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TWO REGIMES OF VORTEX PENETRATION INTOPLATELET-SHAPED TYPE-II SUPERCONDUCTORSE. H. Brandt a, G. P. Mikitik b*, E. Zeldov aMax-Plank-Institut für MetallforshungD-70506, Stuttgart, GermanybB. Verkin Institute for Low Temperature Physis & Engineering, Ukrainian Aademy of Sienes61103, Kharkov, UkraineDepartment of Condensed Matter Physis, Weizmann Institute of Siene76100, Rehovot, IsraelReeived Marh 26, 2013Dediated to the memory of Professor Anatoly LarkinVortex penetration into a thin superonduting strip of a retangular ross setion is onsidered at an inreasingapplied magneti �eld Ha, taking an interplay between the Bean�Livingston and the geometri barriers in thesample into aount. We alulate the magneti �eld Hp at whih the penetration begins and show that tworegimes of vortex penetration are possible. In the �rst regime, vorties appearing at the orners of the strip atHa = Hp immediately move to its enter, where a vortex dome starts to develop. In the seond regime, thepenetration ours in two stages. In the �rst stage, at Ha < Hp, tilted vorties penetrate into the edge regionsof the strip, where novel domes are shown to be formed at the top, bottom, and lateral surfaes. In the seondstage, at Ha = Hp, the vortex propagation to the enter beomes possible. The di�erene between the regimesmanifests itself in slightly di�erent dependenes of the magneti moment of the strip on Ha.DOI: 10.7868/S004445101309006X1. INTRODUCTIONThe Bean�Livingston [1℄ and geometri [2℄ barriersare important for understanding many phenomena intype-II superondutors. In partiular, these barrierslead to a hystereti magneti behavior of the super-ondutors even in the absene of any bulk pinning ofvorties [1�7℄. Both these barriers also in�uene themagneti relaxation [8, 9℄ and transport properties ofsuperondutors [10�13℄. Various manifestations of theBean�Livingston and geometri barriers were experi-mentally studied in numerous works [14�31℄. In thispaper, we theoretially onsider how an interplay be-tween the geometri and Bean�Livingston barriers in-�uene the vortex penetration into a platelet-shapedtype-II superondutor plaed in a perpendiular mag-neti �eld Ha. For simpliity, we assume that �ux-linepinning is negligible in the superondutor.*E-mail: mikitik�ilt.kharkov.ua

The Bean�Livingston barrier in bulk superondu-tors is due to the attration of a penetrating vortex tothe sample surfae at distanes of the order of the Lon-don penetration depth � [1℄. In the inreasing magneti�eld Ha, the attration leads to a delay of the vortexpenetration ompared to the lower ritial �eld H1.As a result, the penetration is possible only at the �eldHp that an reah [32℄ �H1= ln�, the thermodynamiritial �eld, where � = �=� is the Ginzburg�Landauparameter and � is the oherene length.The geometri barrier has a di�erent origin and isdue to the shape of the superondutor [2, 16℄. Thisbarrier appears for samples di�erent from an ellipsoid.In an ellipsoid-shaped superondutor at the magneti�eld Heq = (1 � N)H1, the self-energy e0l(r) of astraight vortex plaed at any point r of the sample isexatly equal to the workW (r; Heq) done by the Meiss-ner urrents irulating in the sample to transfer thevortex from the surfae of the superondutor to thispoint. Here, e0 = (�0=4��)2 ln(�=�) is the vortex en-ergy per unit length, �0 is the �ux quantum, l(r) is the508



