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GIANT MAGNETORESISTANCEIN THE VARIABLE-RANGE HOPPING REGIMEL. B. Io�e a;b*, B. Z. Spivak aLPTHE, Université Pierre et Marie Curie,Paris CEDEX 05, FranebDepartment of Physis, Rutgers UniversityNew Jersey, 08854, USADepartment of Physis, University of WashingtonSeattle, WA 98195, USAReeived May 3, 2013Dediated to the memory of Professor Anatoly LarkinWe predit the universal power-law dependene of the loalization length on the magneti �eld in the stronglyloalized regime. This e�et is due to the orbital quantum interferene. Physially, this dependene shows up inan anomalously large negative magnetoresistane in the hopping regime. The reason for the universality is thatthe problem of the eletron tunneling in a random media belongs to the same universality lass as the diretedpolymer problem even in the ase of wave funtions of random sign. We present numerial simulations thatprove this onjeture. We disuss the existing experiments that show anomalously large magnetoresistane. Wealso disuss the role of loalized spins in real materials and the spin polarizing e�et of the magneti �eld.DOI: 10.7868/S00444510130901491. INTRODUCTIONIn strongly disordered ondutors, single eletronsstates are loalized, and therefore the ondutivity isdue to phonon-assisted eletron tunneling between lo-alized states. The length of a typial hop rhop in-reases as the temperature is dereased and beomesmuh larger than the distane between the loalizedstates in the variable-range hopping regime [1; 2℄. Inthis paper, we study the orbital mehanism of the mag-netoresistane in this regime. We show that at su�-iently low temperatures, it is due to the loalizationlength dependene on the magneti �eld B and that it isgiven by a universal power law. This loalization lengthdependene on the magneti �eld translates into an ex-ponentially large variation of the resistane. The signof the orbital magnetoresistane depends on the detailsof impurity sattering, but in the typial ase, the low-temperature magnetoresistane is negative. Similarlyto the metalli regime, the origin of the negative mag-*E-mail: io�e�physis.rutgers.edu

netoresistane is the eletron quantum interferene, butthe amplitudes that interfere orrespond to di�erentproesses in these two ases. Despite its muh largermagnitude, the negative magnetoresistane in the hop-ping regime reeived muh less attention, both theoret-ially and experimentally, than its ounterpart in themetalli regime. One of the goals of this paper is todraw the attention of the ommunity to this interest-ing phenomenon.We begin with a brief review of the nature of mag-netoresistane in metals. The onventional theory ofmagnetoresistane assoiates it with the lassial ef-fet of eletron motion along ylotron orbits. For atypial metal, the magnetoresistane is ontrolled bythe parameter (!�tr)2, where ! is the ylotron fre-queny and �tr is the transport mean free time (see,e. g., [3℄). In ontrast to these expetations, manydisordered metals show negative magnetoresistane atsmall magneti �elds. The negative magnetoresistanein weakly disordered metals has been explained in theframework of the weak loalization theory, whih takesinto aount the quantum interferene of probabilityamplitudes for eletrons to travel along self-interseting632
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Fig. 1. Qualitative piture of the interferene e�etsin disordered metals. Panel a shows interferene in theweak loalization regime that is due to self-rossingdi�usive paths. Quantum propagation from A to Bis the sum of two amplitudes that ontain lokwiseand ounterlokwise motion along the loop that is apart of the self-interseting path. Panel b shows inter-ferene in the hopping regime in whih the bakwardmotion of eletrons gives negligible ontribution to thetunneling between sites A and B. In this ase, typialpaths ontributing to the interferene are loated in theshaded (light gray) area with the transverse diretionthat sales with the length of the hop L. The magneti�eld has a signi�ant e�et if the �ux S� through thearea formed by a typial path and a straight line (darkgray) is of the order of one �ux quantumdi�usive paths [4�7℄, suh as those shown in Fig. 1a.The interfering amplitudes orrespond to the lokwiseand ounterlokwise propagation of the eletron wavealong the loop formed by a self-interseting path. In theabsene of the magneti �eld, these amplitudes inter-fere onstrutively, inreasing the probability of returnto the intersetion point. In the presene of the mag-neti �eld, these amplitudes aquire di�erent phases,and the interferene is suppressed, leading to the neg-ative magnetoresistane. The negative magnetoresis-tane magnitude in this regime is relatively small be-ause it sales with the small parameter 1=kF ltr, wherekF is the Fermi momentum and ltr is the transportmean free path.Experimentally, in many materials the magnetore-sistane in the hopping regime is signi�antly largerthan in the metalli regime. A positive magnetoresis-tane of several orders of magnitude in the hoppingregime has been observed long ago (see, e. g., Ref. [1℄and the referenes therein). Signi�ant negative mag-netoresistane in the variable-range hopping regime

