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STATISTICAL MECHANICS OF COULOMB GASESAS QUANTUM THEORY ON RIEMANN SURFACEST. Gulden a, M. Janas a, P. Koroteev a;b, A. Kamenev a;*aDepartment of Physis, University of MinnesotaMN 55455, Minneapolis, USAbPerimeter Institute for Theoretial PhysisON N2L2Y5, CanadaWilliam I. Fine Theoretial Physis Institute, University of MinnesotaMN 55455, Minneapolis, USAReeived Marh 26, 2013Dediated to the memory of Professor Anatoly LarkinStatistial mehanis of a 1D multivalent Coulomb gas an be mapped onto non-Hermitian quantum mehanis.We use this example to develop the instanton alulus on Riemann surfaes. Borrowing from the formalism de-veloped in the ontext of the Seiberg�Witten duality, we treat momentum and oordinate as omplex variables.Constant-energy manifolds are given by Riemann surfaes of genus g � 1. The ations along prinipal yles onthese surfaes obey the ordinary di�erential equation in the moduli spae of the Riemann surfae known as thePiard�Fuhs equation. We derive and solve the Piard�Fuhs equations for Coulomb gases of various hargeontent. Analysis of monodromies of these solutions around their singular points yields semilassial spetraas well as instanton e�ets suh as the Bloh bandwidth. Both are shown to be in perfet agreement withnumerial simulations.DOI: 10.7868/S00444510130901251. INTRODUCTIONOne of the very last works of Anatoliy Larkin [1℄ wasdevoted to transport through ion hannels of biologialmembranes. An ion hannel may be roughly viewedas a ylindrial water-�lled tube surrounded by a lipidmembrane. Its typial radius a � 6Å is muh smallerthan its length L � 120Å. The important observationwith far-reahing onsequenes, made in Ref. [1℄, is thatthe dieletri onstant of water "water � 80 is signi�-antly larger than that of the surrounding lipid mem-brane "lipid � 2. This de�nes a new length sale� �ra"water"lipid ln "water"lipid � 140Åover whih the eletri �eld stays inside the hanneland does not esape into the surrounding media. Sine*E-mail: kamenev�physis.umn.edu

� & L, the ions inside the hannel interat essentiallythrough the 1D Coulomb potentialU(x1 � x2) � eE0jx1 � x2j;where E0 = 2e=a2"water is a disontinuity of the ele-tri �eld reated by a unit harge. This fat ditates asigni�ant energy barrier U(L=4) � 4kBTroom for mov-ing a single ion through the hannel. If indeed present,suh a barrier would essentially impede ion transport,preventing the hannel from performing its biologialfuntions.Nature removes suh Coulomb bloking by sreen-ing. A moving ion is sreened either by mobile ions ofdissoiated salt [1℄, or by immobilized harged radialsattahed to the walls of the hannel [2�9℄. Neverthe-less, due to the peuliar nature of the long-range 1DCoulomb potential, the transport barrier proportionalto the hannel length L is always present. Its magni-tude, however, is typially suppressed [1℄ down to aboutkBTroom, allowing for a relatively unimpeded trans-port of ions. These onsiderations all for developing atransport theory of 1D Coulomb gases. Following the595 10*



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013elebrated mapping of 1D statistial mehanis ontoan e�etive quantum mehanis, pioneered by Edwardsand Lenard [10℄ and Vaks, Larkin, and Pikin [11℄, theauthors of [1℄ mapped the problem onto quantum me-hanis with a osine potential (we brie�y review thismapping in Se. 2). The ground-state energy of suhquantum mehanis is exatly the equilibrium pressurein the Coulomb plasma. Moreover, the width of thelowest Bloh band is a spei� energy barrier for iontransport through the hannel.It is instrutive to notie that the 2� os � == �(ei� + e�i�) potential desribes a mixture of posi-tive, ei�, and negative, e�i�, monovalent ions with on-entration �. We an also onsider a situation wherethe hannel is �lled with a solution of dissoiated mul-tivalent salt, e. g., divalent CaCl2 or trivalent AlCl3.In these ases, the orresponding 1D statistial me-hanis is mapped onto the quantum problem with anon-Hermitian potential suh as �(e2i�=2 + e�i�) or�(e3i�=3 + e�i�) [2; 10℄. This paper is devoted to e�-ient mathematial methods of treating non-Hermitianquantum mehanis of this sort.Our partiular fous here is on a semilassial treat-ment, appliable in the regime of a su�iently large saltonentration �. In its framework, the energy spetrum(and hene the pressure) is determined by the Bohr�Sommerfeld quantization ondition for the ation oflassial periodi orbits. On the other hand, the band-width (and hene the transport barrier) is given by theexponentiated ation aumulated on an instanton tra-jetory, running through the lassially forbidden partof the phase spae. The traditional tehniques of Her-mitian quantum mehanis all for �nding lassial andinstanton trajetories by solving equations of motion inreal and imaginary time and evaluating orrespondingations. This route annot be straightforwardly fol-lowed in non-Hermitian quantum problems arising inthe ontext of multivalent Coulomb gases. Even leav-ing aside the tehnial di�ulties of solving omplexequations of motion, there are oneptual di�ultieswith identifying periodi orbits as well as the meaningof lassially allowed vs forbidden regions and with theimaginary time proedure.In this paper, we borrow from the algebrai topol-ogy methods developed in the past deades in the on-text of the Seiberg�Witten solution [12, 13℄ and itsappliations to integrable systems [14�16℄ (and manyfollow-up ontributions). The entral idea is to onsiderboth the oordinate � and the orresponding anonialmomentum p as omplex variables. This leads to a four-dimensional (4D) phase spae. Then (omplex) energyonservation restrits the trajetories to live on 2D Rie-

mann surfaes embedded into the 4D phase spae. Thedynamis of the system are essentially determined bythe topology, i. e., the genus g of suh Riemann sur-faes. We show that mono- and divalent gases aredesribed by tori, while trivalent and 4-valent lead togenus-2 surfaes, et. The Cauhy theorem and theresulting freedom to deform the integration ontour inthe omplex spae allows us to avoid �nding spei� so-lutions of the equations of motion. Instead, we identifythe homology yles on the Riemann surfae and �ndthe orresponding ation integrals, whih depend onlyon the topology of the yles and not on their spei�shape. For example, the osine potential of a mono-valent gas leads to a torus, whih obviously has twotopologially distint yles (see Fig. 6 below). Thetwo turn out to be related to lassial and instantonations orrespondingly. The genus g � 1 Riemannsurfaes admit 2g topologially distint yles. Below,we identify and explain the meaning of the orrespond-ing ation integrals.The shape of the spei� Riemann surfae dependson the parameters of the problem, e. g., salt onentra-tion � in our ase. Suh parameters are alled mod-uli of the Riemann surfae. It turns out that theation integrals, being funtions of the moduli, sat-isfy a losed ordinary di�erential equation (ODE) ofthe order 2g, known as the Piard�Fuhs equation.The ations an be found as solutions of this ODEin the moduli spae, rather than by performing inte-grations over yles on the surfae. Below, we deriveand solve Piard�Fuhs equations for several (positiveand negative) ioni harge ombinations, suh as thegenus g = 1 ases (1; 1); (2; 1) and the genus g = 2ases (3; 1); (3; 2); (4; 1). We then disuss how to on-net the prinipal lassial ations with the spetraof the orresponding quantum problem. The key ob-servation is that in the moduli spae, the ations ex-hibit a few isolated branhing points. Going aroundsuh a branhing point transforms the ations intotheir linear ombinations, e�eting an Sp(2g;Z) mon-odromy transformation. The invariane of quantum ob-servables under monodromy transformations ditatesBohr�Sommerfeld quantization for one of the prinipallassial ations. The remaining ations an be iden-ti�ed with the instanton proesses, e. g., related to theBloh bandwidth.Statistial mehanis of 1D Coulomb gases mayseem to be an isolated problem, not worthy of de-veloping an extensive mathematial apparatus. Ourgoal here is to use it as a test-drive example, groundedinto a well-posed physis problem, to develop a ma-hinery appliable in other setups. Reently, the so-596