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :length of the vortex passing through the point r, andN is the appropriate demagnetizing fator of the ellip-soid. This spei� property of the ellipsoid-shaped su-perondutors leads to the penetration of vorties intothe sample just at the equilibrium penetration mag-neti �eld Heq (if the vortex attration to the surfaeis negleted). In the platelet-shaped superondutors,the position-dependent energy of a vortex,E(r; Ha) = e0l(r)�W (r; Ha);sharply inreases near the edges due to the inrease inthe vortex length l from zero to the sample thikness dand dereases toward the enter of the platelet due tothe e�et of the Meissner urrents. This geometri bar-rier prevents the vortex penetration into the sample atthe �eld Heq that an now be de�ned as the lowest �eldat whih the minimum of e0d�W (r; Heq) with respetto r reahes zero. Vortex penetration begins only at ahigher �eld Ha = Hp when the barrier near the edgesdisappears. At Ha > Hp, the penetrating vorties areaumulated in the region of the superondutor whereE(r) has a minimum with respet to r, and hene avortex dome appears near the enter of the platelet.Two situations may our for the platelet-shapedsuperondutors. In the ase of thin superondut-ing �lms whose thikness d is essentially less thanthe London penetration depth �, the attration of avortex to the �lm edges develops on the sale no-tieably larger than the e�etive penetration depth�eff = �2=d � �; d [33℄, whereas the e�et of thevortex-length variation is not essential in this ase.This situation of the extended Bean�Livingston bar-rier an be desribed by replaing e0l in E(r) with anappropriate attration potential Uattr(r), and the pro-ess of vortex penetration into suh �lms reveals fea-tures [10, 34℄ that are similar to the features in thease of a purely geometrial barrier [2℄. In the seondase of bulk platelet-shaped superondutors, we have� � d, and the vortex attration to the surfae is es-sential only at distanes of the order of �, whereas thegeometrial barrier develops on the sale of the orderof d. Just this ase �� d is studied in our paper.In this paper, we onsider a thin superondut-ing strip of a retangular ross setion of width 2w(�w � x � w) and thikness d (�d=2 � y � d=2;d � w), whih in�nitely extends in the z diretion.The magneti �eld is direted along the y axis. In thisase, we have [2℄Heq = (d=2w)H1; Hp � H1pd=w � Heq :This estimate of Hp is based on formulas for the Meiss-ner urrents irulating in an in�nitely thin strip [35℄

and on utting o� these urrents in the edge regionw�d . jxj � w, where they diverge. However, suh anapproah annot give an aurate result for the urrentsin this edge region, whih is espeially important for theunderstanding of the geometri and Bean�Livingstonbarriers in the strip. To investigate both these barriersin more detail and the interplay between them, we an-not neglet the thikness of the strip, and in this paperwe �nd a two-dimensional distribution of the urrentsin the xy plane of the strip. For simpliity, we assumebelow that the superondutor is isotropi and that theapplied �eld Ha is not too large, and hene the mag-neti indution B in the sample is notieably less thanthe low ritial �eld H1. This assumption on B sim-pli�es our analysis of the geometri barrier.The paper is strutured as follows. In Se. 2, wepresent a two-dimensional distribution of the Meissnerurrents in a thin strip with a retangular ross se-tion. Using this distribution, the magneti �elds of thevortex penetration through the Bean�Livingston bar-rier in a orner of the strip and through the geometribarrier are estimated in Se. 3, and it is shown thattwo regimes of vortex penetration into the sample anour depending on the relation between these �elds.In Se. 4, the penetration �eld due to the geometribarrier is analyzed with a onsideration of stray �eldsof the penetrating vorties. In Ses. 5 and 6, we dis-uss and brie�y summarize the obtained results. Somemathematial details are presented in the Appendix.2. MEISSNER STATE IN A THIN STRIP WITHRECTANGULAR CROSS SECTIONFor the strip in the Meissner state, the magneti�eld H(x; y) outside the sample an be found from theMaxwell equationsdivH = 0; rotH = 0;and hene the �eld an be desribed both by the salarpotential '(x; y); H = �r';and by the vetor potentialA = zA(x; y); H = rotA;where z is the unit vetor along the z axis. The om-plex potential ' � iA is known [36℄ to be an analytifuntion of x + iy. For the strip with a retangularross setion, this potential an be obtained using aonformal map of the upper half of the omplex planeto the region lying to the right of the line a-b--e-f-g509