ranging up to two orders of magnitude has been ob-served in many experimental works [8�18℄. In some ofthese works, a large anisotropy of the negative magne-toresistane has been observed in 2D samples, indiat-ing its orbital nature.Phonon emission and absorption make di�erenthopping events inoherent, while the eletron tunnel-ing between loalized states is a quantum mehanialproess. The magnetoresistane is due to the magneti�eld dependene of the probability of one hop. Quali-tatively, large orbital magnetoresistane in the hoppingregime is due the interferene of the tunneling ampli-tudes along di�erent tunneling paths ontributing to asingle hop that are distributed in a igar-shaped regionshown in Fig. 1b. In this regime, the tunneling pathsontaining loops give exponentially small ontributionto the tunneling probability. This is the main di�er-ene from the weak loalization, where the interfereneis due to the paths that irle a loop (see Fig. 1a). Inthe variable-range hopping regime, eletrons hop overdistanes muh larger than the distane between loal-ized states, and hene the igar-shaped region ontainsmany eletron satterers. The amplitude �i desrib-ing the individual sattering proess at a state i anbe positive and negative. The sign distribution of the�i determines the sign of the magnetoresistane, as weexplain below in Se. 2.3.Large positive magnetoresistane may be assoiatedwith a shrinkage of the hydrogen-like loalized eletronwave funtions at the sales less than the inter-impuritydistane. Quantitatively, this piture works well only ina very high magneti �eld and at su�iently high tem-peratures at whih the typial eletron hopping lengthis shorter than the distane between impurities. A the-ory of the positive magnetoresistane that takes theeletron sattering with positive sattering amplitudesinto aount has been developed in [19�23℄. In thisase, the tunneling amplitudes interfere onstrutivelyin the absene of the �eld, while the phases indued bythe magneti �eld destroy this interferene.An orbital mehanism of the negative magnetore-sistane may be assoiated with the randomness of thesigns of the sattering amplitudes �i, whih is due tothe random sign of �� �i [24�29℄. Here, � is the energyof the tunneling eletron and �i is the energy of a loal-ized state. This sign randomness may lead to randomsigns of the interfering tunneling amplitudes at B = 0.The magneti �eld makes tunneling amplitudes om-plex, whih inreases the ondutane in this situation.Thus, the sign of the orbital magnetoresistane is re-lated to the sign distribution of the loalized eletronwave funtions.633



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013In this paper, we develop a quantitative theory oforbital magnetoresistane in the hopping regime anddisuss the available experimental data in the light ofour results. Beause most of experiments have beendone on two-dimensional samples, we fous on the two-dimensional hopping regime of eletrons and the orre-sponding experiments.We show that in physially relevant ases, even asmall onentration of impurities with �i < 0 leads toompletely random signs of the tunneling amplitudesat large sales. Therefore, at su�iently low tempera-tures and small magneti �elds, the variable-range hop-ping magnetoresistane is negative. At higher magneti�elds and higher temperatures, it an be both positiveand negative.The plan of the paper is as follows. In Se. 2.1, westart with a brief review of the basis of variable-rangehopping theory and disuss a qualitative piture of thevariable-range hopping magnetoresistane. In Ses. 2.2and 2.3, we disuss the statistis of the modulus and thesign of the loalized eletron wave funtion. In parti-ular, in Se. 2.3, we disuss the onditions for the exis-tene of the �sign phase transition�, where as a funtionof the onentration of satterers with �i < 0, the sys-tem hanges from the sign-ordered to sign-disorderedphases. In Se. 3, we apply the theory developed inSe. 2 to ompute the magnetoresistane. Setion 4disusses appliations of the results for the sign phasetransition to other physial systems. Finally, Se. 5gives a short review of the experimental situation.2. ELECTRON TRANSPORT IN THEVARIABLE-RANGE HOPPING REGIME2.1. Review of the variable-range hoppingtheoryIn the loalized regime, the eletron wave funtionsdeay exponentially with the distane jr� rij from theimpurity:  i (r) � exp(�jr � rij=�), where ri is theenter of a loalized wave funtion and � is a typi-al loalization radius. In this ase, the ondutivityis determined by phonon-assisted eletron hopping be-tween loalized states. At low temperatures, the typ-ial hopping length rhop is determined by the ompe-tition between two exponential fators: the hoppingprobabilityWij that deays exponentially with the dis-tane rij between impurities and the thermal fatorexp(�Ehop(rij)=T ), where Ehop(rij) is the hopping a-tivation energy that dereases with rij . These fatorsgive the exponential dependene of the typial hoppingrate at a distane rhop: exp(�Ehop(r)=T � 2r=�). This

exponential fator is maximal for the typial hoppinglength rhop, whih is muh larger than the distane be-tween loalized states, as illustrated in Figs. 1b, 2:rhop � �T0T �� �: (1)As a result, the resistivity aquires an exponential de-pendene on temperature [1; 2℄:�(T ) = �0 exp"��T0T ��# : (2)Here, the prefator �0 is determined by the eletron�phonon matrix element and � is the loalization radius.Generally, the density of loalized states an beenergy-dependent near the Fermi energy [1℄:�(�) = C�� ; (3)where we ount the energy � of a tunneling eletronfrom the Fermi energy. In the absene of eletron�eletron interation (Mott's theory), the density ofstates at the Fermi level is onstant (� = 0 and C == �0), leading to the ativation energy T0 � 13(�0�2)�1and to the exponent � = 1=3 for d = 2 (Mott's law). Inthe ase where eletrons (in two or three dimensions)interat via the three-dimensional Coulomb interation(Efros�Shklovskii regime) � = 1, C � (2=�) e4=�2,where � is the dieletri onstant. This results in � == 1=2 and T0 � e2=�� for 2D eletrons with the three-dimensional Coulomb interation.The qualitative arguments of the Mott theory anbe made more quantitative by onsidering the perolat-ing luster of eletron hops [1℄. Probability of a singlehop between the states loalized around positions riand rj is given byWij = 2�h Z jMij (q) j2Æ (�i � �j � uq) ddq; (4)where Mij � Z ddr i (r� ri) j (r� rj) eiq�r (5)is the phonon matrix element, u is the speed of sound,and q is its wave vetor. Beause the wave funtions i(r � ri) and  j(r � rj) derease exponentially, Mijand Wij are exponential funtions of the loalizationlength � (B).In the main part of this paper, we onsider the mag-neti �eld range in whih the Wij(B) dependene isdominated by � (B). In this ase, we an approximatethe phonon tunneling matrix element by the amplitudeof tunneling between states i and j: Mij � Aij .634



