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THERMODYNAMIC BEHAVIOR OF PARTICULARf(R;T )-GRAVITY MODELSM. Sharif *, M. Zubair **Department of Mathematis, University of the PunjabQuaid-e-Azam Campus, Lahore-54590, PakistanReeived Deember 24, 2012We investigate the thermodynamis at the apparent horizon of the FRW universe in f(R; T ) theory in thenonequilibrium desription. The laws of thermodynamis are disussed for two partiular models of the f(R; T )theory. The �rst law of thermodynamis is expressed in the form of the Clausius relation ThdŜh = ÆQ, whereÆQ is the energy �ux aross the horizon and dŜ is the entropy prodution term. Furthermore, the onditions forthe generalized seond law of thermodynamis to be preserved are established with the onstraints of positivetemperature and attrative gravity. We illustrate our results for some onrete models in this theory.DOI: 10.7868/S00444510130800751. INTRODUCTIONReent astrophysial observations indiate that ex-pansion of the universe is presently in an aeleratedepoh. The most ompelling evidene for this is foundin measurements of type-Ia supernovae (SNeIa) [1℄,whih is supported by renowned observations [2�5℄.The mysterious omponent of energy named dark ener-gy (DE) is often introdued to explain this behavior ofthe universe. However, the mehanism responsible forthe aelerated expansion is still under debate.Two approahes have been used to illustrate theissue of urrent osmi aeleration. Introduing an�exoti osmi �uid� in the framework of the Einsteingravity [6�8℄ is one diretion to deal suh issue, but thisapproah did not fully explain the urrent empirialdata. The other way is to disuss the modi�ed theoriesof gravity suh as f(R) [9, 10℄, f(T ) [11℄, where T is thetorsion salar in teleparallel, and f(R; T ), where R andT are the Rii slar and the trae of the energy�mo-mentum tensor [12; 13℄. The f(R; T ) theory modi�esthe Einstein Lagrangian by oupling matter and geom-etry. In fat, this modi�ed gravity generalizes the f(R)theory and neessitates an arbitrary funtion of R andT . A omprehensive review of the problem of DE andmodi�ed theories was reently presented in [14℄.*E-mail: msharif.math�pu.edu.pk**E-mail: mzubairkk�gmail.om

Blak hole thermodynamis suggests that there is afundamental onnetion between gravitation and ther-modynamis [15℄. Hawking radiation [16℄ together witha proportionality relation between temperature andsurfae gravity, as well as the onnetion between thehorizon entropy and the area of a blak hole [17℄ fur-ther support this idea. Jaobson [18℄ was the �rst todedue the Einstein �eld equations from the Clausiusrelation ThdŜh = ÆQ̂together with the ondition that the entropy is propor-tional to the horizon area. In ase of a general spheri-ally symmetri spaetime, it was shown that the �eldequations an be stated as the �rst law of thermody-namis (FLT) [19℄.The relation between the Friedmann�Robertson�Walker (FRW) equations and the FLT was shown in[20℄ for Th = 12� ~rA; Sh = �~r2AG :The �eld equations for an FRW bakground were alsoformulated in the Gauss�Bonnet and Lovelok theo-ries by using the orresponding entropy relation forstati spherially symmetri blak holes. It was shownin [21℄ that the orret �eld equations annot be foundby simply using the Clausius relation in nonlineartheories of gravity. The authors of [21℄ remarkedthat a nonequilibrium desription of thermodynamisis needed, whereby the Clausius relation is modi�ed toThdSh = ÆQ+ d|S;291 5*