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Fig. 1. The magneti �eld line (a-b--e-f-g) adjoininga superonduting strip in the Meissner state. Underthe onformal map desribed in the text, this line is theimage of the real axis of the omplex planein Fig. 1 (the a-b--e-f-g ontour oinides with themagneti �eld line A = 0). This region is a retan-gle with one of its sides passing through the in�nitepoint, and the map an be found using the Shwarz�Christo�el formula [37℄. In the map, the upper surfaeof the strip (the segment b-), its lateral surfae -e,and its lower surfae e-f are parameterized by a singlevariable t. This variable t ranges from �1=pm (pointb) to 1=pm (point f), where m is a onstant parame-ter, 0 � m � 1, whose value is determined by d=w. Atthe orners of the strip, we have t = �1, and t = 0 atthe point x = w, y = 0. Calulating H = �r' usingthe obtained potential at the surfae of the strip (H istangential to the surfae), we �nd the Meissner sheeturrents Jz = J �owing on the strip surfae beause wehave jJ j = (=4�)jHj for any surfae point.These Meissner urrents in the strip with an arbi-trary ratio d=w were found previously [38℄ under theonly assumption that � � d, w. Here, we present theappropriate formulas in the ase of a thin strip, whend � w. In this limit ase, we arrive at the followingparametri representations for the lateral surfae x = wof the strip:yd � � 1� �arsin(t) + tp1� t2 � ; (1)where �1 � t � 1, whereas for the upper (�1=pm �� t � �1) and lower (1 � t � 1=pm) surfaes of thestrip, we have: w � xw = f1(jtj;m)f1 (1=pm;m) ; (2)where f1(jtj;m) = m jtjZ1 ps2 � 1p1�ms2 ds;

m � 2d=�w � 1, and f1(1=pm;m) � 1. The Meissnersurfae urrents on all these surfaes are desribed bythe uni�ed formula4�J(t)Ha = p1�mt2pmpj1� t2j ; (3)where jtj � 1=pm.At t2 � 1, i. e., at w � x� d, we �nd from Eq. (2)that x=w � p1�mt2, and with Eq. (3), we arrive atthe well-known result obtained in the limit of the in-�nitely thin strip [2, 35℄:J �x; d2� = J �x;�d2� � Ha4� xpw2 � x2 : (4)On the other hand, at t2 & 1, i. e., at w � x . d, for-mula (2) givesw � xw � m2 jtjpt2 � 1� m2 ln hjtj+pt2 � 1 i : (5)Thus, formulas (1), (3), and (5) provide an expliitdesription in the parametri form of the surfae ur-rents in the edge region of the strip. In partiular,near a orner of the sample (at l � w � x � d, or atl � d=2�jyj � d=2), we obtain that the surfae urrentdiverges like l�1=3:J � Ha4�pm � 2d3�l�1=3 : (6)Of ourse, this divergene should be ut o� at l . �,and the urrent density j throughout the orner region(w�� � x � w, d=2�� � jyj � d=2) is approximatelyonstant and is of the order ofj(x; y) � J(x = w � �)� � Ha4��pm � 2d3���1=3 : (7)3. THE PENETRATION FIELD3.1. Bean�Livingston barrierUsing the results in Se. 2, we now estimate the pen-etration �eld HBLp that is due to the Bean�Livingstonbarrier originating on the sale � from the surfae.Sine the Meissner urrents are maximum at the or-ners of the sample, it is favorable for a vortex to pene-trate into the strip through these points. We onsidera small irular vortex ar of radius r < � with its fo-al point plaed at a orner of the strip (in estimatingHBLp , we assume that � � � for simpliity). The ef-fet of the surfaes of the superondutor on the vortexsegment an be taken into aount by onstruting the510