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistane in the variable-range hopping regimeIn a uniform medium, the magneti �eld suppressesthe amplitude of a single quantum tunneling event:Aij / exp � r2ij2L2B! at rij � L2B� ; (6)whih gives positive magnetoresistane. Here, LB == (~=eB)1=2is the magneti length. In disordered me-dia, eletrons satter from other loalized states thathave energies di�erent from the energy of the �nalstate. The e�et of the magneti �eld is due to the in-terferene of the direted optimal paths, whih is shownshematially in Fig. 1b. In this ase, Aif =P�A� isa oherent sum of amplitudes A�(B) to tunnel alongpaths � between the initial �i� and �nal �f � sites. Thetunneling paths an be de�ned by the sequene of statesthat satter eletrons in the ourse of tunneling. Atzero magneti �eld B = 0, the wave funtions of loal-ized states and the tunneling amplitudes A�(0) an behosen to be real [30℄:Aif (0) = 1jrf � rij1=2 exp��jrj � rij� �++X� 1jr� � rij1=2 exp��jr� � rij� ��� (��)1=2jr� � rj j1=2 exp��jr� � rf j� �++X�;� 1jr� � rij1=2 exp��jr� � rij� � ��jr� � r�j1=2 �� exp��jr� � r�j� � ��;jr� � rf j1=2 �� exp��jr� � rf j� �+ : : : = (7)=X� A�(0); (8)�� � b�� � �i : (9)Here, �� is the amplitude of sattering on �'s loalizedstate, �i and �� are energies of the tunneling eletronand the loalized sattering state, b � p��0 > 0, and�0 is the harateristi binding energy of the loalizedstates. Generally, �� are random quantities, and henethe amplitudes A�(B = 0) = A�(0) have random signs.We note that Eq. (7) desribes both the proesses inwhih an eletron is sattered by empty sites and theproesses in whih it goes through oupied sites (seeFig. 2), whih an be desribed as a hole moving bak-wards. The important ondition for the interferene isthat in the �nal state, all intermediate eletrons shouldreturn to their original positions and spin states.

ε

0
εF

f

i

Fig. 2. Qualitative piture of the phonon-assisted tun-neling through loalized states from the initial statei to the �nal state f . Solid bars indiate the ener-gies of the loalized states. The energies of the initialand �nal states are lose to the Fermi energy �F = 0(indiated by the dashed line) while the intermediateloalized states are typially farther away from � = 0.The states with negative energies an be �lled with oneor two eletrons. In the former ase, they are hara-terized by the spin of the eletron shown by vertial ar-rows. The states with � > 0 are empty. Blak and grayarrows indiate eletron tunneling paths through emptyand �lled loalized states. If the path goes through asite that is already oupied by the eletron with thesame spin, the oherent proess ours by reating aneletron�hole pair (indiated by the empty irle), thenby tunneling the hole arrying the opposite spin in theopposite diretion, and �nally by anihilating it with theeletron oming from the left. This proess leaves thespin state intat. The inoherent proess in whih thehole arrying the same spin might also be possible insome physial situations (see Se. 3.3)The hopping probability Wif is a random quantity.Generally, to obtain the value of the resistane of thesystem, one has to solve the full perolation problemwith the probability of individual hops given by Wif[1℄. But as long asln �(B)�(0) 1ln �(0) � 1;the magnetoresistane is given by the average of thelogarithm of the hopping probability [1℄:ln �(B)�(0) = ��ln Wif (B)Wif (0) � : (10)Here, the brakets denote averaging over random sat-tering on�gurations and over di�erent hoppings thatbelong to a perolation luster. These hoppings areharaterized by a typial hopping length rhop. With agood auray, we an replae the full average (10) withthe average over random sattering on�gurations for635



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013the hopping proesses by the distane rhop. Physially,the averaging of the logarithm in (10) means that theresistivity is ontrolled by the typial hopping proba-bility rather than by rare events.The appliation of a magneti �eld B introduesrandom phases to the tunneling amplitudes,A�(B) = A�(0) exp�i2����0� ; (11)where �� = BS� and S� is the area enlosed betweenthe the path � and the straight line going from theinitial to �nal states (see Fig. 1b ).Depending on distributions of the signs of the am-plitudes A�(0), the orbital magnetoresistane an beboth positive and negative. To illustrate this fat, weonsider a model in whih there are only two paths,A1(0) � A2(0), whih are independent random quan-tities and j�1 � �2j � �0. If A1;2(0) > 0 are posi-tive, in the presene of magneti �eld, then the ampli-tudes A�(B) partially anel eah other. As a result,hlnWij(B)i dereases by a fator of the order of unitywhen j�1 � �2j � �0. In this ase, the magnetoresis-tane is positive.The situation hanges if A1;2(0) have random signs.In the simplest ase where the signs are ompletely ran-dom, the average probabilityD���XA�(B)��� 2E =XDjA(0)j2Eis independent of B. If the magneti �ux through thelosed loop formed by paths 1 and 2 is larger than the�ux quantum, the phases of the amplitudes A1;2 areompletely random, and therefore hA1(B)A2(B)i = 0:This implies that the variane*�����X� A�(B)����� 4+�*�����X� A�(B)�����2+2dereases by a fator of the order of unity whenj�1 � �2j � �0. As a result, a typial value of theresistane de�ned by (10) inreases by a fator of theorder of unity and the magnetoresistane is negative.This simpli�ed piture of magnetoresistane beingdetermined by the interferene between only two pathsbeomes more ompliated for two reasons. First, atlarge sales, the propagation amplitude is dominatedby many paths that go through the same satterer ora group of satterers. This implies strong orrelationsbetween the amplitudes A�, as we disuss in Se. 3.1.This makes the mathematial problem alulating �(B)nontrivial. Seond, the behavior of the magnetoresis-tane beomes more ompliated if the amplitude signs