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :alled PT symmetri non-Hermitian quantum mehan-is attrated muh attention for its appliation in a-tive optis [17℄ and open quantum systems [18℄, as wellas in the desription of antiferromagneti latties [19℄and alulating energy states in larger moleules [20℄.Our examples also belong to the lass of PT symmetriproblems. It seems likely that the methods developedhere may be applied to advane analyti understand-ing of a broader lass of PT symmetri quantum me-hanis. Another ontext where omplexi�ed quantummehanis was proven to be extremely useful, is dynam-is of large moleular spins [21; 22℄. Indeed, funtionalintegral representation of the spin dynamis leads nat-urally to the Hamiltonian formulation, where the pro-jetive oordinates (z; �z) on the sphere play the role ofthe anonial pair [23℄. It was realized in [21; 22℄ that to�nd instanton trajetories, one has to onsider z and �zas independent omplex variables, thus expanding thedynamis into 4D phase spae. The Riemannian ge-ometry methods seem to be well-suited to advane thissubjet as well.This paper is organized as follows. In Se. 2, we out-line the relation between 1D multivalent Coulomb gasesand non-Hermitian quantum mehanis and disussgeneral symmetries of the latter. In Se. 3, we sum-marize major numerial observations regarding om-plex spetra and the band struture for the family ofHamiltonians onsidered here. In Se. 4, we illustratethe mahinery of algebrai geometry on Riemann sur-faes for the familiar Hermitian osine potential quan-tum mehanis, whih orresponds to the monovalent(1; 1) gas. There, we introdue the omplexi�ed phasespae and Riemann tori of onstant energy; we then de-rive, solve, and analyze solutions of the Piard�Fuhsequations. In Se. 5, we apply the developed methodsfor the divalent (2; 1) Coulomb gas, whih is also de-sribed by a genus-1 torus. In Se. 6, we extend themethod for genus-2 example of a trivalent (3; 1) gas,whih exhibits some qualitatively new features. The(3; 2) and (4; 1) gases are brie�y disussed in Se. 7. InSe. 8, we outline onnetions to the Seiberg�Wittentheory. We onlude with a brief disussion of the re-sults in Se. 9.2. MAPPING OF COULOMB GASES ONTOQUANTUM MECHANICSWe onsider a 1D gas of ations with harge n1eand anions with harge �n2e, where (n1; n2) are posi-tive integers. By Gauss's theorem, the eletri �eld at adistane x larger than the radius of the hannel a from

a unit harge is E0 = 2e=a2"water. At the loation ofa harge n1;2, the eletri �eld exhibits a disontinuity�2E0n1;2. Sine all harges are integers, the �eld isonserved modulo 2E0 along the hannel. This allowsde�ning the order parameter [1, 3℄ q = E(x)(mod 2E0),whih ats like an e�etive boundary harge �q at thetwo ends of the hannel. The Poisson equation in 1D isr2� = �2E0Æ(x), leading to the 1D Coulomb potential�(x) = �E0jxj. The potential energy of the gas is thusU = �eE02 Xi;j �i�j jxi � xj j; (1)where �j is the harge n1 or �n2 of an ion at the po-sition xj and we omit the �q boundary harges forbrevity. Our goal is to evaluate the grand anonialpartition funtion of the gas in the hannel of length L,ZL = 1XN1;N2=0 fN11 fN22N1!N2! N1Yi=1 LZ0 dxi N2Yj=1�� LZ0 dxj exp�� UkBT � ; (2)where f1;2 are fugaities of the two harge speies. Wean now introdue the harge density using a delta-funtion Æ[�(x)�Pj �jÆ(x�xj)℄. The delta-funtion iselevated to the exponent with the help of the auxiliary�eld �(x). This proedure deouples all xj integrals [1℄,bringing them to the formXN [f R dx ei��(x)℄NN ! = exp�f Z dx ei��(x)� :Interation potential (1), being inverse of the 1DLaplae operator, leads to expf(T=eE0) R dx ��2x�g. Asa result, partition funtion (2) is identially written asa Feynman path integral, in an �imaginary time� x, forthe quantum mehanis with the HamiltonianĤ = (i���q)2� [�1 exp(in1�)+�2 exp(�in2�)℄ ; (3)where �1;2 = f1;2kBT=eE0 are dimensionless ion on-entrations. Suh a Feynman integral is the expeta-tion value of the evolution operator during �time� L,leading toZL = *q���X exp0�� eE0kBT LZ0 dx Ĥ1A���q+ ==Xm jhqjmij2 exp��eE0LkBT �m(q)� ; (4)597



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013where X stands for the x-ordered exponential.Here, �m(q) are eigenvalues of the e�etive Hamil-tonian Ĥ and jmi =  m(�) are its eigenvetors inthe Hilbert spae of periodi funtions  m(�) ==  m(� + 2�), and �nally the matrix elements arehqjmi = R 2�0 d�e�iq� m(�). The boundary hargeq plays the role of the Bloh quasimomentum andthe spetrum is obviously periodi in q with the unitperiod (re�eting the fat that the integer part of theboundary harge may be sreened by mobile ions andthus beomes inonsequential).The pressure of the Coulomb gas is its free energyper unit length,P = kBT � lnZL�L L!1����! �eE0�0(q); (5)where �0(q) is the eigenvalue with the smallest real part.In equilibrium, the system minimizes its free energyby hoosing an appropriate boundary harge q. In allases onsidered below, the minimum turns out to bea nonpolarized state of the hannel, i. e., q = 0 (seeRefs. [2℄ for exeptions to this rule, however). Adia-bati harge transfer through the hannel is assoiatedwith the boundary harge q sweeping through its fullperiod. As a result, the (free) energy barrier for iontransport is U0 = eE0L�0; (6)where�0 is the width of the lowest Bloh band. There-fore, the ground-state energy and the width of thelowest Bloh band of Hamiltonian (3) determine ther-modynami and transport properties of the (n1; n2)Coulomb gas. The rest of this paper is devoted to asemilassial theory of the spetral properties of suhHamiltonians. We start by disussing some generalsymmetries of non-Hermitian Hamiltonian (3).2.1. PT SymmetryAlthough the Hamiltonian in (3) is non-Hermitianfor n1 6= n2, it obeys PT symmetry [24; 25℄. Here, theparity operator P ats as � ! �� and the time-reversaloperator T works as omplex onjugation i ! �i.Clearly, the two operations ombined leave Hamilto-nian (3) unhanged. It an be proved [25; 26℄ that alleigenvalues of PT -symmetri Hamiltonians are eitherreal or our in omplex-onjugate pairs. As shown be-low for positive values of onentrations �1;2 > 0, thelowest-energy band �0(q) is entirely real, ensuring thepositivity of the partition funtion. The higher bands�m(q) are in general omplex. It is interesting to notethat for unphysial negative onentrations �1;2 < 0,

already the lowest band �0(q) is omplex, making thefree energy ill-de�ned.2.2. IsospetralityThe spetrum of Hamiltonian (3) is invariant un-der shifts of the oordinate � ! � + �0, where �0 isan arbitrary omplex number. Under this transfor-mation (preserving the periodi boundary onditions),the dimensionless onentrations �1;2 renormalize as�1 ! �1 exp(in1�0) and �2 ! �2 exp(�in2�0). Wenote that the ombination �n21 �n12 remains invariant.We hene onlude that the family of Hamiltonians (3)with �n21 �n12 = onst (7)is isospetral [10℄. Therefore, without loss of generality,we an pik one representative from eah isospetralfamily. It is onvenient to hoose suh a representa-tive to manifestly enfore harge neutrality in the bulkreservoirs. For this, we take �1n1 = �2n2 = �, whihbrings Hamiltonian (3) to the formĤ = � �p̂2�� 1n1 exp(in1�)+ 1n2 exp(�in2�)�� ; (8)where we have de�ned the momentum operator asp̂ = ��1=2(�i�� + q); [�; p̂℄ = i��1=2: (9)The ommutation relation shows that ��1=2 plays therole of the e�etive Plank onstant. With the helpof isospetrality ondition (7), a proper � an alwaysbe hosen suh that the spetrum of Hamiltonian (8)is idential with that of a Hamiltonian with arbitrary�1;2. The physial reason for this symmetry is thatthe interior region of the long hannel always preservesharge neutrality, allowing the edge regions to sreenharge imbalane of the reservoirs. Therefore, irrespe-tive of the relative fugaities of ations and anions inthe reservoirs, the thermodynamis of the long hannelis equivalent to the one in ontat with neutral reser-voirs with an appropriate salt onentration �. Here-after, we restrit ourselves to the neutral Hamiltonian(8) with a single parameter �.3. NUMERICAL ANALYSISIn this setion, we disuss numerial simulation ofthe spetrum of Hamiltonian (8). We fous on unequalharges n1 6= n2, beause the ase of n1 = n2 reduesto the well-known Hermitian osine potential [27; 28℄.598