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :images of the ar. This trik ensures that the urrentsgenerated by the vortex are tangential to the surfae [1℄.The energy of the vortex ar alulated within this ap-proah also largely takes the stray �elds outside thesample into aount [39℄. Therefore, the energy Ear ofthe penetrating vortex ar an be estimated as a quar-ter of the energy of the appropriate irular vortex ringplaed in the bulk of the superondutor [40, 41℄,Ear(r) � �2 r"0 �ln�r��+ 0� ; (8)where "0 = �20=(4��)2, the fator ln(r=�) takes intoaount that the magneti �elds and urrents begin todeay sharply at the distane r from the ring ratherthan at the distane �, and the onstant 0 determinesthe energy of the ring of the radius r = �. This onstant0 is given by the formula [40, 41℄,0 � �� �Z0 dq q[J1(q=�)℄2p1 + q2 = � 1Z0 du u[J1(u)℄2p��2 + u2 ; (9)where J1(x) is the Bessel funtion of the �rst kind. At�� 1, the onstant 0 is pratially independent of �,and we have 0 � 0:22.At a given urrent density j, there is a ritial radiusr at whih the Lorentz fore (j�0=)�r=2 generatedby the urrent and ating on the vortex is balaned bythe squeezing fore ��Ear=�r. In other words, thisr(j) is found from the equation12j�0�r = �2 "0 �ln�r� �+ 1 + 0� :If r > r, the vortex ar expands, and the quantityU(j) = Ear(r)� j�0�r2=4spei�es the height of the Bean�Livingston barrier nearthe orner. When the urrent density j inreases, theradius r and U(j) derease, and the barrier U disap-pears at r � � exp(1 � 0) � 2:2�. The appropriate jis of the order of the depairing urrent density,j = 2e�(1�0) "0�0� � 0:92H1�4�� ln� ; (10)whereas 4�j�=, the loal surfae �eld near the orner,reahes the value of the thermodynami ritial �eld inagreement with the results in Refs. [32, 39, 42, 43℄.Equating this j to the urrent density de�ned byEq. (7), we �nd the penetration �eld Ha = HBLp atwhih the Bean�Livingston barrier disappears for a vor-tex penetrating through a sample orner,HBLp � 0:92H1�ln� �18d�2�w3 �1=6 : (11)
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Fig. 2. Two senarios of vortex penetration into thestrip. a) p > p, the Bean�Livingston barrier prevailsover the geometri one. b ) p < p, the penetration ofvorties is mainly determined by the geometri barrier.The parameter p is de�ned by Eq. (19), p � 0:52. Thedashed lines shematially show vorties propagating inthe strip. The solid lines inside the strip designate theimmobile vorties that are in equilibrium. These vor-ties form �ux-line domes near the edges of the stripWe note that due to a small value of the ratio �=d, thispenetration �eld is notieably smaller not only than theommon HBLp � H1�= ln� but also than the �eld of avortex penetration through the equatorial point t = 0of the lateral surfae of the strip,H1�ln� � 2 d�w�1=2 :This estimate is obtained by equating the depairingurrent density to J(0)=�, where J(0) is taken fromEq. (3).3.2. Geometri barrier within a simpli�edapproahWe now alulate the penetration �eld aused ex-lusively by the geometri barrier in a thin strip, ne-gleting the attration of vorties to the surfaes of thestrip. In this ase, a penetrating vortex an jump tothe enter of the sample only when its two retilinearsegments meet at the equatorial point (x = w, y = 0),as shown in Fig. 2. We onsider a vortex that ends atthe point x0 of the lower plane of the strip and at thepoint y0 of its lateral surfae. The balane between theline tension of the vortex and the fores generated by511



E. H. Brandt , G. P. Mikitik, E. Zeldov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013the surfae urrents leads to the following equations forx0, y0, �, and Ha:1�0J �x0;�d2� = e0 sin �;1�0J(w; y0) = e0 os �; (12)where the sheet urrents J(x; y) are determined by theformulas in Se. 2, e0 = "0 ln�, and � < �=2 is the tiltangle of the vortex relative to the lateral surfae of thestrip (see Fig. 2). An inspetion of Fig. 2 also gives ageometri relation between x0, y0, and �,w � x0 = �d2 + y0� tg �: (13)Beause y0 = 0 at the penetration �eld, Eqs. (12)and (13) ompletely determine the three quantities �,Ha = Hp, and x0.We rewrite these equations using formulas of Se. 2.Then Eqs. (12) beomeos � = p1�mt2p1� t2 h ; (14)sin � = p1�mt21pt21 � 1 h ; (15)where m � 2d=�w, h � ~Ha=pm, ~Ha � Ha=H1 isthe dimensionless applied magneti �eld, and the pa-rameters t < 1 and t1 > 1 respetively orrespond tothe points y0 and x0. Equation (13) with the use offormulas (1) and (5) gives�t1qt21 � 1� ln�t1 +qt21 � 1�� == ��2 � arsin(t)� tp1� t2 � tg �: (16)Besides, we an set p1�mt2 � p1�mt21 � 1 inEqs. (14) and (15) sine m � 1, t < 1, and t1 � 1here. Then Eqs. (14)�(16) beome independent of m,and the aspet ratio d=w spei�es only the normaliza-tion fator in the de�nition of h.At the penetration �eld, we have t = 0, andEqs. (14) and (15) give h � os � and t21 � 1 + tg2 �.Eventually, Eq. (16) redues to an equation for the an-gle �,�2 tg � = tg �q1 + tg2 � �� ln�tg � +q1 + tg2 �� ; (17)

whih gives tg � � 0:74 (� � 36:5Æ). Hene, fromh � os �, we obtain the penetration �eld aused bythe geometri barrierHGBp � H1pm os �; (18)where os � � 0:80. The obtained HGBp has thesame order of magnitude as the penetration �eld foundin [2, 3℄. However, we emphasize that estimate (18) isderived for a single vortex reahing the equator. Suh asituation does not atually our, as is desribed in thenext setion. We also note that at the penetration �eldgiven by Eq. (18), the surfae urrent J(0) at the equa-torial point (x = w, y = 0) is equal to H1 os �=4�.3.3. Two senarios of vortex penetrationThe omparison of formulas (11) and (18) showsthat the ratio of HBLp and HGBp is equal to p=p wherethe parameter p is de�ned asp � �ln� ��d�1=3 ; (19)and p = � 23��1=3 2 os �exp(1� 0) � 0:52:If the parameter p is larger than its ritial value p,we have HBLp > HGBp , and the penetration �eld Hpoinides with HBLp :Hp = HBLp � H1pm 0:8pp ; p � p: (20)In this ase, small vortex segments appearing at theorners of the strip at Ha = HBLp immediately expand,merge at the equatorial point (x = w, y = 0), andthe reated vortex jumps to the enter of the sample(see Fig. 2). This type of penetration ours beauseat p > p and Ha = HBLp , when the urrent density inthe orner region is lose to the depairing urrent den-sity, the surfae urrent J(0) at the equatorial point islarger than H1 os �=4�, and the vortex end annotbe in equilibrium at this point. At Ha > Hp, the vortexdome appearing in the enter of the strip is quite sim-ilar to the dome desribed previously [2℄, even thoughthe penetration �eld is now determined by the Bean�Livingston barrier. This is beause the dome is deter-mined by the Meissner urrents �owing far away fromthe edges of the strip.If the parameter p is less than the ritial value p,we have HBLp < HGBp , and the vortex penetration is atwo-stage proess. The urrent density in the viinity ofthe orners reahes the depairing value at Ha = HBLp .512



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :At this �eld, a penetrating vortex line enters the sam-ple through the orner, but it annot reah the point(x = w, y = 0) beause J(0) is less than H1 os �=4�,and hene this line �hangs� between the orner and theequatorial point (x = w, y = 0). With inreasing Ha,two domes �lled by these inlined lines expand in thelateral surfae of the strip. The penetration �eld Hpis determined by the ondition that the boundaries ofthese domes meet at a equatorial point, and at this�eld, a dome in the enter of the strip begins to form.But the value of Hp, stritly speaking, is di�erent fromthat given by Eq. (18) sine the vortex domes near theedges of the strip modify the urrent distribution, andtherefore Hp has to be alulated self-onsistently (seeSe. 