are orrelated at some �nite distanes (see Se. 2.3). Inthis ase, we an expet a rossover from the negativeto positive magnetoresistane as the �eld inreases, aswe explain in Se. 3.Beause the sign and the magnitude of the magne-toresistane are intimately related to the statistis ofthe sign and amplitude distribution of Aij(0), we startwith a disussion of this quantity.2.2. Statistis of the amplitude A in theabsene of the magneti �eldIn the ase of small and positive sattering ampli-tudes �� > 0 and at zero magneti �eld, the problemof eletron tunneling an be mapped [30�33℄ onto theproblem of direted polymers. In the latter problem,one studies the thermodynamis of an elasti stringin a delta-orrelated two-dimensional random potentialW (x; y), haraterized by the energy funtionalHdirpolfy(x)g == xZ�1 h�2 (�xy)2 +W (x; y(x))i dx: (12)Introduing the partition funtionZ(y; x) = Xyfxg exp(��H)of the string that ends at the point (x; y), we obtainthat its evolution as a funtion of x is desribed by theequation �xZ = 12���2yZ � �W (x; y)Z: (13)This equation should be ompared with the equationfor the partile propagation in disordered media:E	 = � 12mr2	+ V (x; y)	; (14)with the white-noise potential V (x; y). At negative en-ergies orresponding to tunneling; after substitution	 = exp(���x)Z(x; y)we an neglet the terms with the seond-order deriva-tive in x, whih are small at a weak potential V � �E.Then Shrödinger equation (14) oinides with (13)with (��)2 = �2mE and W = �V=2E. This map-ping also holds for an arbitrary (not neessarily white-noise orrelated) potential V . However, it beomes lessuseful for arbitrary potentials beause analyti results636



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistane in the variable-range hopping regimefor this problem were obtained only in the ase of thewhite-noise potential.Computation of positive magnetoresistane requiressolving the direted polymer problem beyond the whitenoise approximation, and hene the analyti results arenot diretly appliable. Furthermore, the physiallyrelevant problem of sattering with negative amplitudesannot be mapped onto any thermodynami problembeause the orresponding free energy beomes imag-inary. The appliability of the results of the diretedpolymer problem in the white noise approximation be-omes even more questionable in this ase. Below, wegive a brief review of the results of the direted polymerproblem in the white noise approximation. Then wepresent results of our numerial simulations beyond thewhite noise approximation, whih indiate that theseproblems belong to the same universality lass. Fi-nally, we disuss the statistis of the signs of the tun-neling amplitude and show that the existene of the�sign phase transition� is ompatible with the resultsfor the direted polymer problem.The main result of the direted polymer theory isthe saling form of the �utuational part of a free en-ergy of a polymer of length L, F / L1=3, and its de-viations in the transverse diretion Y / L2=3: For theequivalent problem of domain wall pinning, this sal-ing was �rst found numerially in [34℄. Analytially,it was extrated from the third moment of the distri-bution funtion of polymers of length L, P(F ) [35; 36℄.The replia method that was used in this work mightbe questioned beause of an apparent nonommutativ-ity of the limits L ! 1 and n ! 0 and beause itgives unphysial results for all moments of the distri-bution funtion exept the third. All these problemsan be eliminated by solving for the distribution ofthe energy di�erenes of the in�nitely long polymersthat end at di�erent points y1 and y2; this solutiongives the same saling exponents [37℄ as the originalapproah [34�36; 38�40℄.The striking generality of this saling result thatwe prove by numerial simulations below is, proba-bly, due to the qualitative reasoning that relates it tothe Markovian form of the free energy �utuations asa funtion of the transverse oordinate. Indeed, theMarkovian form implies that free energy �utuationsat large sales are proportional to Y 1=2; on the otherhand, they should be of the order of the string elas-ti energy at these sales, Y 2=L / Y 1=2. Solving thelast equation for Y gives the saling dependenes of theexat solution and of the numerial simulations.Despite being intuitively appealing, the Markoviannature of free energy �utuations is di�ult to prove