M. Sharif, M. Zubair ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013where d|S is the entropy prodution term. InRefs. [22�26℄, it was shown that the FRW �eld equa-tions in general relativity (GR) and modi�ed theoriesan be rewritten asdE = Th dSh +W dV(a uni�ed FLT on the trapping horizon suggestedin [23℄) with the work termW = 12(�� p):A generalized proedure to onstrut the FLT andthe generalized seond law of thermodynamis (GSLT)at the apparent horizon of a Friedmann universe wasdeveloped in [27℄. The validity onditions of the GSLTwere studied in modi�ed theories of gravity. In [28℄, itwas shown that equilibrium thermodynamis is ahie-vable for extended theories of gravity and entropy or-retion terms an be on�ned to mass-like funtions.Other alternative approahes [29�33℄ have also beendeveloped to reinterpret the nonequilibrium orretion.In [34℄, we have explored the GSLT in the f(R; T ) the-ory and found neessary onditions for its validity. Itwas shown that the equilibrium desription is not fea-sible by rede�ning the dark energy omponents in thef(R; T ) theory.In this paper, the thermodynamis laws are exam-ined for two partiular models of the f(R; T ) theory.We show that the FRW equations an be rewritten inthe form of FLTThdŜh + Thd|Ŝh = �dÊ +WtotdV:We formulate the GSLT and explore the onditions tovalidate this law. The paper is arranged as follows. InSe. 2, we present a brief introdution to the f(R; T )theory. Setion 3 is devoted to a disussion of the FLTand GSLT orresponding to the Friedmann equationsof partiular f(R; T ) models. Finally, onluding re-marks are given in Se. 4.2. f(R;T ) GRAVITY: AN OVERVIEWThe f(R; T ) modi�ed gravity is desribed by theation [12℄I = Z dx4p�g �f(R; T )2� + Lm�; (1)where � = 8�G and Lm de�nes the matter substanesof the universe. The matter energy�momentum tensorT (m)�� is de�ned as [35℄T (m)�� = � 2p�g Æ (p�gLm)Æg�� : (2)

The �eld equations an be found by varying the ationof the f(R; T ) gravity with respet to the metri tensor,R��fR(R; T )� 12g��f(R; T ) ++ (g����r�r�)fR(R; T ) == 8�GT (m)�� � fT (R; T )T (m)�� � fT (R; T )���; (3)where fR and fT are derivatives of f(R; T ) with respetto R and T . The �eld equations depend on the soureterm ��� , and hene every seletion of Lm generates apartiular set of �eld equations.We onsider the perfet �uid as a matter sourewith the matter Lagrangian Lm = pm, whene ��� isgiven by ��� = �2T (m)�� + pmg�� : (4)Substituting this value in Eq. (3) yieldsR��fR � 12g��f + (g����r�r�)fR == 8�GT (m)�� + T (m)�� fT � pmg��fT : (5)The spatially homogeneous and isotropi, (n+ 1)-di-mensional FRW universe is de�ned asds2 = h��dx�dx� + ~r2d
̂2n�1; (6)where h�� = diag(�1; a2=(1� kr2))is the 2-dimensional metri, a(t) is the sale fator, andk is the osmi urvature;~r = a(t)r; x0 = t; x1 = r;and d
̂2n�1 is the metri of a (n�1)-dimensional sphere.For n = 3, we have the (3 + 1)-dimensional FRW met-ri in the Einstein gravity, while one an have n � 4 inother gravity theories.3. THERMODYNAMICS IN THE f(R;T )GRAVITYWe now disuss the laws of thermodynamis for twopartiular hoies of an f(R; T ) gravity [12℄.3.1. f(R;T ) = f1(R) + f2(T )We onsider the f(R; T ) model withf(R; T ) = f1(R) + f2(T ); (7)292



ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013 Thermodynami behavior of partiular f(R; T )-gravity modelswhere f1 and f2 are arbitrary funtions of R and T .The orresponding �eld equations areR��f1R(R)�12g��f1(R)+(g����r�r�)f1R(R) == 8�GT (m)�� + T (m)�� f2T (T ) + 12g��f2(T ); (8)where f1R(R) = df1dR; f2T = df2dT :The hoie f2(T ) = 0 implies the �eld equation of thef(R) gravity. In the FRW bakground, the �eld equa-tions beome�H2 + ka2� = 16�GEffn(n� 1) (�m + �d); (9)� _H � ka2� = �8�GEff(n� 1) (�m + �d + pd); (10)where GEff = 1f1R �G+ f2T8� � ;and�d = 18�GD �12(Rf1R�f1�f2)�nH _Rf1RR� ; (11)pd = 18�GD ��12(Rf1R � f1 � f2) ++ (n� 1)H _Rf1RR + �Rf1RR + _R2f1RRR� ; (12)and D = �1 + f2T (R; T )8�G � :Substituting Eqs. (11) and (12) in the onservationequation [34℄, we obtainqt = n(n� 1)16�G �H2 + ka2� �t�f1RD � : (13)Clearly, this redues to the energy transfer relation inthe f(R) theory if f(R; T ) = f1(R)(see [32, 33℄). If the e�etive gravitational oupling isonstant, we obtain qt = 0:

3.1.1. First law of thermodynamisWe now onstrut the FLT for the above f(R; T )model. The onditionh����~r��~r = 0gives the radius ~rA of the apparent horizon as~rA = �H2 + ka2��1=2 :The assoiated temperature isTh = j�sg j2� ;where�sg = 12p�h�� �p�hh����~rA� == � 1~rA �1� 12H d[ln ~rA℄dt �is the surfae gravity [20℄. The temperatureTh = 12�~rA (1� �)is positive for � = 12H d[ln ~rA℄dt < 1:Applying the de�nition of ~rA, we express the positivityondition for Th as_H � ka2 > �2�H2 + ka2� : (14)In GR, the horizon entropy is de�ned asSh = A4G(see [15�17℄), whereA = n
̂n~rn�1A = n�n=2[�(n=2 + 1)℄�1~rn�1Ais the area of the apparent horizon. It was proposedin [36℄ that in modi�ed gravitational theories, the hori-zon entropy is assoiated with a Noether harge en-tropy. In [37℄, the Wald entropy was shown to be equiv-alent to Sh = A4GEff ;where GEff is the e�etive gravitational oupling. Wean de�ne the Wald entropy in the f(R; T ) theoryas [34℄ Ŝh = A4GEff ; (15)293



M. Sharif, M. Zubair ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013where GEff = GD(R; T )f1Rfor the �rst f(R; T ) model. Following [34℄, we an ob-tain the FLT in the formThdŜh = ÆQ;where the energy �ux ÆQ isÆQ = �dÊ + n2 ~rn�1A (�t � pt) d~rA ++ n
̂n(n� 1)~rn�2A16�G d�f1RF � =
= �dÊ + WtdV + Vqtdt + ThShd�f1RD � (16)and Wt = �12T (t)��h�� = 12(�t � pt)is the total work density [23℄. Thus, the FLT an beexpressed asThdŜh + Thd|Ŝh = �dÊ +WtotdV; (17)whered|Ŝh = �n
̂n�H2 + ka2�(1�n)=2 �(n+ 1)H2 + _H + n ka2� d(f1R=D)4G�2H2 + _H + ka2�is the entropy prodution term developed for thismodel. This haraterizes a nonequilibrium treatmentof thermodynamis. The FLT for a �at FRW universein the f(R) theory [32, 33℄ an be retrieved from thisresult. For f(R; T ) = R, the term d|Ŝh vanishes, whihleads to the FLT in the Einstein gravity.3.1.2. Generalized seond law ofthermodynamisWe now investigate the validity of the GSLT inf(R; T ) theory for this model. The FLT determinesthe horizon entropy given by Eq. (17). The omposi-tion of the entire matter and energy �uids within thehorizon is given by Gibb's equation [39℄TtdŜt = dEt + ptdV; (18)where Tt and Ŝt are the temperature and entropy of allontents within the horizon. The temperature withinthe horizon is related to Th [27℄ asTt = bTh;where 0 < b < 1to ensure that 0 < Tt < Th:We onsider Ŝ to be the sum of matter entropy withinthe horizon, the horizon entropy, and the nonequilib-rium entropy prodution term.The GSLT states that the time derivative of thetotal entropy is not dereasing with time, i. e.,Th _̂S = Th( _̂Sh + d| _̂Sh + _̂St) > 0; (19)

where d| _̂Sh = �t(d|Ŝh):Inserting Eqs. (17) and (18) in the above inequality, weobtainn(n� 1)
̂n16�HG �2H _~rA �(b� 1) + _~rA~rn�4A (2� b)� �� �f1RD �+ (1� b)H~rA�t�f1RD �� > 0; (20)where _~rA = �~r�3A H � _H � �a2� :We an impose the onstraintD=f1R > 0for GEff to be positive. Using the positive temperatureondition _H � ka2 > �2�H2 + ka2�with the temperature parameter b < 1 then relation(20) beomesn(n� 1)
̂n�H2 + ka2��n=2+116�GD �� �4Hf1R + (1� b)D�t �f1RD �� > 0: (21)294



ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013 Thermodynami behavior of partiular f(R; T )-gravity modelsHene, the GSLT an be satis�ed if�t(f1R=D) > 0:If �t(f1R=D) < 0;then the GSLT is proteted only if�����t(f1R=D)f1R=D ���� 6 4H1� b :If the gravitational oupling onstant is indeed a on-stant, i. e., �t(f1R=D) = 0;then the GSLT always holds. The ondition to preservethe GSLT in the f(R) theory an be reprodued iff(R; T ) = f1(R):For k = 0; f2(T ) = 0;we obtain the inequality already onstruted in [27℄in nonlinear gravity. In the thermal-equilibrium limitb � 1, the onstraint to protet the GSLT isn(n� 1)
̂n�H2 + ka2��(n=2+1)16�GD �� "H � _H � ka2�2 f1R# > 0: (22)Relation (22) depends on the hoie of f(R; T ); for in-stane, f1(R) = R; f2(T ) = 0results inn(n� 1)
̂n�H2 + ka2��(n=2+1)16�G �� "H � _H � ka2�2# > 0;whih is the GSLT validity ondition in the Einsteingravity.Here, we disuss the validity of the GSLT for somepartiular forms of f(R; T ) gravity:(i) f1(R) = f(R); f2(T ) = �T ,(ii) f1(R) = R; f2(T ) = 2f(T ).In the �rst ase, we onsider the f(R; T ) model orre-sponding to the power-law solution a(t) = a0tm [13℄f(R; T ) = �k!(�R)k + �T; (23)

where�k! == 23�2k3k�1kA(k(4k�3(1+!))1�k(1+!)2k�2k2(6!+8)�k(9!+13)+3(!+1) :For this model, the Hubble and deeleration parame-ters are H = 2k3(1 + !)and q = �1 + 3(1 + !)2k :The validity of the GSLT in the (3+1)-dimensional �atFRW universe for model (23) requires the onditionTh _̂S = 9(1 + !)2�k!8k2 ~G ���4k[4k � 3(1 + !)℄3(1 + !)2t2 �k�1 > 0; (24)where ~G = G+ �8� :We present some onstraints for the partiular valuesk = �2;�1; 1; 2:For k = 1, this solution represents the �CDMmodeland the onstraint on the GSLT is given byTh _̂S = 9(1 + !)2A8 ~G > 0;whih is true if A > 0 with ! 6 3.For k = 2, the GSLT is valid ifTh _̂S = A(5� 3!)22 ~Gt2 > 0;whih requires A < 0.For k = �1;�2, we �nd Th _̂S > 0 if A > 0 with! > 0. This hoie would favor the expanding universebeause q < �1.The higher powers of urvature an be made avail-able for larger values of k, and we an examine the va-lidity of the GSLT. If we onsider the dust ase ! = 0,then the possible role of � and k an be seen from thegraphial desription shown in Fig. 1.In the seond ase, the GSLT for thef(R; T ) = R+ 2f(T )model requires the following inequality to be satis�ed:Th _̂S = _H22H4Ĝ > 0;295
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Fig. 1. Evolution of the GSLT for di�erent values of the parameters k and � (a) for the present epoh z = 0 and (b) forz = �0:9where Ĝ = G+ 2f(T )8� :Here, we onsider the power-law solution of the formf(T ) = a1T + a2T k;where a1 and a2 are parameters. Following [13℄ for thedust ase, we seta1 = 1; a2 = 23�2k3k�1k3�2k4 + 2k :Then the above inequality takes the formTh _̂S == 9�(4 + 2k)k2[(4 + 2k)(8�G+1)+23�2k3k�1k4�2kT k�1℄ > 0:This shows that the GSLT holds for the f(T ) power-lawmodel, and its validity is shown in Fig. 2.3.2. f(R;T ) = f1(R) + f2(R)f3(T )A more general f(R; T ) gravity model is of theform [12℄ f(R; T ) = f1(R) + f2(R)f3(T ); (25)where fi (i = 1; 2) are funtions of R and f3 is funtionof T . For a dust matter soure, the �eld equation isobtained asR�� [f1R + f2Rf3℄� 12g��f1 ++ (g����r�r�)[f1R + f2Rf3℄ == 8�GT (m)�� + T (m)�� f2f3T + 12g��f2f3: (26)
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ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013 Thermodynami behavior of partiular f(R; T )-gravity models�̂d = 18�GB �� �12(RJ � f1 � f2f3)� nH( _RJR + _TJT )� ; (28)p̂d = 18�GB ��12(RJ � f1 � f2f3) ++ (n� 1)H( _RJR + _TJT ) + �RJR ++ _R2JRR + 2 _R _TJRT + �TJT + _T 2JTT� (29)and B(R; T ) = �1 + f2(R)f3T (T )8�G � ;whih inludes ontributions from both matter and ge-ometry. The total energy exhange term for this modelis given byqt = n(n� 1)16�G �H2 + ka2� �t�JB � : (30)