4). Interestingly, if (�=d)1=3 � 0:2, we obtain thatp > p for any � > 1. Therefore, for the ase p < pto be possible at a given �, the sample should be thikenough ompared to �.4. SELF-CONSISTENT CALCULATION OFTHE PENETRATION FIELD Hp AT p < pWe onsider the ase p < p, when the domes of thetilted vortex lines appear on the lateral surfaes of thestrip in an inreasing applied magneti �eld. In this sit-uation, the surfae urrents in the sample are omposedof the part that sreens the applied magneti �eld Haand the part generated by the vorties. The �rst partwas alulated in Se. 2, while the seond part an befound using formulas in the Appendix. Let the ends ofa vortex be at the point (x = w, y = y0) of the lateralsurfae of the strip and the point (x = x0, y = �d=2) ofits lower plane. (In reality, we onsider a vortex �layer�extending in the z diretion and onsisting of suh in-lined vorties.) Aording to Eqs. (12), for this vortexto be in equilibrium, the surfae urrents must be equalto H1 os �=4� at the point (x = w, y = y0) and toH1 sin �=4� at the point (x = x0, y = �d=2). ThenEqs. (12) take the formos � = p1�mt2p1� t2 [h+ F (t)℄ ; (21)sin � = p1�mt21pt21 � 1 [h+ F (t1)℄ ; (22)where h = Ha=pmH1, and the �rst terms in the right-hand sides of these equations desribe the Meissner ur-rents that were solely taken into aount in deriving

HGBp in Se. 3.2. The seond terms desribe the ur-rents generated by the inlined vorties,F (t) � 2� tuZtd dt0 ~Hx(t0)p1� (t0)2 �� (t01 � t0)(t0t01 + t2)[t2 � (t01)2℄[t2 � (t0)2℄ ; (23)where ~Hx = Hx=H1 and Hx is the x-omponent ofthe magneti �eld at the lateral surfae x = w. Thisomponent is due to the tilt of the vorties and is per-pendiular to this surfae. In Eqs. (21)�(23), the o-ordinates x0 and y0 are expressed in terms of the pa-rameters t and t1 used in Se. 3.2. Due to geometriondition (16), the parameters t1, t, and � are inter-onneted (the same is true for t0, t01, and �0 in theintegrand in Eq. (23)). The integration in Eq. (23) isarried out over the vortex dome, td � t � tu, loatedin the lower part of the lateral surfae of the strip. Theboundaries of this dome, td and tu, are found from theonditions that the urrent density J=� at the distane� from the orner be equal to the urrent density de-�ned by Eq. (10),h+ F (1) = HBLpH1pm � 0:8pp ; (24)and that ~Hx = 0 (25)at t = td and t = tu.When Ha = HBLp (the dashed line in Fig. 3), wehave F (1) = 0 from Eq. (24). This means that td = tu,i. e., the dome only begins to form at this magneti�eld. We an then omit the funtion F (t) in Eqs. (21)and (22). These equations together with formula (16)allow �nding t = td = tu and also t1 and � in themanner similar to that of Se. 3.2. In other words, wean �nd the point on the lateral surfae of the stripwhere the dome begins to form. With inreasing Ha,the di�erene tu � td inreases, and the parameter tdreahes zero at Ha = Hp. Thus, Hp an be found fromEqs. (16), (21)�(25) if we set td = 0 in Eq. (23). Even-tually, we �ndHp = H1pmf � pp� ; p � p; (26)where the funtion f(u) alulated numerially isshown in Fig. 3. It an be seen that in the self-onsistent alulation, Hp=H1pm dereases omparedto the value 0:8 that follows from Eq. (18). As p! 0,5 ÆÝÒÔ, âûï. 3 (9) 513
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Fig. 3. The penetration �eld Hp (the solid line) as afuntion of the parameter p de�ned by Eq. (19). Theline with irles is the funtion f(p=p) in Eq. (26), andthe line with dots at p=p > 1 is given by formula (20).The dashed line is the extrapolation of dependene (20)to the region p < p. The dotted line shows Hp(p) a-ording to Eq. (18) with os � = 0:80. The �eld Hp ismeasured in units of H1pmwe now have Hp=H1pm � 0:63. As an example, inFigs. 4 and 5 we show the dependenes ~Hx(y) and �(y)obtained by solving Eqs. (16), (21)�(25) at td = 0 withp=p = 0:895. We note that the �eld Hx(y) in thevortex dome formed on the lateral surfae has oppo-site signs above and below the equator and vanishes aty = 0.The tilted vorties starting on the lateral surfaesof the sample also form the domes Hy(x) on the up-per (lower) surfaes of the strip near its orners. Theshape of these domes an be found from the obtainedpro�les Hx(y) and �(y) using the onservation of the�ux and relation (16), Fig. 6. We note that the derivededge dome in Fig. 6 is a unique feature of the om-bined e�et of surfae and