for the physially relevant situation in whih some sat-tering amplitudes (9) are very large. It is even moredi�ult to prove it in the ase of negative satteringamplitudes in whih wave funtion an hange sign atsome points. At these points, the free energy de�nedby F � �T lnZ aquires an imaginary part (ImF = �)while its real part beomes large. Beause these pointsare due to lose by negative satterers, the e�etivefree energy beomes highly orrelated, whih violatesthe main assumption of the Markovian nature of thefree energy �utuations.Reently [41; 42℄, a full Bethe-ansatz solution ofproblem (12) established the omplete form of the dis-tribution funtion of the free energy F � �T lnZ of thestring of length L, whih turns out to oinide with theTray�Widom distribution [43℄. This result allows usto hek that the problem of partile hopping belongsto the same universality lass as the direted polymers.Namely, we de�ne the e�etive free energy of the quan-tum problem as F = �R lnA(x; y); (15)where A is the eletron amplitude at the site (x; y),propagating in x-diretion. This free energy desribesthe deay of the wave funtion. We ompute the ampli-tude A by simulating eletron propagation and hekthe saling properties of its real part �utuations inthe y-diretion and the universality of the distributionfuntion.We determine the amplitude A from the solution ofthe lattie reursive equationAi;j = g�ij [Ai�1;j+1 +Ai�1;j +Ai�1;j�1℄ ; (16)where �ij are random independent variables de�ned oneah lattie site and g is the parameter that determinesthe average deay of the amplitude (inverse loalizationlength). Below, we disuss di�erent distribution fun-tions of �ij appropriate for di�erent physial systems.Physially, the model in (16) desribes the motionof eletrons on the lattie shown in Fig. 3. The site withthe energy �ij = h�i an be identi�ed with the ideal lat-tie, the rest with impurities. If the energy �ij is dis-tributed in a narrow interval around its average, evolu-tion (16) beomes equivalent to (14) in the ontinuumlimit. As disussed in Se. 2.1, the physially mostnatural hoies of the distribution funtion of � are uni-form P (�) = �(�), linear P (�) = 2�, and their analogsfor the negative sattering amplitudes, P (�) = 1=2 andP (�) = j�j. In all ases, we assume that the distribu-tion is ut-o� by �0 at large �: P (j�j > �max) = 0.The hoie of �max determines the average deay rate637
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jFig. 3. Shematis of the eletron propagation de-sribed by Eq. (16). The omputation of the loaliza-tion length disussed in Se. 2.2 involves simultaneouspropagation of amplitudes in the vertial diretion formany (typially, L > 106) steps. For the omputationof the matrix elements in Se. 3.2, the wave funtionswere assumed to be loalized on two sites in the middleof the upper and lower rows at a distane L and thendetermined in the middleof the eletron amplitude that is mostly irrelevant; inthe omputations, we have set it to �max = 1. Wehave also studied the gapped distribution P (�) = 2 for1=2 < � < 1, for whih we expet to obtain the re-sults similar to the one predited by the exat solution.Finally, we studied the binary distributionP (�) = (1�X)Æ(�� 1) +XÆ(�� (�+ 1)�1)haraterized by a parameter X and a negative sat-tering amplitude � < 0.Some of our results are presented in Figs. 4 and5. For all the studied distribution, we observe verygood saling, 
�F 2�1=2 / L , with the respetive ex-ponents  = 0:28, 0.345, 0.343 for gapped, linear, anduniform densities of states. These values are very loseto the expeted value 1=3, espeially for the linear anduniform densities of states. The data for the gappeddensity of states display a signi�ant transient regime,and therefore the deviation of the exponent from theanalyti result is not surprising. The presene of neg-ative sattering amplitudes has small e�et on theseexponents; they beome  = 0:31, 0.33, 0.345, whihare even loser to the expeted values. Furthermore,the higher moments of the distribution funtion tendto the universal values expeted for the Tray�Widomdistribution. These results are in agreement with pa-pers [44; 45℄ that observed the Tray�Widom distribu-tion of ondutanes in two-dimensional models.These data lead to the onlusion that the main re-sults of the direted polymer problem, the saling de-

pendene of the free energy and the universality of thedistribution funtion, remain valid for the problem ofeletron tunneling in disordered media.2.3. The sign phase transitionAs explained in Se. 2.1, the sign of the magne-toresistane is related to the statistis of signs of theamplitudes Aif (0) in the absene of the magneti �eld.If the onentration of impurities with negative sat-tering amplitudes is large, the sign of Aif (0) beomesompletely random. If all impurities are haraterizedby positive sattering amplitudes �i > 0, the sign ofAif (0) is positive. We let P+ and P� denote the re-spetive probabilities to �nd a positive or negative am-plitude Aif (0). The quantity �P = P+ � P� ha-raterizes the sign order. As the onentration X ofthe impurities with negative sattering amplitudes in-reases, �P should hange from 1 to 0. Generally,�P is sale-dependent and aquires its limit value asjri � rf j ! 1. There are two logial possibilities: ei-ther at large sales �Pr!1 = 0 only for X > X while�Pr!1 > 0 for smallerX < X, or any nonzeroX > 0leads to �Pr!1 = 0. The former implies that thehange in the X-dependene of the sign statistis anbe viewed as a phase transition. This possibility hasbeen suggested in [24; 25; 27℄, while the alternative wasargued for in [31�33℄.We study the sign statistis in the lattie models de-�ned by (16) in Se. 2.2 and show that both the phasetransition and rossover an be realized depending onthe distribution of �:We start with the simplest ase ofthe binary distributionP (�) = (1�X)Æ(�� 1) +XÆ(�+ �0)with small X � 1 and small �0 � 1. This modeldesribes the wave funtion propagation on the ideallattie (sites with � = 1) that ontains rare impuri-ties haraterized by a negative sattering amplitude� � �1=2�0, j�j � 1. The large value of j�j allowsa ontinuous desription of the tunneling amplitude.The size of the region where the tunneling amplitudeAif (0) < 0 is negative an be found by notiing thatthe wave funtion	(x; y) = exp��x��+ �(x2+y2)1=4 exp �px2+y2� !hanges its sign in the egg-shaped region in the wakeof the impurity given byy2(x) = x� ln ��2=x� ; 0 < x < �2:638
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Fig. 4. Saling dependene of �utuations of the eletron wave funtion deay, �F = hF i�F , where F is de�ned by (15).The quantity F is equivalent to the free energy of the direted polymer problem. a � the results for the linear density ofstates with P (� < 0) = 0, and b � the same results for the equally probable positive and negative sattering amplitudes.The upper insets show the distribution funtion of �F and its �t to the Gaussian, ompared to whih the distribution isslightly skewed as expeted for the Tray�Widom distribution. The lower insets show the evolution of the normalized highermoments of the distribution funtion that tends to the universal values expeted for the Tray�Widom distribution (shownas dashed horizontal lines). The numerial results were obtained by simulating evolution (16) on systems of sizes N = 106,107, 5 � 107 , as indiated by points of di�erent size and olors. The straight line orresponds to the exponent  = 0:345 (a),0:33 (b ). The onvergene to the saling form of the free energy �utuations ours relatively fast, while higher momentsof the distribution funtion require enormous statistis, espeially at large L, as is indiated by the deviation of urvesrepresenting the fourth moment for N = 107 and N = 5 � 107The area of this region isS(�) = 23r2�3 j�j3�1=2:A small onentration XS � 1 of suh impurities leadsto independent lakes of negative signs shown in Fig. 6.In this situation, �P > 0.As the onentration X inreases, di�erent lakesstart to overlap and form a state with random signof the amplitudes. The transition between these twophases ours at X = X � S�1 / j�j�3. The depen-dene P�(X) is expeted to have a general form hara-teristi of a phase transition, skethed in Fig. 7a. Thesequalitative arguments ignore the ontributions fromimpurities loated lose to eah other, whih shouldnot be relevant in the limit X ! 0.The numerial simulations show that the transitionalso survives for not very large values of the satteringamplitudes. In partiular, this transition has been ob-served for the binary distribution funtions with �0 = 1.Figure 7 represents the results of our numerial simula-tions for this ase. As we an see, the behavior of�P asa funtion of the distane hanges qualitatively asX in-reases beyond X � 0:032. For smaller onentrationsx, the probability di�erene �P saturates at nonzerovalues, while for larger onentrations, it approahes