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :For unequal harges, the Hamiltonian is non-Hermitianbut PT symmetri, allowing for omplex eigenvalues,whih appear in onjugate pairs [25; 26℄.Sine the Hamiltonian Ĥ ats in the Hilbert spaeof periodi funtions, we an hoose the omplete basisin the form feim�gm2Z. In this basis, the Hamiltonianis represented by an in�nite-size real matrix [2℄Ĥm;m0 = (m� q)2Æm;m0 �� �� 1n1 Æm+n1;m0 + 1n2 Æm�n2;m0� : (10)The boundary harge q plays the role of quasimomen-tum residing in the Brillouin zone q 2 [�1=2; 1=2℄.To numerially alulate the energy spetrum �m(q),we trunate the matrix at a large uto�, after verify-ing that a further inrease in the matrix size does nothange the low-energy spetrum. We left the bound-ary onditions �open�, i. e., did not hange the matrixelements near the uto�, after verifying that di�erentboundary onditions do not a�et the result. It is easyto see that the matrix size should be muh more thanp� to aurately represent the low-energy spetrum.As an illustration, we show the Hamiltonian ut to a5� 5 matrix for the divalent (2; 1) gas:0BBBBBB�(�2�q)2 0 ��=2 0 0�� (�1�q)2 0 ��=2 00 �� (0�q)2 0 ��=20 0 �� (1�q)2 00 0 0 �� (2�q)2
1CCCCCCA :For reasons that beome apparent below, it is on-venient to represent the spetrum � on the omplexplane of the normalized energy u de�ned asu = n1n2n1 + n2 �� : (11)For the divalent (2; 1) gas, u = 2�=3� and the orre-sponding spetra are shown in Fig. 1. The spetrumonsists of a sequene of omplex Bloh bands. Thenumber of narrow bands within the unit irle juj = 1sales as p�. They form three branhes, whih termi-nate at u = �1 and u = e�i�=3 and approximately lineup along the lines onneting the termination pointswith the point u = 1. We disuss the orrespondingbandwidths below. Outside the unit irle, the bandsare wide and entered near the positive real axis of en-ergy.Figure 2 shows the band struture in the �rst Bril-louin zone jqj < 1=2 for � = 1. We note that the lowestBloh band is purely real (this is always the ase for
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :4. MONOVALENT (1,1) GASTo introdue the methods, we �rst develop a semi-lassial spetral theory for the Hermitian Hamiltonianin (8), (9) with n1 = n2 = 1. For this, we look for wave-funtions in the form  = exp(i�1=2S), where S is anation for the lassial problem with the normalizedHamiltonian 2u = p2 � 2 os �; (12)where u = �=2�, suh that u = �1 orrespond to thebottom (top) of the osine potential. The semilassialalulations require knowledge of the ation integrals.Our approah to suh integrals is based on omplex al-gebrai geometry. First, we let z = ei� and onsider(z; p) as omplex variables. Sine p(z) resides on theonstant-energy hypersurfae2u = p2 ��z + 1z� ; (13)we have a family of omplex algebrai urvesEu : F(p; z) = p2z � (z2 + 2uz + 1) = 0 (14)parameterized by u. For u 6= �1, it an be veri�ed that(�F=�z; �F=�p) does not vanish on Eu, and hene eahEu is nonsingular. Then F(p; z) impliitly de�nes a lo-ally holomorphi map p = p(z). The exeptions tothis our at z = 0;1; z�, wherez� = �u� ip1� u2 (15)are the roots of p2 = 0 (i. e., lassial turning points).In the viinity of these four branhing points, p(z) be-haves as p � z�1=2 (z � 0; ) (16)p � z1=2 (z � 1); (17)p � (z � z�)1=2 (z � z�); (18)i. e., p(z) is loally double-valued. (Note that we haveadded a point at z =1 to the omplex plane, therebyrendering it ompat and topologially equivalent to aRiemann sphere, Fig. 4). To make sense of this double-valuedness, we �rst introdue two uts between the fourbranhing points. For onveniene, we have hosen todo so between 0;1 and the turning points z�. On thisut domain, p(z) is loally holomorphi.We then introdue a seond sheet of the z-plane andthe orresponding Riemann sphere, ut in the same wayas the �rst. We then analytially ontinue p(z) on the�rst sheet aross the uts to the seond sheet. If p(z)

0 z+ 0 z+a b
z� z�1 1Im z Re zFig. 4. (a) Complex z-plane with two uts. (b ) It om-pati�es to the Riemann sphere with two uts1 1z�z+ z�z+00 1 10 0z� z�z+ z+10z�z+Fig. 5. Constrution of a Riemann surfae of genus 1.Two Riemann spheres with two uts eah are deformedinto tubes to make the gluing in the �nal step morelearis analytially ontinued aross the branh ut again,we return to the �rst sphere where we started. In thisway, we obtain p(z) as a loally holomorphi funtion,whose domain is a double-branhed over of the Rie-mann sphere. Furthermore, suppose we open up thebranh uts, keeping trak of where on the other branhp(z) would be if we ross one side of a ut. Identify-ing these edges, we obtain a torus as in Fig. 5 (wherethe arrows are used to signify the glued together edges).Thus the omplex algebrai urve Eu an be understood601
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 = z+ = ±uFig. 6. Riemann surfae of genus 1 with two basi y-les Æ0 and Æ1 on it. In the limit u ! �1, the torusdegenerates into a singular surfae. This oinides withthe loop Æ0 (but not Æ1) beoming ontratible to apointas a ompat Riemann surfae of genus g = 1 (gener-ally, every ompat Riemann surfae is topologially asphere with some number of handles g, alled the genusof the surfae).At the exeptional points u = �1, the two turn-ing points ollide (z+ = z� = �1) and the branh utbetween them ollapses. The Riemann surfae degener-ates into a sphere with two points identi�ed, a singularsurfae of genus 0. This oinides with one of the loopsof the torus beoming ontratible to a point (Fig. 6).4.1. Integration and topology on the torusThe ation integrals an be understood as S = H �over lassial trajetories, where�(u) = p(�) d� = p(z)dziz = (z2 + 2uz + 1)1=2iz3=2 dz (19)is the ation 1-form that is meromorphi on the torus.To visualize the relevant trajetories, we momentarilyreturn to � and onsider it omplex. In this represen-tation, there are square-root branh uts along the realaxis, onneting the lassial turning points. The a-tion integrals run just above or below the real axis be-tween the turning points. Combining them into losedyles, we an push these yles o� the real axis andaway from the turning points without altering the a-tion integrals (by the Cauhy theorem). The two de-formed yles, shown in Fig. 7, are hereafter alled 0and 1.Translating these two yles to the omplex z-planeyields the ontours in Fig. 8. We note that these areindeed yles (i. e., losed ontours) owing to the ross-ing of branh uts. On the Riemann surfae, bothwind around the torus. For this reason, the integralsSj(u) = Hj � are known as periods of Eu with respetto �(u). It an be veri�ed that the residue of the ationform (19) at in�nity is zero. Indeed, we have � � dp
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Fig. 7. The lassially allowed (forbidden) region atenergy 2u are shown by the bold solid (dashed) line.A lassial (instanton) periodi orbit, in the omplex�-plane, leads to the 0 (1) yle
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Fig. 8. Cyles 0 and 1 on the omplex z-plane foru = �0:9. The yle 1 rosses twie the two utsfrom the �rst branh (solid line) to the seond branh(dashed line) and bakat large z. Therefore, we an safely deform the on-tour around in�nity in the z-plane. We onsider ylesÆ0 and Æ1 as de�ned in Fig. 6. Any losed yle on thetorus (after an appropriate deformation) an be deom-posed into a superposition of an integer number of thesetwo basi yles. For example, the yles 0 and 1 are0 = Æ0; 1 = 2Æ1 � Æ0: (20)602



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :This is evident if we examine the manner in whih theseyles enirle around the torus. Formally, the basiyles generate the �rst homology group of the torus(sine yles that are alike in this manner are homolo-gous).We an also onsider the �rst ohomology group ofthe torus, generated by two independent 1-forms onthe Riemann surfae modulo exat 1-forms (the latterintegrate to zero for all yles on the torus by Stokes'theorem). In this work, we onsider meromorphi 1-forms with zero residues. Modulo exat forms, theyare dual to 1-yles on the torus by the de Rham theo-rem [29℄. The duality implies that there are exatly asmany independent 1-forms to integrate upon the sur-fae as independent 1-yles to integrate along the sur-fae. For the torus, the ohomology, like the homology,is two-dimensional, i. e., any three (or more) 1-forms onthe torus are linearly dependent up to an exat form.4.2. Piard�Fuhs equationAs a result, there must exist a linear ombinationof 1-forms f�00(u); �0(u); �(u)g that is an exat form(here, primes denote derivatives w.r.t. u). This om-bination an be found by allowing for (u-dependent)oe�ients in front of the three 1-forms and seeking anexat form dz[P2(z)=pz(z2 + 2uz + 1) ℄, where P2(z)is a seond-degree polynomial with u-dependent oe�-ients. Mathing the oe�ients for powers of z leadsto �ve equations for six unknown parameters, deter-mining the sought ombination up to an overall mul-tipliative fator. This way, we �nd that the operatorL = (u2 � 1)�2u + 1=4 ats on �(u) asL�(u) = ddz " i2 1� z2pz(z2 + 2uz + 1) # : (21)It follows from Stokes' theorem and the exatness ofL�(u) that LSj(u) = 0 sine j is a yle on thetorus. Therefore, Sj(u) satis�es the linear seond-orderODE [16℄ (u2 � 1)S00j (u) + 14 Sj(u) = 0: (22)This is an example of the Piard�Fuhs equa-tion [30; 31℄ (see Ref. [32℄ for a review). Exatly thisequation appears extensively in the ontext of theSeiberg�Witten theory.Inspeting the oe�ient in front of the highestderivative shows that Eq. (22) has regular singularpoints at u =1 and u = �1, where the torus degener-ates into a sphere (see Fig. 6). Changing the variable to
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Fig. 9. The two yles 0;1 for u = 0. Here, 1 an bemapped to 0 by rotating through 180Æu2, this equation an be brought to the standard hyper-geometri form [33℄. In the domain j arg(1�u2)j < �, itadmits two linearly independent solutions of the formF0(u2) and uF1(u2), whereF0(u2) = 2F1 ��14 ;�14; 12; u2� ; (23)F1(u2) = 2F1 �+14 ;+14; 32; u2� : (24)These solutions form a basis out of whih Sj(u) (andindeed any period of (14)) must be omposed:S0(u) = C00F0(u2) + C01uF1(u2); (25)S1(u) = C10F0(u2) + C11uF1(u2): (26)To �nd the oe�ients Cjk , j; k = 0; 1 appropriate forthe ation yles j , we need to evaluate the periodsat one spei� value of u. Employing the fat thatthe hypergeometri funtions (23)�(24) are normalizedand analyti at u = 0, i. e., Fk = 1+O(u2), we see thatSj(u) = Cj0 + uCj1 + O(u2). Hene, to identify Cjk ,we expand Sj(u) to the �rst order in u and evaluatethe integrals at u = 0. The orresponding yles inthe z-plane are shown in Fig. 9 and expliit alulationyields C00 = e�i�=2C10 = 8��1=2�(3=4)2; (27)C01 = ei�=2C11 = ��1=2�(1=4)2: (28)603
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Fig. 10. Monodromy transformation (u + 1) !! (u+1)e2�i rotates the branh ut between [z�; z+℄by 180Æ ounter-lokwise. This hanges the yleÆ1 ! Æ01 = Æ1 � Æ0 along with itThe relations between C0k and C1k are not aiden-tal. They originate from the fat that for u = 0, theturning points are�i and hene the yle 1 transformsinto 0 under the substitution z0 = e�i�z, Fig. 9. To-gether with Eqs. (25) and (26), these relations implyglobal symmetry between the two periods,S0(u) = e�i�=2S1(ei�u): (29)4.3. Struture of Sj(u) near u = �1Equations (23)�(28) fully determine the two ationsS0;1(u) in terms of the hypergeometri funtions1). Weshould now relate them to physial observables. Forthis, we onsider the struture of Sj(u) in the neighbor-hood of u = �1. As noted above, the yle 0 = Æ0 on-trats to a point as u! �1, and therefore S0(�1) = 0by Cauhy's theorem. By ontrast, S1(�1) remains�nite. Moreover, while S0 is analyti near u = �1,it turns out that S1 is not. To see this, we hoosesome u & �1 and allow u to wind around �1 (i. e.,(u+ 1) ! (u+ 1)e2�i). Sine u � �1, the roots z� in(15) are of the form z� = �1� ip2(u+ 1), and we seethat this transformation exhanges these branh pointsvia a ounter-lokwise half-turn; the branh ut in ef-fet rotates by 180Æ. For the yle Æ0, whih enlosesthe turning ut, this has no e�et: the ut turns withinit. Not so for Æ1: as the ut rotates, we must allow Æ1to ontinuously deform if Æ1 is never to interset thebranh points. The overall e�et is shown in Fig. 10.The e�et of this monodromy transformation is to pro-due a new yle Æ01. Thus, while we have returned tothe initial value of u, the period S1(u) (unlike S0(u))does not return to its original value and therefore S1(u)annot be analyti near u = �1.1) Sine the integrals onsidered here are in fat ellipti inte-grals over a losed yle, the hypergeometri funtions presentedhere ould have been given diretly in terms of the omplete el-lipti integrals of the �rst and seond kind [33℄.