geometri barriers and isvery di�erent from the edge �eld distribution obtainedin Refs. [2℄ and [3℄, whih inreases monotonially anddiverges at the sample orners.We assumed above that the tilted vorties pene-trating the lateral surfae of the strip are straight, seeEq. (16). This assumption is indeed justi�ed under theondition B � H1 implied throughout the paper. Inthis ase, we have [44, 45℄H = Hn � H1n for the ther-modynami magneti �eldH = 4��F=�B, where F (B)is the free-energy density, n � B=B = (os �; sin �; 0) isthe unit vetor along B, and the angle �(x; y) de�nesthe loal diretion of a vortex at the point (x; y). The
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shape of the vortex lines inside a superondutor inthe absene of pinning is determined by the equationsdivB = 0 and rotH = 0 [46℄. The last of these equa-tions gives (n � r)� = 0, whih means that the angle� is indeed a onstant along any tilted vortex rossingthe lateral surfae of the strip.514
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Fig. 6. The pro�le Hy(x) on the upper surfae of thestrip at Ha = Hp for p=p = 0:895. The �eld Hy ismeasured in units of H15. DISCUSSIONWe ompare the magneti moment of the strip (al-ulated per unit length along the z axis) in the asesp > p and p < p. In the �rst ase (p > p), whenthe penetration �eld Hp is determined by the Bean�Livingston barrier, the magneti moment of the stripin the Meissner state, i. e., at Ha < Hp, is equal to [38℄My = � w2(1�m)Ha4[E(k0)�mK(k0)℄2 � �Haw24 ; (27)where m � 2d=�w, k0 � p1�m, and K(k0) and E(k0)are the omplete ellipti integrals of the �rst and se-ond kinds, respetively. In the seond ase (p < p),where the penetration �eld is determined by the geo-metri barrier, the magneti moment is still given byformula (27) at Ha � HBLp , where HBLp is desribedby Eq. (11) or Eq. (20). But at HBLp < Ha < Hp,an additional ontribution ÆMy to the magneti mo-ment appears. This ontribution is due to the urrentsgenerated by the domes of the tilted vorties. The a-urate analysis of ÆMy requires substantial numerialalulations, and we here give only a simple estimateof this ÆMy,jÆM jjMyj � pm�1� 0:8 pph�� 1; (28)where h = Ha=pmH1. Hene, a small break in theHa-dependene of the magneti moment should ourat Ha = HBLp in the seond ase, p < p. Beause theparameter p inreases with inreasing the temperature

T due to the inrease in �(T ), the seond type of thevortex penetration transforms into the �rst type withinreasing T . In this situation, if the temperature de-pendene of the magneti momentMy is measured at aonstant Ha, a break in this dependene M(T ) shouldalso our.When Ha exeeds Hp, the vortex dome in the en-ter of the strip begins to form. The boundary b of thisdome is found from the ondition that the urrent den-sity J=� at the distane � from the orner is equal to theurrent density de�ned by Eq. (10), whereas the shapeof the vortex dome at jxj � b is determined by theequation J(x; d=2) = J(x;�d=2) = 0. The di�erenebetween the ases p > p and p < p is only in that theurrents generated by the domes of the tilted vortiesmust be taken into aount in the seond ase. But ifHp < Ha � H1, then the domes near the edges of thestrip and at its enter are far from eah other, and wean neglet their mutual in�uene in the �rst approx-imation. In this situation, the domes near the edgesof the sample do not hange with inreasing Ha, andthe distintion between the entral domes for p > pand p < p is small. Using formula (34), we an showthat these entral domes are approximately desribedby the appropriate formula in [2℄. When Ha � H1, theentral dome and the domes near the edges of the stripare lose to eah other, and any of them should be al-ulated self-onsistently, taking the e�et of the otherdomes into aount. This situation will be onsideredelsewhere.So far, we have onsidered the vortex penetra-tion into an isotropi superonduting strip. We nowbrie�y