0. The sales needed to observe this hange in the be-havior are generally very long. We believe that this isthe reason that prevented unambiguously establishingthe existene of the transition in early numerial sim-ulations. We note that the sales are further enlargednear X � 0:032, as is expeted at a phase transition.We have also heked that the phase transition be-tween the sign-ordered and sign-disordered phases sur-vives for a gapped distribution of � de�ned in Se. 2.2.The numerial data look very similar to those shown inFig. 7, the value of X in this model is X � 0:02.The existene of the sign phase transition has beenquestioned in paper [33℄, whih used the mapping tothe direted polymer problem. The essene of the ar-gument is that the free energy of direted polymersleading to a given site are dominated by a single path,and hene just a single impurity along this path su�esto hange the sign of the amplitude. At a small on-entration of negative satterings, one onludes thatthe amplitude should beome ompletely random at thesale L / 1=X . This argument, however, does not takethe ontribution from subdominant paths into aount,whih may eventually restore the sign of the amplitudeat large sales, as is indiated by numerial data for thegapped density of states (see Se. 2.2).639



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013
5.0

2.0

1.0

0.5

〈∆F 2〉1/2

〈∆F 3〉c
~

〈∆F 4〉c
~

0.5

0.3

0.2

0.1

50

L

0.2

10010 500 1000 5000

RS

PS

20 50 100 200 500 1000Fig. 5. Saling dependene of �utuations of the ele-tron wave funtion deay�F = hF i�F obtained fromthe numerial solution of evolution (16) with a gappeddensity of states. The lower data set (denoted by PS)orresponds to the positive sattering amplitudes, andthe upper data set (denoted by RS), to the ompletelyrandom amplitudes with equal probability of signs. Thedata were �tted with the saling dependenes with theexponent  = 0:28 for positive satterers and  = 0:31for random signs. The results were obtained for thesystems of size N = 107, 5 � 107. Higher momentstend to the universal values of the Tray�Widon distri-bution as shown in the inset, whih gives the data forrandom-sign satterers

Fig. 6. Qualitative piture of lakes of negative ampli-tude signs formed in the wake of an impurity (shownas a small gray irle) haraterized by a negative sat-tering amplitudeWe now show that for a gapless density of states (3)with � < 2 and for any nonzero onentration of neg-ative satterers, the sign of the amplitude A beomesompletely random at large sales. Indeed, in this ase,the total area of negative lakes is