These fats are onsistent, of ourse, with the originof the integrals as the lassial and instanton ations.As u! �1, the lassially allowed region ollapses andp(�)! 0, and hene the lassial ation at the bottomof the osine potential approahes that of the harmoniosillator S0(u) / (1 + u) (indeed, the lassial periodT / �uS0 is a onstant). For the instanton traje-tory 1, the ation S1 does not vanish. Moreover, asu! �1, the period on the instanton trajetory is log-arithmially divergent beause the trajetory goes tothe extrema of the osine potential (see Fig. 7). Thisimplies that S1(u) / onst + (1 + u) ln(1 + u).In fat, more an be said. Under the monodromytransformation, the basis yle Æ01 relates to the originalbasis as Æ01 = Æ1� Æ0 (as an be seen by ounting inter-setions of yles or by moving onto the torus). Thus,(Æ0; Æ1) ! (Æ0; Æ1 � Æ0). From the deomposition of 0and 1 noted in (20), it follows that the Sj(u) musttransform as S0(u)S1(u)!!  1 0�2 1! S0(u)S1(u)! ==M�1 S0(u)S1(u)! ; (30)where we have introdued the monodromy matrixM�1of the ations near u = �1. Sine this variation of S1ours for every suh monodromy near u = �1, S1must have a omponent that depends logarithmiallyon 1 + u. Indeed, ln (1 + u) inreases by 2�i under themonodromy and sine S1 hanges by �2S0 it must havethe funtional form,S1(u) = Q1(u) + i� S0(u) ln(1 + u) ; (31)where Q1(u) and S0(u) are analyti funtions of 1+ u.As an immediate orollary, we an use relation (29)between S0 and S1 to �nd the struture of the solutionnear u = 1. Then the funtional form of S0(u) nearu = 1 is S0(u) = Q0(u)� i� S1(u) ln(1� u);where Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) areanalyti funtions of 1 � u. The orresponding mon-odromy matrix is M1 =  1 20 1! : (32)While the struture of the periods near u = �1 hasbeen shown through geometri reasoning, it an also604



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :be found diretly by seeking solutions of Piard�Fuhsequation (22) as power series in 1 � u. Suh a proe-dure along with the demand of a onstant Wronskianleads to a realization that one of the two solutions mustinlude (1� u) ln(1� u) terms along with the iterativesequene for �nding the oe�ients of the polynomials.This allows diretly verifying Eq. (31).4.4. Semilassial resultsWe now seek semilassial results for the sequeneof low-energy bands terminated at u = �1. We inter-pret the period S0(u) that is analyti around u = �1 asa lassial ation. It should be quantized aording tothe Bohr�Sommerfeld rule to determine the normalizedenergies um of the bands,S0(um) = 2���1=2(m+ 1=2); m = 0; 1; : : : (33)(we do not disuss the origin of the Maslov index 1=2here). The seond nonanalyti period S1(u) is iden-ti�ed as the instanton ation, whih determines thebandwidth (�u)m aording to Gamow's formula(�u)m = !�p� exp�i�1=2S1(um)2 � ; (34)where ! = 2 is the lassial frequeny for Hamil-tonian (12). The monodromy of u around �1,Eq. (30), arries over to the bandwidth as the fatorexp[(i=2)�1=2(�2S0(um))℄. Then the Bohr�Sommer-feld quantization in (33) is also a ondition for thebandwidth to be invariant with respet to monodro-mies.To illustrate these results, we expand the periods inEqs. (25)�(28) near u = �1 to �nd the physial energylevels �m = 2�um. To the �rst order, we �ndS0(u) = 2�(u+ 1) ; (35)Q1(u) = 16i� i� (u+ 1) ln (32e); (36)implying �m = �2�+2�1=2 (m+ 1=2). As a result, thepressure of a monovalent gas, Eq. (5), isP = �eE0�0 = 2kBTf �pkBTeE0f: (37)The two terms here are respetively the pressure of theideal gas with the fugaity f and the mean-�eld De-bye�Hükel interation orretion [2℄.The instanton ation, Eq. (31), at the quantized umis S1(um) = 16i+ 2i�m+ 12� ln�m+ 1=232e�1=2 � ; (38)

where the linear term in Q1(u) is absorbed into thelogarithm. Gamow formula (34) leads to(��)m = 2�(�u)m = 2� !�p� �� exp�i�1=2S1(um)2 � = 4� � 32em+ 1=2�m+1=2 �� exp��8�1=2 +�m2 + 34� ln�� ; (39)This oinides with the known asymptoti results forthe Mathieu equation [27; 28; 34℄.4.5. Neighborhood of u =1For ompleteness, we also onsider the behavior ofthe ations at high energy. In the limit u ! 1, Pi-ard�Fuhs equation (22) is of the form u2S00(u) ++ S(u)=4 = 0. Seeking a solution in the form S = ur,we �nd r(r � 1) + 1=4 = (r � 1=2)2 = 0 and thus theremust be two independent solutions with the leading be-havior u1=2 and u1=2 ln(u). Therefore, the two periodsshould be of the formSi(u) = u1=2 [Vi(u) +Wi(u) lnu℄ ; (40)where Wi and Vi are analyti funtions of 1=u. To �ndthese funtions, we note that while the ontinuation toin�nity for S1 is unambiguous, the result obtained forS0 depends on whether the path to in�nity passes aboveor below u = 1. This is beause S0 exhibits a nontrivialmonodromy around u = 1, Eq. (32). In other words,whether u goes to in�nity below or above the real axisdetermines whih of the two turning points z� goes tozero or in�nity. Sine these are also branhing pointsfor the torus, the path of analyti ontinuation deter-mines how the yles on the torus are arried along inthe proess.Thus, looking for the asymptoti behavior of peri-ods (25)�(28) at u!1� i0, we �nds [34℄V0(u) = i�W1(u)� V1(u); (41)W0(u) = �W1(u); (42)V1(u) = 4ip2 �ln �e2=8�+ 2=u� ; (43)W1(u) = �4ip2 �1� (4u)�2� (44)to leading orretions in 1=u. Sine S0(u) � S1(u) == i�W1(u)u1=2, it readily follows that under the mono-dromy u ! ue2�i, the two ations transform with themonodromy matriesM1�i0 =  �3 2�2 1! ; M1+i0 =  1 2�2 �3! : (45)605