We now analyze the validity of the FLT and GSLT forthe above model.3.2.1. First law of thermodynamisThe Wald entropy Ŝh = A=4GEff for funtion (25)beomes Ŝh = n
̂n~rn�1A J4GB : (31)In this ase, the FLT involves the energy �ux ÆQ andentropy prodution terms of the form [34℄ÆQ = �dÊ + n2
n~rn�1A (�tot � ptot) d~rA ++ n(n� 1)16�G 
n~rn�2A d�JB � == �dÊ +WtotdV + Vqtotdt+ ThŜhd�JB � ; (32)
d|Ŝh = � 1ThVqtotdt� Shd�JB � = �n
n�H2 + ka2�(n�1)=2�(n+ 1)H2 + _H + n ka2� d(J =B)4G�2H2 + _H + ka2� : (33)The f(R; T ) gravity model withf(R; T ) = f1(R) + f2(R)f3(T )involves the expliit nonminimal gravitational ouplingbetween matter and urvature. Results obtained usingthis theory would be di�erent from other models suhas the f(R) theory. The oupling of matter and geome-try reveals that the matter energy�momentum tensor isno longer onserved and there is an energy transfer be-tween the two omponents. Due to this interation, theenergy exhange term qt is nonzero, and hene the en-tropy prodution term would be an additional term inthis modi�ed gravity. Hene, the FLT is established ina more general f(R; T ) gravity and entropy produtionis indued in a nonequilibrium treatment of thermo-dynamis [21, 34℄. It was shown in reent papers [33℄that the entropy prodution term an be inorporatedby a rede�nition of the �eld equations. However, inthis theory, suh a treatment is not useful, as shownin [34℄.

3.2.2. Generalized seond law ofthermodynamisTo develop the GSLT for the seond model, we on-sider Gibbs equation (18). The horizon entropy is de-termined from the FLT. The neessary onstraint forthe validity of the GSLT is shown in Eq. (19). For thef(R; T ) model in (25), we obtainn(n� 1)
̂n16�HG �2H _~rA �(b� 1) + _~rA~rn�4A (2� b)� �� �JB �+ (1� b)H~rA�t �JB �� > 0; (34)where _~rA = �~r�3A H � _H � �a2� :The e�etive gravitational oupling onstant forthis model is GEff = GBJ :We an impose the ondition B=J > 0 to keep GEff >> 0. For the positive-temperature ondition_H � ka2 > �2�H2 + ka2�297



M. Sharif, M. Zubair ÆÝÒÔ, òîì 144, âûï. 2 (8), 2013with b < 1, Eq. (34) redues ton(n� 1)
̂n�H2 + ka2��n=2+116�GB �� �4HJ + (1� b)B�t�JB �� > 0: (35)This shows that the GSLT is valid only if�t(J =B) > 0:If the gravitational oupling onstant is indeed a on-stant, the GSLT is always proteted. If�t(J =B) < 0;then the GSLT an hold only if�����t(J =B)J =B ���� 6 4H1� b :The GSLT in the f(R) theory an be retrieved forf3(T ) = 0. If Tt � Th, then ondition (35) beomesn(n� 1)
̂n�H2 + ka2��(n=2+1)16�GB �� "H � _H � ka2�2 J # > 0:We onsider the f(R; T ) model in (25) withf1(R) = R; f2(R) = Rp;and f3(R) = T q (p; q > 0);then in 4-dimensional �at FRW metri, the GSLT be-omes Th _̂S = _H2(1 + pRp�1T q)2H4G�1 + RpT q8�G � > 0: (36)For the power law dependenea(t) = a0tmwith � = �0a�3;this an be written asTh _̂S == 8�[1 + p(6m(2m� 1)t�2℄p�1(�0t�3m)q2m2[8�G+ (6m(2m� 1)t�2)p�1(�0t�3m)q ℄ �� 0: (37)We have examined the validity of relation (37) and de-veloped onstraints on the parametersm, p, and q. Theresults are shown in Figs. 3 and 4.
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