disuss the ase of an anisotropi superondu-tor, where the anisotropy parameter " � �ab=� is lessthan unity, " < 1. Here, �ab and � are the respe-tive London penetration depths in the plane of thestrip and in the diretion perpendiular to this plane.Beause the �eld HBLp is determined by the depair-ing urrent density (see Se. 3.1), we an expet thatthis �eld is pratially independent of ". With formu-las of Ref. [47℄, it an be shown that the anisotropy" leads to the respetive additional fators 1=�� and"2=�� in the left-hand sides of Eqs. (14) and (15), where�� � pos2 � + "2 sin2 �. As a result, the �eld HGBpfound in Se. 3.2 depends on ". But this dependeneproves to be relatively weak, and hene the ritialvalue p introdued in Se. 3.3 as the ratio HBLp =HGBpalso depends on " weakly (Fig. 7). Therefore, p(")is of the same order of magnitude as in the isotropiase " = 1. This result means that we have p > p foranisotropi superondutors with � � 1 at reasonableratios �ab=d.515 5*
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M of the sample should exhibit a small break in theappropriate Ha- or T -dependenes of M .We thank I. M. Babih for the helpful disussions.This work was supported by the German�Israeli Foun-dation for Sienti� Researh and Development (GIF).APPENDIXCurrents generated by �layers� of tiltedvorties in a stripWe onsider two thin �layers� of tilted vorties in thelower part of the strip (Fig. 8a). These two layers areloated symmetrially with respet to the axis x = 0,and extend to in�nity in the z diretion. Let the endsof the right layer be at the points (w,y0) and (x0,�d=2)desribed by the respetive parameters t0 and t01. Thewidth of the layer is determined by the small intervaldt0 or by the appropriate dy0, and the layer arries themagneti �ux d� = Hx(y0) dy0. The surfae urrentsgenerated by the two layers an be found using the re-sults of Se. 2 and a onformal map that transformsthe upper half-plane of the omplex plane onto the in-terior of the retangle shown in Fig. 8b. The lower andupper sides of this retangle orrespond to the parts ofthe magneti �eld lines A = 0 and A = �d� that lieoutside the strip and that are shown in Fig. 8a, while
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Two regimes of vortex penetration : : :the lateral sides of the retangle orrespond to the in-�nitesimal intervals dy0 and dx0 arrying the �ux d�.Eventually, we �nd that the surfae urrent generatedby the layers at a point t is given by4� J(t) = G(t0)�1�mt21� t2 �1=2 (t01 � t0)[t01 � t℄[t� t0℄ (29)if �1 � t � 1, and by4� J(t) == sign(t)G(t0)�1�mt2t2 � 1 �1=2 (t01 � t0)[t01 � t℄[t� t0℄ (30)if 1 � jtj � 1=pm. Here, sign(t) = 1 for t > 0 andsign(t) = �1 for t < 0, the fator G(t0) isG(t0) = Hx(t0) dt0� � 1� (t0)21�m(t0)2�1=2 ; (31)and Hx(t0) = Hx(y0).If two similar layers are in the upper part of thestrip, i. e., if the right layer has the oordinates �t0 and�t01 and arries the �ux Hx(�t0) dy0 = �Hx(t0) dy0 == �d�, then we �nd4� J(t) = �G(t0)�1�mt21� t2 �1=2 (t01 � t0)[t01 + t℄[t+ t0℄ (32)for �1 � t � 1 and4� J(t) == �sign(t)G(t0)�1�mt2t2 � 1 �1=2 (t01 � t0)[t01 + t℄[t+ t0℄ (33)for 1 � jtj � 1=pm. Formula (23) is the sum of theexpressions (29) and (32) and also (30) and (33) fort > 0.In a similar manner, we an obtain the surfaeurrents generated by two vertial layers of vortiesthat are loated symmetrially with respet to the axisx = 0. Let the ends of the right layer be at thepoints (x0,�d=2) and (x0,d=2) desribed by the respe-tive parameters t01 and �t01. The width of the layeris determined by the small interval dt01 or by the ap-propriate dx0, and the layer arries the magneti �uxd� = Hy(x0) dx0. Eventually, we �nd the followingsurfae urrents generated by the layers at a point t1 onthe upper or lower surfaes of the strip, 1 � jt1j � pm,4� J(u) = � 2�Hy(u0) du0�1� (u0)21� u2 �1=2 �� uu2 � (u0)2 ; (34)
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