(7), 2013

Also,
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are acceleration horizons. The angular velocity at the
outer horizon is

Tay =
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which, in our case, takes the form

a

Qg =——"——.
" r3 + (a+1)?

(3)

We consider a particle exhibiting the geodesic mo-
tion in the PD BH. Let

Ue = (UL, U, U, U?)

be the four-velocity of the particle, which is restricted
to equatorial motion (6 = 7/2), leading to

U’ =0.

We can define the energy and angular momentum of
the particle as

E= _gab(at)an = _gttUt - gt¢U¢7

L= gab(8¢)an = ngt + g¢¢U¢.
These are conserved throughout the motion, termed as

constants of motion. With Eq. (1), these quantities
become
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These lead to the four-velocity components
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Using the normalization condition,

gabUan = _]-7

94

we find the radial component of the velocity as
Q 1
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where + correspond to the radially ingoing and outgo-
ing particles.
We introduce the effective potential as
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The conditions for a circular orbit are
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Because the timelike component of the four-velocity is
greater than zero (causally connected), Eq. (6) leads to
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which reduces (at the horizon) to
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a
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which yields
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We now discuss the CME for two colliding particles
with rest masses m; and m» moving in the equatorial
plane. In terms of the four-momentum

p(z’l:miUiaa i:1727 a:t,T,0,¢,

the CME of two particles is [7]

Ec2m - _p?paia
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which yields
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The CME of these particles turns out to be
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Here E; and L; are respectively the conserved energy
and angular momentum for the ith particle. This result
indicates that the CME is affected by the rotation and
NUT parameters. In the nonextremal limits, the CME
given by Eq. (12) diverges at the acceleration horizons
if we take the mass of both particles to be equal:
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For the extremal PD BH, the rotation and NUT
parameters satisfy the relation
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For a = 0, this condition reduces to

=P +e’+g° =1,
and further, for [ = 0, it becomes

a2+e2+g2:1

(see [18]). For the CME near the event horizon, the
term in the right side of Eq. (12) becomes undeter-
mined. Using I’Hospital rule, we then find

Een  [(mi—ma)?  M'(r) — N'(r) (14)
Viam,  \| - 2mams e
with

M'(P)|p=r, = E1Es[4Pry (r2 +(a+1)*)—Q' (a+21)]—
— L LyQ" — (E1Ly + E>Ly) (2Pary — Q'(a + 21)),

1
N'(r)r=r, =
) 2¢/na(ry)na(ry) ‘

X {ny (r)na(ry) +no(re)m(re)},

n;(r)|7“=r+ = _PQI(T2+ +1%) +
+ E2APr (2 + (a+1)%) — Q'(a + 21)?] —
- L;Q' — 2E;L;i(2Pary — Q'(a + 21)),

T'(r)r=ry = PQ'(ri +12).

When
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Expanding this at @ = 0 yields

In—L
Eem = 2my/1 + 14P =y (16)

which is the E.,, of the extremal Kerr—Newman BH
with @ = 0. This shows that the CME can be unlim-
ited if one of these particles has a very large angular
momentum. We consider

Ei Ei(T‘2 +(a-|-l)2)_

Ly = =
H; QH a ’

for
Ly, =Ly, =Ly, Ei=FE,=1,

the CME of the extremal PD BH in Eq. (14) is
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Ecm
RS
=2my[1+ (Ly = Lo)* L .
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This implies that the CME is finite when both L; and

L are finite. However, if one particle has the critical
angular momentum

(17)

+0)* 1

Ly = (ai) + -,
a a

the CME is arbitrarily large. When [ = 0, we obtain

the result for an extremal charged accelerating and ro-

tating BH with
1
Lyg=a+ —
a

(see [18]). Further, for o = 0, it reduces to the results
for the Kerr BH [22].

We have found that the CME depends not only on
the rotation but also on the NUT parameter. We con-
clude that the CME decreases with the increase in ro-
tation and NUT parameters. For the extremal BH,
the CME becomes infinite for the particles having the
critical angular momentum. We note that a BH is ex-
tremal when the CME is infinite at the event horizon,
but is nonextremal when the CME is infinite at both
the event and acceleration horizons. Our results gen-
eralize the results already available in the literature.
If a = 0 = [, our result reduces to the one for the
Kerr—Newman (extremal) BH. For @ = 0, we obtain
the CME for the Kerr-Taub-NUT BH [7]. It has been
shown that for the zero NUT parameter, the collision
energy of the particles in the background of a PD (ex-
tremal) BH depends on the rotation parameter [18].
Here, we have considered a nonzero NUT parameter
and found that the CME also depends on the NUT pa-
rameter. It is interesting to mention here that there is
a rapid increase in the CME with the decrease in the
NUT parameter.
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