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013It an be veri�ed that the three monodromy matriessatisfyM1�i0 =M1M�1; M1+i0 =M�1M1; (46)as expeted [33℄: winding around 0 in a large ounter-lokwise irle is the same as winding �1 and 1 se-quentially ounterlokwise.From Eqs. (40)�(44), we �nd the unique nonsin-gular period at u ! 1 � i0 to be given by S0(u) �� S1(u) = �i�W1(u)u1=2. As disussed above, it mustbe identi�ed with the lassial ation and subjet tothe Bohr�Sommerfeld quantization[S0(um)� S1(um)℄ =2 = 2���1=2m:This leads to um � m2=2� and hene �m = 2�um == m2, as expeted for the high-energy spetrum.5. DIVALENT (2,1) GASThe divalent (2,1) gas is the simplest ase whereHamiltonian (8) is non-Hermitian. In terms of the om-plex variable z = ei� and normalized energy u = 2�=3�,it takes the form32 u = p2 ��z22 + 1z� : (47)Similarly to Eq. (13), this de�nes a family of omplexalgebrai urvesEu : F(p; z) = 2p2z � �z3 + 3uz + 2� = 0: (48)The map p = p(z) is loally holomorphi away fromthe zeros z0; z� (Fig. 11). At these three branhingpoints as well as at the singularity at z = 0, thefuntion p(z) is loally double-valued and behaves asp � (z � zj)1=2; j = 0;� and p � z�1=2, respetively.In ontrast to the monovalent (1; 1) ase in Se. 4, thefuntion p(z) is single-valued at z � 1, where it be-haves as p � z, and hene no branh ut extends toz = 1. Nevertheless, there are again four branh-ing points. To onstrut the Riemann sphere, we drawtwo branh uts: one between [0; z0℄ and the other be-tween [z+; z�℄. The resulting Riemann surfae is againa g = 1 torus, analogous to that in Fig. 5.Its moduli spae u ontains four singular pointsu = �1; e�i�=3, and u = 1, where the torus degener-ates into the sphere. (There were only three suh pointsin the (1,1) ase.) For u = �1, the branhing pointsz� oalese, while for u = e�i�=3, the branhing pointz0 ollides with z�, orrespondingly. As u ! 1, thebranhing point z0 approahes z = 0, while z� ! �i1.
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Re z �z0 z�

z+ 020:51:0
1:5
�0:5�1:0�1:5 1 21 a bFig. 11. Complex z-plane with two branh uts, shownin bold solid lines. (a) Three integration yles0; 1; 2 are displayed for u = 0. (b) The instan-ton yle � = �1 + 2. The solid (dashed) linesdenote parts of the yles going over the �rst (seond)branhThe ation integrals are again de�ned as Sj = Hj �,where the 1-form �(u) = p(z)dz=iz is meromorphi onthe torus. In general, the ounterparts of the turn-ing points in the omplex �-plane are not real. Thismakes it more onvenient to disuss the ation ylesj in the z-plane. With three turning points z0; z�, it isonvenient to take three paths of integration 0; 1; 2,depited in Fig. 11. In terms of the two basi ylesÆ0 and Æ1 on the torus (see Fig. 6), the three paths aregiven by 0 = Æ0; 1 = �Æ1 + Æ0; 2 = Æ1: (49)We note that 0�1�2 = 0, and hene S0 = S1+S2.This equality holds beause there are only two inde-pendent losed yles on Riemann surfae of genus 1.It follows from de Rham's theorem [29℄ that there areexatly two independent 1-forms. Therefore, the threeforms f�00(u); �0(u); �(u)g are linearly dependent up toan exat form. Following the root outlined in Se. 4.2(where P2(z) is replaed with P3(z), a polynomial ofdegree 3), we obtain the Piard�Fuhs equation(u3 + 1)S00j (u) + u4 Sj(u) = 0: (50)In agreement with the above disussion, there are regu-lar singular points at the third roots of negative unity,i. e., u = �1; e�i�=3, where the oe�ient in front ofthe highest derivative goes to zero, and at u =1. Twolinearly independent solutions F0(u3) and uF1(u3) ofthis seond-order ODE are given in terms of the hyper-geometri funtions606



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :F0(u3) = 2F1��16 ;�16; 23 ;�u3� ; (51)F1(u3) = 2F1�+16 ;+16; 43 ;�u3� : (52)In this basis, the three periods Sj(u), where j = 0; 1; 2,are given bySj(u) = Cj0F0(u3) + Cj1uF1(u3) : (53)Sine the hypergeometri funtions Fj(u3 ! 0) == 1+O(u3), it follows that Sj(u) = Cj0+uCj1+O(u3)as u! 0. We an thus �nd onstants Cjk by expliitlyevaluating the ations at u = 0, i. e., Cj0 = Sj(0) andCj1 = S0j(0). The orresponding integration paths areshown in Fig. 11 and straightforward integration yieldsC00 = C10e�i=3 = C20e��i=3 = 211=63�3=2�(1=6)�(1=3) ; (54)C01 = C11e��i=3 = C21e�i=3 == 31=2�(1=6)�(1=3)211=6�1=2 : (55)These relations along with Eq. (53) imply the three-foldsymmetry between the ations (f. Eq. (29))S0(u) = ei�=3S1 �e�2i�=3u� == e�i�=3S2 �e2i�=3u� : (56)We now need to onnet periods (53) with thequantum spetrum. We start by disussing the realbranh of the spetrum terminating at the singularpoint u = �1 (see Fig. 1). As u! �1, the two branh-ing points z� oalese. As a result, the 0 yle degen-erates to a point, leading to S0(u ! �1) ! 0, whileS1;2 remain �nite and atually turn out to be nonana-lyti. This an be seen by onsidering the monodromyfor a winding of u around �1, i. e., (u+1)! (u+1)e2�i(f. Se. 4.3). Suh a transformation exhanges branh-ing points z� by a ounter-lokwise 180Æ rotation.This leaves the yle Æ0 = 0, whih enloses these twopoints, unhanged. On the other hand, the yle Æ1piks up a ontribution of �Æ0: Æ01 = Æ1�Æ0. Thus 1;2,Eq. (49), pik up a ontribution of �Æ0. As a result, forevery monodromy yle, S1;2 pik up a ontribution of�S0, and therefore loally they are of the formS1;2(u) = Q1;2(u)� i2�S0(u) ln(1 + u); (57)where Q1;2(u) and S0(u) are analyti funtions of 1+u(moreover Q1 + Q2 = S0, f. Eq. (49)). This al-lows identifying the period S0(u) = (p6�=2)(1 + u) ++O((1+u)2) as the lassial ation, while the instanton
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0−1.0 −0.5 0.5 1.0Fig. 12. Narrow energy bands (Æ) in the upper half-planeof the omplex energy u for � = 200 (f. Fig. 3a).ImS0(u) = 0 along the real axis, where the smalllines mark ReS0(u) = 2���1=2(m + 1=2). The lineImS1(u) = 0 emerges from u = ei�=3 and intersetsthe real axis at u � 0:96. To the right of this point, weobserve bands with narrow gaps and use the same olor-ing onvention as in Figs. 1, 3. The small perpendiularlines mark ReS1(u) = 2���1=2(m+ 1=2)ation is a ombination of the two nonanalyti periodsS1;2(u).The orresponding monodromy matrix M�1, e. g.,in the basis (S0; S1) (sine S2 = S0 � S1 is linearlydependent) is S0(u)S1(u)!!  1 01 1! S0(u)S1(u)! ==M�1 S0(u)S1(u)! : (58)Employing Eqs. (49) and (56), we �nd that at the sin-gular point ei�=3 (e�i�=3), the period S1(u) (S2(u)) isnonsingular and goes to zero. It should be thus iden-ti�ed with the lassial ations for the branh of thespetrum terminating at the respetive singular point(see Fig. 1). A ombination of the remaining two a-tions S0 and S2 (S1) form the orresponding instanton.The respetive monodromy matries (again in the basis(S0; S1)) are found asMei�=3 =  1 �10 1 ! ; Me�i�=3 =  2 �11 0 ! : (59)To �nd positions of the bands along the threebranhes of the spetrum, terminating at the three sin-gular points u = �1; e�i�=3, we use the Bohr�Sommer-feld quantization for the proper lassial ation Sj(u)with j = 0; 1; 2, orrespondingly:Sj(u(j)m ) = 2���1=2(m+ 1=2); m = 0; 1; : : : (60)607