Stot � X Z d�� (�)S [� (�)℄ ;where S [�℄ / �3 / "�3. Hene, Stot diverges for alldensities of states � (�) � "� with � � 2. For example,this is the ase for the Coulomb gap, where � (�) / ".We have heked this onlusion numerially for thelinear density of states and we have indeed observedthat even a very small X � 10�4 leads to a randomsign of the amplitude at very large sales. Our dataare shown in Fig. 8. As expeted, the sale at whihthe sign beomes random grows quikly with the de-rease in X .3. MAGNETORESISTANCE IN THE HOPPINGREGIME3.1. Magneti �eld dependene of theloalization lengthWe now turn to the disussion of magnetoresistanein the variable-hopping regime. We begin by summa-rizing the results of numerial simulations for reursiveequation (16) that was modi�ed to inlude the phases�j = Bj indued by magneti �eldAi;j(B) = 1�ij [Ai�1;j�1ei�j�1=2 ++ Ai�1;jei�j�1=2 +Ai�1;j+1ei�j+1=2 ℄: (17)Then we give the qualitative explanation of the resultsbased on the mapping of hopping to the direted poly-mers. The dimensionless magneti �eld B in this equa-tion and in the disussion below is given by the �ux ofthe physial magneti �eld Bphys through the elemen-tary square plaquette of the lattie: B = Bphysa2=�0,where a is the lattie onstant and �0 = h=e is the�ux quantum.Our main result is that at large rhop > LB (whihholds at low temperatures), both positive and negativemagnetoresistanes are desribed by orretions to theloalization length:g(B) = ��(B)�(0) = �C��B�2�0 �� : (18)This saling law is haraterized by the universal expo-nent � � 4=5 and nonuniversal numerial oe�ientsC�. The latter depend on the distribution of "ij , e. g.,C+ � 2:6 for the gapped and C+ � 0:9 for linear den-sity of states. Here, we de�ne the loalization lengthas the limit � = limrij!1 lnAij(B)=rij . The positivesign (+) in (18) orresponds to the ase where the sys-tem is in the sign-disordered phase and the negative640
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if often observed with a di�erent exponent and pref-ators, �0 � 0:5, 0.6, 0.64 for the sattering of ran-dom signs with gapped, linear, and uniform densitiesof states respetively. For these densities of states theprefators are D+ � 0:11, 0.22, 0.30. The value of D+for the gapped density of states is in agreement withthe previous numerial simulations in [26; 28℄. We notethat the value of D+ for the uniform density of statesis roughly three times larger than for the gapped one.13 ÆÝÒÔ, âûï. 3 (9) 641
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other bundle of paths that di�ers from the dominantone at a sale L has the ation that is typially largerthan that of the dominant path by �F / L1=3, andtherefore its amplitude is exponentially suppressed byexp ��(L=a)1=3�, where a is the mean free path of theeletron (lattie spaing in the ase of numerial simu-lations). This leads to an exponentially small e�et ofthe magneti �eld. However, beause the di�erene ofthe ations between two paths is a random variable it-self, with probability p / L�1=3 two ations di�er onlyby the amount of the order of unity. If all satteringamplitudes are positive, the hange in the interfereneaused by the magneti �eld dereases the total am-plitude by the fator of the order of unity, if the �uxthrough the loop formed by these two paths is of the or-der of the �ux quantum. Beause the transverse dire-tion sales as Y � a(L=a)2=3, the interferene beomesrelevant at sales � L:BL5=3a1=3 � �0 (20)642
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Fig. 10. Direted polymer piturewith probability p � (L=a)�1=3: The resulting dereaseof the wave funtion implies that the typial inverseloalization length inreases byÆ��1 � a1=3=L4=3 � (B=�0)4=5a3=5:Repeating the same arguments for the amplitudesof the random signs and using the fat that the signs oftwo paths that ontribute to the interferene are ran-dom (f. the disussion after Eq. (11)), we obtain thesame dependene on magneti �eld but with the oppo-site sign: the inverse loalization length is dereased bythe magneti �eld.All these onlusions are valid in the limit of longsales, where �F � 1. In the intermediate regime,with �F . 1, the probability that two paths interfereis of the order of unity, resulting in the saling depen-dene of Æ��1 on the �eld with the exponent �0 = 3=5.Looking at the numerial results for the saling depen-dene of �F shown in Fig. 4, we see that it remains ofthe order of unity for L . 102, whih translates into the�eld B & 10�3, in rough agreement with the numerialresults shown in Fig. 9.The behavior of the orrelation length is given bysimple saling equations (18) and (19) only in the limitof ompletely random and positive amplitude signs. Inthe ase of a small onentration of negative satter-ings, a more ompliated behavior is expeted. Large�elds a�et the amplitude at short sales. At thesesales, the rare negative satterings have small e�eton the amplitude sign, and hene at large �elds theinverse loalization length is inreased by the �eld,similarly to the ase of positive sattering amplitudes.By ontrast, at large sales relevant for small �elds,the amplitude sign beomes ompletely random, andtherefore a negative orretion to Æ��1 is expeted atsmall �elds, similarly to the fully random sign ase. Asthe �eld is inreased, the sign of the orretion shouldhange. Exatly this qualitative behavior is shown bynumerial simulations of model (17) with a small on-entration of satterers with negative amplitudes. Our
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A B�Fig. 12. Quantitative piture of tunneling paths in theviinity of the metal�insulator transition in the asewhere � > aB. The path may ontain return loopsat short sales (of the order of �), but the eletronmoves only in one diretion at longer sales. We expetthat the problem is mapped onto direted polymers atsales larger than �, and hene small magneti �eldsB�2 . �0 are expeted to have the same e�et on theresistivity as in the strongly loalized regimeIn the disussion of the hopping transport, we haveassumed the strongly loalized regime in whih the ele-tron wave funtion is loalized at sales of the order ofthe Bohr radius aB of a single impurity. However, allour qualitative onlusions should also hold when theloalization length is larger, � > aB . In this ase, theeletrons tunnel from one area to another as is shownin Fig. 12. The loops of the tunneling paths are al-lowed inside individual areas, but not between them.In this regime, we expet to observe large nonanalytidependene of the loalization length on the magneti�eld given by (18) and (19) at low �elds B�2 . �0.These universal orretions add to the e�et of the mag-neti �eld oming from the sales shorter than �, whihan be found from the renormalization group approah.These orretions are of the order of Æ�=� � (B�2=�0)2and are therefore negligible ompared to the e�etsin (18) and (19) oming from the longer sales at low�elds. However, they an ontribute signi�antly to thetotal variation of the magnetoresistane at large �elds.3.2. Magnetoresistane in the variable-rangehopping regimeThe results (18) and (19) for the �(B) dependenean be onverted into magnetoresistane if the induedhange of the loalization length is small, Æ� � �;but the resulting hange in the hopping amplitudeis exponentially large, leading to resistane variationsln (� (0) =� (B))� 1. In this ase, we an neglet other

ontributions to the variation of the hopping proba-bility (whih we disuss below), and the magnetoresis-tane is given byln � (B)� (0) � "2� �T0T ��# Æ�� : (21)Combined with the �(B) dependene disussedin Se. 3.1, this equation gives the magnetoresis-tane at moderate �elds, suh that B�2 . �0 butln (� (0) =� (B))� 1.At large magneti �elds B�2 & �0, Eq. (21) re-mains valid, but the loalization length dependene onthe magneti �eld is due to short sales and is nonuni-versal. For a granular metal, the loalization length isroughly equal to the grain size r0; beause the mag-neti �eld has no e�et at sales shorter than r0, theÆ�(B) dependene saturates at B�2 . �0. By ontrast,in the ase of a weakly disordered noninterating 2Dmetal with kltr>1, one expets [7℄ a strong dependeneon the magneti �eld. Indeed, in this ase, the loaliza-tion length is exponentially large � (0) � ltr exp (kF ltr)in the absene of the magneti �eld, with ltr being ele-tron mean free path. The onventional renormaliza-tion group analysis [7℄ gives Æ�(B)=�(0) � (B�2=�0)2at B�2 < �0, and orretions of the order of unityare therefore expeted at B�2 � �0. At larger �elds(Bl2tr � �0), the loalization length inreases expo-nentially to �(B) � ltr exp (kF ltr)2. At even larger�elds, the appearane of the quantum Hall regime anda pseudometalli behavior are expeted [13℄. The pres-ene of eletron�eletron interation an lead to an evengreater variety in the loalization length dependene onthe magneti �eld at high �elds.The omputation of the �(B) dependene in Se. 3.1translates into the preditions for magnetoresistane(21) only in the asymptoti regime of large magneti�elds at whih ln (� (0) =� (B))� 1. There are at leasttwo reasons why it is important to study the magne-toresistane in the opposite limit of low magneti �eld.First, beause it is di�ult to measure large resis-tanes, the parameter r=� . 15 annot be very large,and therefore the ondition ln (� (0) =� (B))� 1 is sat-is�ed only in a limited range of �elds. As we showbelow, the power-law dependene of ln (� (0) =� (B)) ex-tends somewhat in the regime if ln (� (0) =� (B))) . 1,whih makes the observation of this dependene morerealisti.Seond, many experimental data show that themagnetoresistane often hanges sign in small �elds. Aswe disuss in more detail below, this sign hange agreeswith the theoretial expetations. For instane, if the644