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Figure 12 shows the lines ImS0(u) = 0 and ImS1(u) == 0 interseted with the set of lines ReSj(u) == 2���1=2(m+1=2). The numerially omputed spet-rum sits right at the semilassial omplex energies u(j)m .The exellent agreement holds all the way up to thepoint u � 0:96, where all three periods Sj happen tobe purely real. Beyond this point, the semilassialapproximation seems to break down, whih manifests,e. g., in the appearane of wide Bloh bands. Expan-ding S0(u) near u = �1, we �nds for the energy le-vels �m = 3u(0)m �=2 in the semilassial approximation,�m � �3�=2+p6�(m+1=2). The orresponding pres-sure P = �eE0�0 in (5) onsists of two ontributions:that of the ideal (2; 1) gas and of the mean-�eld De-bye�Hükel interation orretion.Taking into aount that there is no physial dif-ferene between S1 and S2 and that the monodromyaround u = �1 in Eq. (57) should leave the band-width in Gamow's formula (34) invariant (i. e., it addsthe fator expf(i=2)�1=2(�2S0(u(0)m ))g), we identify theinstanton yle with � = �1 + 2 (see Fig. 11):Sinst(u) = �S1(u) + S2(u). This an also be found byinspeting the yles in Fig. 11: we see that the om-bined � = �1 + 2 yle onnets z� turning pointsthrough the �lassially forbidden region�, similarly tothe 1 instanton yle in the (1; 1) ase (f. Fig. 8).However, we do not have a rigorous proof of this fat.Rather, our hoie of the integration yle should beonsidered as an eduated guess, whih is veri�ed bythe numeris.Expanding the S1;2(u) ations near u = �1 and sub-stituting u(0)m from the Bohr�Sommerfeld quantizationin (60) with j = 0, we �nd the Bloh bandwidths ofthe entral spetral branh (f. Eq. (34) with ! = p6 )(��)m = 32�(�u)m = 2p6�  36p6em+ 1=2!m+1=2 �� exp ��3p6�+�m2 + 34� ln�� : (61)Of speial interest is the bandwidth of the lowest en-ergy band, due to its diret relation to the transportbarrier of the ion hannel, Se. 2. Setting m = 0 yields(��)0 � 34:14�3=4 e�7:35p�: (62)This is in very good agreement with the numerial si-mulations (Fig. 13).Finally, we fous on the behavior at u = 1. ThePiard�Fuhs equation is of the form u3S00 + uS=4 == 0. Searhing for a solution of the form S(u) = ur
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Fig. 13. Analyti (numerial) results for the logarithmof the bandwidth of the lowest band versus square rootof the harge onentration with (1; 1) as dotted line(irles), (2; 1) dashed line (diamonds), and (3; 1) assolid line (stars)leads to (r � 1=2)2 = 0, signifying two independent so-lutions with the leading asymptoti behavior u1=2 andu1=2 lnu. Upon the monodromy transformation u !! ue2�i, the �rst of these solutions hanges sign, whilethe seond, along with the sign hange, piks up a on-tribution from the �rst one. Considering the asymp-toti forms of S1;2(u), Eq. (53), at u ! +1, we �ndthe SL(2; Z) monodromy matrixM1 =  �1 03 �1! : (63)It an be veri�ed thatM1 =Mei�=3M�1Me�i�=3 ; (64)as it should be: winding one around 0 in a large oun-terlokwise rotation is idential to winding ounter-lokwise in sequene around the other three singularpoints. 6. TRIVALENT (3,1) GASThe trivalent (3,1) Hamiltonian with the normal-ized energy u is43 u = p2 ��z33 + 1z� : (65)It gives a family of algebrai urvesEu : F(p; z) = 3p2z � (z4 + 4uz + 3) = 0 (66)608
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u4 → 1

Fig. 14. (a) Double torus urve Eu for u4 6= 1, havingfour basi yles. (b ) When u4 = 1, the g = 2 torusdegenerates into a singular g = 1 surfae. This makesone of the basi yles to pass through the singularity,and renders another yle ontratible to a pointover omplex (z; p). They are nonsingular if u4 6= 1,and therefore F(p; z) impliitly de�nes a loally holo-morphi map p = p(z) almost everywhere on (p; z). Inthis ase, there are six square-root branhing points atz = 0;1 and at the four turning points (i. e., four rootsof p2(z) = 0).Hene, while Eu is a double-branhed over of theRiemann sphere, three uts (instead of two as in thegenus-1 ase) are required per branh. After openingup uts and identifying edges under analyti ontinu-ation, this leads to a double torus, i. e., a sphere withtwo handles, Fig. 14a. Unlike the mono- or divalentases, the trivalent hannel gives a family of genus-2Riemann surfaes. The exeptional u4 = 1 ases makeEu singular at (p; z) = (0;�u), due to ollision of twoturning points, Fig. 14b. The double torus then degen-erates into a simple torus with two points identi�ed (asingular surfae of genus 1).As in the genus-1 ases, the ations an be under-stood as integrals Sj = Hj � of the meromorphi ation1-form �(u) = p(z)dz=iz upon these Riemann surfaes.Owing to the four turning points, there are four suhyles j with j = 0; 1; 2; 3. These are hosen as in thedivalent ase, with the inner ars of eah being takento start on the prinipal branh. They are shown foru = 0 in Fig. 15a. The u-dependene of these periodsis governed by the Piard�Fuhs equation.Beause the double torus is a genus-2 surfae, thereare four independent yles (as opposed to two forgenus 1). Therefore, the homology � and so too, asargued before, the ohomology � is not two- but four-dimensional: any �ve meromorphi 1-forms on the dou-ble torus are linearly dependent up to an exat form.Thus �(u) and its �rst four derivatives an be usedto produe an exat form; this is done by �nding o-
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Fig. 15. The Riemann surfae is doubly branhed witha total of three uts, shown in bold lines. The fouryles j with j = 0; 1; 2; 3, along with the instantonyle � (de�ned for later referene) are displayed foru = 0. The solid (dashed) lines denote parts of theyles going over the �rst (seond) branhe�ients in a polynomial entering the exat form, asdisussed in Se. 4.2. Stokes' theorem implies thatS(u) = H �(u) must satisfy a 4th-order linear ODE inu, i. e., a Piard�Fuhs equation, whih in the presentase takes the form(u4 � 1)S(4) + 8u3S(3) + 21718 u2S00 ++ uS0 + 65144 S = 0: (67)It has regular singular points at fourth roots of unity,i. e., u 2 f�1;�ig and at u =1. By hanging the vari-able to u4, we an ast the Piard�Fuhs equation asa generalized hypergeometri equation. In the ut do-main j arg(1�u4)j < �, it has four linearly independentsolutions of the form ukFk(u4), where k = 0; 1; 2; 3 andF0(u4) = 4F3��18 ;�18 ; 524 ; 1324 ; 14 ; 12 ; 34 ; u4� ; (68)F1(u4) = 4F3�+18 ;+18 ; 1124 ; 1924 ; 12 ; 34 ; 54 ; u4� ; (69)F2(u4) == 4F3 �+38 ;+38 ; 1724 ; 2524 ; 34 ; 54 ; 32 ; u4� ; (70)F3(u4) == 4F3 �+58 ;+58 ; 2324 ; 3124 ; 54 ; 32 ; 74 ; u4� (71)are generalized hypergeometri series. We note that theparameters of eah 4F3(faig; fbjg;u4) satisfy P bi ��P ai = 1; suh hypergeometri series are known asone-balaned or Saalshützian [35℄.11 ÆÝÒÔ, âûï. 3 (9) 609



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Writing the ations in this basis asSj(u) = 3Xk=0CjkukFk(u4); (72)we note that Sj(u) = P3k=0 Cjkuk + O(u4) (beausegeneralized hypergeometri funtions are unity at zeroand analyti nearby). We expand eah Sj(u) up tou3 around u = 0 and evaluate the resulting integrals(Fig. 15a) to obtain the fCjkg2). For S0, for example,this yieldsC00 = +27=2 � 3�9=8��1=2�(5=8)�(7=8); (73)C01 = +2�1=2 � 3�7=8��1=2�(1=8)�(3=8); (74)C02 = �2�5=2 � 3�13=8��1=2�(1=8)�(3=8); (75)C03 = �7 � 2�1=2 � 3�27=8��1=2�(5=8)�(7=8): (76)When u = 0, the turning points satisfy z4 + 3 = 0 andtherefore lie on a ertain irle in the omplex plane.Hene, j and j+1 are only di�erent by a �=2 rotation(Fig. 15a). As a result, we �nd the four-fold symmetryrelationsS0(u) = e�i=4S1(e��i=2u) = e�i=2S2(e��iu) == e��i=4S3(e�i=2u) (77)for u in the ut domain j arg(1� u4)j < �.We now onsider the periods in the neighborhood ofu = �1. As before, the yle 0 beomes ontratibleto a point as u ! �1, and therefore S0(�1) = 0 byCauhy's theorem. The other three ations remain �-nite, but S1 and S3 are nonanalyti. This an be seenby onsidering the monodromy around u = �1. As inthe genus-1 ases, the shrinking branh ut near z = 1makes a half-turn. Examining the ation yles, it isonly 1 and 3 that interset the ut rotating under themonodromy within the 0 yle. Hene, it is these twoyles that hange under monodromy and thus havelogarithmi nonanalytiity near u = �1. More pre-isely, (S1; S3) ! (S1 + S0; S3 � S0) under the mon-odromy, and therefore these ations are of the formS1;3(u) = Q1;3(u)� i2� S0(u) ln(1 + u); (78)where Q1;3(u) as well as S0(u) and S2(u) are ana-lyti near u = �1. Sine S1(u) + S3(u) is seen to beinvariant under the monodromy, there are a total of2) Note that the integrals that arise at the u2-order and higherare divergent near the turning points; however, they are on-vergent near 0 and 1 and an be alulated by deforming theontours to run between these points.

three independent periods that have trivial monodromyaround u = �1. This is again supported by onsider-ing series solutions of Piard�Fuhs equation (67) nearu = �1. This way, we �nd three regular solutions withthe leading behavior (1 + u)0, (1 + u)1, (1 + u)2 alongwith an irregular solution with the leading behavior(1 + u) ln(1 + u). For reasons of spae, we omit theorresponding 4� 4 monodromy matrix.Although analyti fats about the 4F3 series aresparse (see [33; 35℄ for the relevant disussion), thereare simple onsisteny heks that our solutions (72)must pass. First, the vanishing of the lassial ationS0(u) at u = �1 implies the identity3Xk=0C0k(�1)kFk(1) = 0 (79)for the hypergeometri funtions given above. In ad-dition, inspetion of Hamiltonian (65), shows that thelassial frequeny near u = �1 is ! = p8. This im-plies S00(�1) = (4=3)2�=! and thus3Xk=0C0k ddu�ukFk(u4)�u=�1 = p8�3 : (80)Being heked numerially, both relations hold up to10�16.Now we turn to the analysis of the spetrum ofHamiltonian (65) at large �. There are three spetralbranhes terminating at the singular points u = �1;�i(see Fig. 3b ) (notie that the fourth point u = 1 lies inthe middle of the spetrum and does not have an ob-vious semilassial interpretation). To determine posi-tions of the bands, we quantize the orresponding a-tions j = 0; 1; 3 (but not j = 2, whih is responsiblefor the period vanishing at u = 1) aording to theBohr�Sommerfeld rule:Sj(u(j)m ) = 2���1=2(m+ 1=2);m = 0; 1; : : : ; j = 0; 1; 3: (81)Figure 16 shows the semilassial energies u(j)m alongwith numerially found energy bands. We notes theperfet agreement between these two for Reu . 1:09.At the point u � 1:09, all three ations S0;1;3 are purelyreal and the orresponding instanton ation (see below)goes through zero. Beyond this point, energy bands arenot exponentially narrow and the semilassial approx-imation may not be appliable. This point is unmis-takably di�erent from the singular point u = 1. Fou-sing on the real energies at the bottom of the spetrumand expanding near u = �1, we use identities (79)and (80) to �nd S0(u) = (p8�=3)(1 + u) +O(1 + u)2.610
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1.0

0.5

0−1.0 −0.5 0.5Fig. 16. Narrow energy bands in the upper half-planeof the omplex energy u for � = 200 (f. Fig. 3b ).ImS0(u) = 0 along the real axis, where the shortlines mark ReS0(u) = 2���1=2(m + 1=2). The lineImS1(u) = 0 emerges from u = i and intersets thereal axis at u � 1:09. To the right of this point, weobserve bands with narrow gaps and use the same olor-ing onvention as in Figs. 1, 3. The small perpendiularlines mark ReS1(u) = 2���1=2(m+1=2); Æ dots are thenumerially omputed narrow bandsBohr�Sommerfeld rule (81) leads to �m = 4u(0)m �=3 == �4�=3 + 2p2�1=2(m + 1=2). Employing Eq. (5),this yields the pressure of the trivalent Coulomb gas asP = 4�=3�p2�. The two terms here are respetivelythe ideal gas pressure and the mean-�eld Debye�Hükelorretion.We now fous on the width of the Bloh bands nearu = �1. This requires identifying a yle orrespondingto the instanton ation. Guided by the osine potentialexample (f. Fig. 7), we take the orresponding yleas onneting the turning points of the lassial ationS0 through the �lassially forbidden region�. This sug-gests the yle � shown in Fig. 15b, whih is essentiallyof the same form as the 1 instanton yle in (1; 1)ase. Considering intersetions of these yles showsthat � = 3 � 2 � 1. Upon the monodromy transfor-mation around u = �1, the instanton ation thus a-quires a ontribution �2S0(u), Eq. (78), whih leavesthe bandwidth invariant thanks to Bohr�Sommerfeldquantization (81). The resulting instanton ation isSinst(u) = Qinst(u) + i� S0(u) ln(1 + u); (82)where Qinst = Q3 � S2 � Q1 is the regular part ofSinst(u) (f. Eq. (78)). To the �rst order in 1+ u, thisis Qinst(um) � 14:12i� 6:71i(1 + u), where, e. g., theleading term originates from

Qinst(�1) = Sinst(�1) ==Xj=0 (C3j � C2j � C1j) (�1)jFj(1) � 14:12i:Then, for u(0)m along the real u-axis satisfyingthe Bohr�Sommerfeld quantization, Gamow's formulayields the bandwidth(��)m = 4�3 (�u)m = 4�3 3!2�p� �� exp�i�1=2Sinst(um)2 � � 4p2� � 581:14m+1=2�m+1=2�� exp��7:06p�+�m2 + 34� ln�� : (83)The width of the lowest band (��)0 is ompared withthe numerial results in Fig. 13. As in the previousases, the two results are in strong aord3).For ompleteness, we address the u = 1 behavior.For large u, the Piard�Fuhs equation is of the formu4S(4)+8u3S(3)+217u2S00=18+uS0+65S=144 = 0:The trial S(u) = ur brings four independent solutionswith the leading asymptoti forms fu1=2, u1=2 ln(u),u�5=6, u�13=6g. The �rst two are familiar from thegenus-1 ases, but the last two are novel to the ge-nus-2 ase. The frational powers proportional to 1=6may seem unexpeted, given the four-fold symmetriesof the periods. However, this symmetry is manifest atthe level of yles at u = 0, where four turning pointsare equally spaed on a irle in the omplex z-plane.By ontrast, as u ! 1, the turning points must sat-isfy either z3 � �u or 1=z � �u, thus only three ofthe four turning points tend towards in�nity and onetowards zero. This leads to the three-fold exhange ofations upon the monodromy transformation aroundu = 1. Thus the ur behavior of the periods with r == �integer=(2�3) is exatly what is needed to onstruta proper SL(4; Z) monodromy matrix.7. HIGHER-VALENCE GASESHere, we brie�y summarize our urrent state of un-derstanding of the higher valene (4; 1) and (3; 2) gases.3) In writing the Gamow formula above, we onjetured theoverall preexponential fator of 3 rather than 2 as in the (1,1)and (2,1) ases, possibly due to the di�erent struture of the u-tuation determinant. A detailed evaluation of the preexponentialfator is beyond the sope of the present work.611 11*



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The orresponding Hamiltonians are(4,1) : 54 u = p2 ��z44 + 1z� ; (84)(3,2) : 56 u = p2 ��z33 + 12z2� : (85)In both ases, there are �ve turning points in the z-pla-ne given by the equation p2(z) = 0. The behavior atz = 0 and z = 1 is somewhat di�erent: for (4; 1),there is a branhing point at z = 0, but not at z = 1(f. the (2,1) problem); while for (3; 2), the opposite istrue: there is no branhing point at z = 0, but there isone at z = 1. In either ase, there are six branhingpoints, whih ditate three branh uts. The resultingRiemann surfae is the double torus, as in the (3; 1)ase (see Fig. 14). In these ases, it is not degenerateas long as u5 6= �1; otherwise, two of the �ve turningpoints ollide, leading to a ontration of one of theyles. Therefore, we expet �ve branhes of the spe-trum terminating at u = (�1)1=5, in agreement withFigs. 3,d.Sine the Riemann surfaes are of genus 2, there is alinear ombination of the 1-form �(u) = p(z)dz=iz andits four u-derivatives that sum up to an exat form.Therefore, any period S = H � must satisfy a 4th-orderODE in u. This is found by mathing oe�ients ina polynomial entering the exat form (see Se. 4.2),yielding the Piard�Fuhs equations(4,1): (u5 + 1)S(4)(u) + 9u5 � 1u S(3)(u) ++ 23516 u3S00(u) + 54 u2S0(u) + 3964 uS(u) = 0; (86)(3,2): (u5 + 1)S(4)(u) + 9u5 � 1u S(3)(u) ++ 1409 u3S00(u) + 54 u2S0(u) + 119144 uS(u) = 0: (87)While the oe�ients seem arbitrary, some features arenotable. First, hanging the variable to u5, the equa-tions an be brought to the generalized hypergeometriform; we then �nd four independent solutions of theform ukFk(u5), where k = 0; 1; 2; 4 and Fk are ertain4F3 hypergeometri series4). We note the absene of ak = 3 solution. This an be veri�ed diretly from thePiard�Fuhs equations, whose leading behavior nearu = 0 is given by S(4)(u)� u�1S(3)(u) = 0. Substitut-ing S / uk gives k(k � 1)(k � 2)(k � 4) = 0.4) While we omit the parameters of these series for reasons ofspae, we note that they satisfy the one-balaned ondition [35℄stated in the (3,1) ase.

Seond, we fous on the viinities of �fth roots of�1, e. g., on u = �1. Notably, both Eqs. (86) and(87) have the same leading behavior 5(u+ 1)S(4)(u) ++10S(3)(u) = 0, with all other terms being subleading.Looking for a solution in the form S(u) � (1 + u)s, we�nd 5s(s � 1)2(s � 2) = 0 for the s-exponent. There-fore, in both ases there are three analyti solutionswith the leading behavior (1 + u)0; (1 + u)1; (1 + u)2,while the double root at s = 1 signi�es that the fourthindependent solution is of the form (1 + u) ln(1 + u)5).This observation indiates a nontrivial monodromymatrixM�1, allowing one to identify the polynomial infront of the ln(1 + u) with the lassial ation S0(u).Being quantized aording to Bohr�Sommerfeld, thelatter determines the spetrum along the branh ter-minating at u = �1 (see Figs. 3,d).Finally, we onsider the behavior at u ! 1. Bytaking trial solutions in the form S(u) � ur, we ob-tain 4-th order algebrai equations for the exponent r.The four roots of these equations are f1=2, 1=2, �3=4,�13=4g in the (4; 1) ase and f1=2, 1=2, �7=6, �17=6gin the (3; 2) ase. Remarkably, there is a doubly degen-erate root at r = 1=2 in both ases, leading to two so-lutions with the leading asymptoti behavior u1=2 andu1=2 ln(u). This was also the ase in all the examplesonsidered above. The �rst of these solutions, beingquantized, leads to �m = m2, expeted at large ener-gies. The other two roots bring two additional solutionswith the respetive leading behavior u�3=4; u�13=4 oru�7=6; u�17=6 for the (4; 1) and (3; 2) ases. The de-nominators of these frational powers may be relatedto the fat that four and three turning points go toin�nity as u ! 1 in the two respetive ases. Themonodromy transformation M1 interhanges the or-responding periods (possibly with a sign hange). Thisis ahieved by having �integer=4 and �integer=(2 � 3)powers in the orresponding solutions.8. CONNECTIONS TO THESEIBERG�WITTEN SOLUTIONHere, we brie�y review the main features of theSeiberg�Witten (SW) solution [12, 13℄, whih wereadopted in our alulations [36℄. The original SW on-strution gives the spetrum of a four-dimensional su-persymmetri SU(2) Yang Mills theory (SYM). The5) An existene of 3 = 4�1 analyti solutions near u = �1follows from a theorem on generalized hypergeometri equationsgoing bak to Pohhammer [33℄; the analogous behavior of themono-, di-, and trivalent gases near u = �1 also provides in-stanes of this theorem.612



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Statistial mehanis of Coulomb gases : : :spetrum of the infrared theory appears to be given bythe set of eletrially and magnetially harged parti-les (BPS dyons), whih are di�erent from the funda-mental partiles of the initial UV theory. The latteronsists of a vetor multiplet transforming in the ad-joint representation of SU(2), whose omponents areone omplex salar �eld �, a pair of Weyl fermions(gluini), and an SU(2) gauge �eld (gluon). In the las-sial UV vauum, � aligns along the Cartan generatorof SU(2) as h�i = a�3=2, where the omplex expe-tation value a parameterizes the manifold of lassialvaua. In the quantum theory, a more onvenient o-ordinate is u = htr�2i (88)(suh that in the lassial limit u ! 1, one has u �� a2), de�ning the moduli spaeMu of quantum vauaof the theory.Given the expetation value a, one de�nes the gen-erating funtion (prepotential) F(a) as a logarithmof the partition funtion of the theory, restrited byh�i = a�3=2. It allows introduing a anonially on-jugate omplex variableaD = �F(a)�a ; (89)where one may regard (a; aD) as the oordinate andmomentum on Mu. The underlying supersymmetryallows arguing that a(u) and aD(u) are holomorphifuntions on the moduli spae, exept possibly for fewisolated singular points. In the UV limit u ! 1, one�nds a one-loop orretion of the formaD � ia� �1 + ln a2�2� ; (90)where � is a dynamial sale. We reall that a � puin this region. Therefore, when the argument of uhanges by 2�i, a hanges its sign and aD transformsas aD ! �aD + 2a. This rule an be parameterizedusing the following monodromy matrix in the (aD ; a)basis: M1 =  �1 20 �1! : (91)Finding the spetrum of the IR theory means om-puting masses of partiles that are proteted by su-persymmetry (so-alled BPS dyons). The BPS massformula isMne;nm(u) = jnea(u) + nmaD(u)j; (92)

where (ne; nm) are eletri and magneti harges of adyon; for example, a monopole has (ne; nm) = (0;�1).The above relation an be understood semilassially(at large u) by evaluating the energy funtional for theUV theory on the eletrially and magnetially hargedon�gurations. The N = 2 supersymmetry guaranteesthat the very same formula works at a strong ouplingas well. There are speial loi in the u plane where themasses in (92) vanish. These points an be identi�edas singularities for a and aD.We onsider the point u0 where the monopole be-omes massless, aD(u0) = 0. By a onformal transfor-mation, we an always sale u0 = 1. In the viinity ofthis point, aD behaves as aD / u� 1, and hene nearthis point aD(u) is holomorphi, while a(u) is expetedto be singular. A one-loop alulation similar to theone near u = 1, in the framework of the dual theory,gives a relation similar to (90),a � iaD� ln aD� : (93)Realling that aD / u � 1, we �nd the monodromymatrix near u = 1, again in (aD ; a) basis:M1 =  1 0�2 1! : (94)From the symmetry onsiderations one may arguethat there should be at least one more singularity inaddition to u = 1 and u = 1. This follows from thefat that if a singularity exists at some value of u0, thenthere ought to be another one at �u0. The Z2 symme-try, whih �ips the sign of u, is a result of breaking theglobal U(1) symmetry (so-alled R-symmetry) of theIR ation. That symmetry is a remnant of the analo-gous symmetry in the UV theory, whih is ommon forgauge theories with an extended supersymmetry. It ex-ists on the lassial level, but is broken by quantum or-retions (both perturbative and instanton) down to Z2for u = htr�2i. Therefore, there are at least three singu-larities in Mu, e. g., at u =1 and u = �1. The thirdsingular point u = �1 orresponds to a massless dyon ofunit eletri and magneti harges a(�1)+aD(�1) = 0.The monodromy matrix around it an be omputed us-ing the ompleteness relation M1M�1 = M1 in theomplex u-plane.The nontrivial realization of the SW onstrutionis that omplex variables (aD(u); a(u)) with the ana-lyti properties dedued above an be viewed as periodsof algebrai urves (tori) Eu, de�ned over the modulispae Mu, with respet to some meromorphi di�er-ential �SW . The simplest way to parameterize suh aurve is613



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Eu : F(y; x) = y2�(x�u)(x�1)(x+1) = 0; (95)where x and y are omplex. The above equation de-sribes a double over of the x-plane branhed overthe four points x = �1; u and x = 1. Moreover, theover is singular any time two of these points oalese,i. e., at u = �1;1, as required. A basis in the �rst(o)homology of Eu (2D in this ase) is given by inte-grals of a one-form over one-yles. We pik the ho-mology basis Æ0; Æ1 in Fig. 6 and the one-form �SW (u)(SW di�erential) suh thataD(u) = ZÆ0 �SW ; a(u) = ZÆ1 �SW : (96)To pik a proper SW di�erential �SW (u), we reall thatthere are only two linearly independent meromorphi1-forms on the torus up to an exat form. These twoforms an be hosen as �1 = dx=y and �2 = x dx=y,whene �SW = �1(u)dxy + �2(u)x dxy ;where �1;2(u) are funtions of u only. The requirementthat the period integrals in (96) reprodue the orretasymptoti behavior of a(u) and aD(u) at u = 1 andu =1 (Eqs. (90) and (93)) allows determining �1;2(u).Finally, we obtain�SW = p22� px� upx2 � 1 dx: (97)This allows evaluating the periods in (96) in terms ofellipti integrals. They in turn yield the entire infor-mation about BPS mass spetrum (92) and prepoten-tial (89).Close parallels to our alulations are apparent. Infat, the SW onstrution outlined above essentiallymirrors the (1; 1) gas alulations. Ellipti urve (95)is isogeni to torus (14) and the two SW periodsin (96) are diretly related to the two ation integralsas S0 � aD and S1 � a + aD. In fat, they an beshown [15, 16℄ to satisfy exatly the same Piard�Fuhsequation (22) as our ations. Therefore, the two basissolutions (25) and (26), expressible through the om-plete ellipti integrals of the �rst and seond kind6), arealso a basis for the SW periods aD(u); a(u).An interesting open question is whether our mul-tivalent examples have analogs in SYM theories. Forexample, the (2; 1) ase orresponding to a torus withthe residual Z3 symmetry in the u-plane may be relatedto the SU(2) theory with several fundamental hyper-multiplets added. Other examples, leading to g = 26) See the footnote 1) on p.

surfaes with Z4 and Z5 symmetries, may be related toertain SU(3) SYM theories with matter.Another aptivating observation is related to thepeuliar struture of the spetra near u � 0:96 in the(2; 1) gas, u � 1:09 in the (3; 1) gas, et. These pointsare marked by the ondition ImS1(u)=S0(u) = 0, whihis reminisent of wall rossing phenomena in N = 2theories (for a omprehensive review and referenes see,e. g., [37℄). It is observed that the moduli spaeMu hasdomains separated by walls suh that when �rossing�a wall, the spetrum of the IR theory hanges dramat-ially. For instane, for the SU(2) theory at small juj,there are only two states in the spetrum: a monopole(0;�1) and a dyon (�1;�1). But at large juj, thesepartiles an form bound states with higher eletriharges (n;�1) for any integer n. The wall is givenby Im aD(u)=a(u) = 0.9. DISCUSSION OF THE RESULTSIn this paper we developed a semilassial treatmentfor a family of non-Hermitian PT -symmetri Hamil-tonians. These Hamiltonians appear upon transfer-matrix mapping of 1D lassial statistial mehanis ofmultivalent Coulomb gases onto quantum mehanis.The low-energy spetra of the Hamiltonians diretlytranslate into thermodynami and adiabati transportoe�ients of the orresponding Coulomb gases.We use methods of algebrai topology, traditionallyemployed in the ontext of the Seiberg�Witten theory.The main advantage of this strategy is that it allows usto avoid solving equations of motion and �nding las-sial trajetories expliitly. The latter task is rathernontrivial (if at all attainable) in the 4D phase spae.Instead, we argue that any onstant-energy surfae is a2D Riemann surfae of a genus g � 1. The ation alongany losed trajetory (not neessarily satisfying equa-tions of motion) an be written as an integer-valuedlinear ombination of 2g basi periods of the surfae.The periods an be found as solutions of the Piard�Fuhs ODE in the spae of parameters. Finally, rela-tions between basi periods and the quantum spetraare established by onsidering speial points in the pa-rameter spae, where the surfae degenerates into agenus-(g � 1) singular surfae. Consideration of mon-odromy transformations in the viinity of these pointsallows identifying lassial ations, quantized aordingto Bohr�Sommerfeld, as well as the instanton ation,whih determines the bandwidth.The results obtained this way are in exellentagreement with numerial simulations in a broad614
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