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistane in the variable-range hopping regimesattering amplitudes are mostly positive (P� � 1),the loalization length at large �elds beomes shorter(see Se. 2.3) and magnetoresistane is positive. But itmay hange its sign and beome negative at small �elds.This hange in the sign of the magnetoresistane anbe due to the hange in the sign of the orretion to theloalization length disussed in Se. 2.3 or to anothere�et at short sales that we disuss below. Gener-ally, the theoretial preditions in this regime are lessuniversal.At small magneti �elds, the auray of the ap-proximation Mij � Aij beomes insu�ient beauseit overestimates the ontributions to hopping rate (4)from the impurity on�gurations in whih the partialamplitudes A� (0) anel eah other in the absene ofthe magneti �eld, whene Aif (0) � 0. For these on-�gurations, a small magneti �eld hanges lnAif dra-matially. For a �nite probability density of Aij(0) = 0,the magneti �eld dependene of lnA(B) beomesa nonanalyti funtion of B: ln [A(B)=A(0)℄ / jBj[24; 25℄. Similarly to the qualitative disussion of the�(B) dependene in Se. 3.1, this nonanalytiity an bedemonstrated in the ase where the propagation ampli-tude is due to the interferene between just two paths,Aif = A1 + A2 � 0 with random A1 and A2. In thismodel ase, the typial amplitude in a magneti �eldbeomesln ����A(B)A(0) ���� = Z dA1dA2 ln ��A1 �A2ei��� � j�j ; (22)where � / B is the phase di�erene indued by themagneti �eld. Here and below, we let the bar denotethe averaging over the impurity on�gurations. Be-ause the probability density of Aij(0) = 0 is �nite atany onentration of satterers with �i < 0, the typi-al amplitude always inreases at small �elds. But thisdoes not always translate into negative magnetoresis-tane.The ruial di�erene between the amplitude Aijand hopping rate (4) is that the latter is the sum ofthe positive rates due to phonons with di�erent q di-retions. As a result, the probability density to �ndWif = 0 is zero, and the magnetorsistane is propor-tional to B2 at small B.To �nd the values of the rossover �elds, we notethat in the limit of low temperatures at whih qrij � 1,the exponential in (5) an be approximated by the �rstnonzero term:Mij(q) � Z dr yi (r) j (r)q � r: (23)

The main ontribution to the matrix element Mijomes from the omponents of the phonon wave ve-tor q that is parallel to rij . In the leading approxima-tion, we an neglet the ontributions from the phononswith momenta in other diretions. In this approxima-tion, the hopping probability (4) is ontrolled by thematrix elementMij(qr̂ij) r̂ij = rij=rij . This matrix el-ement has the same statistial properties as the ampli-tude Aif , and therefore the reasoning resulting in (22)applies, wheneln jM (B;q) =M (0;q)j � jBj :The subleading proesses in whih hopping (4) is due tophonons with momenta perpendiular to rij ut o� thenonanalyti behavior of lnW (B) at very small �elds.Combining this result with the e�et of the �(B)dependene disussed in Se. 3.1 that ours at largesales at whih the �ux through the typial loop islarger than the �ux quantum, Br5=3�1=3 > �0, weobtain three regimes of the lnM(B) dependene forB�2 < �0:ln �(0)�(B) = ln Wif (B)Wif (0) �� 8><>: (B=B0)� & 1; B > B0;jBj=B0 . 1; B0 > B > B�;B2=B�B0 � 1; B < B�; (24)where B0 = �0=r5=3�1=3: As we saw in Se. 3.1,the transverse deviations of the typial path sale asr? � r2=3�1=3. This allows us to estimate the ontri-bution to the average in (4) from phonons with q ? r:W? � (�=r)2=3W . Repeating the arguments that ledto (22), we obtainln W (B)W (0) = Z dWk ln �Wk +Wtyp�2 +W?� ; (25)whih results in the dependene (25) with B� = �0=r2.The qualitative estimates show that while theregime of a nonanalyti dependene is relatively wide(B0 < B < �0=r2), the regime of the linear dependeneis narrow. We note that the estimates of B� and B0neglet the numerial oe�ients that might be impor-tant.The disussion above and the result in (24) assumedthat the system is deep in the sign-disordered phase, inwhih signs of all amplitudes are ompletely random. Ifthe sattering amplitudes are mostly positive, P� � 1,the signs of the amplitudes beome random only atlarge sales. This implies that the system an be in645



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013the sign-ordered phase at harateristi sales set bythe magneti �eld. In this ase, the magnetoresistaneat largest �elds is positive in ontrast to (24), whileat small B it is quadrati in B, and an therefore beboth positive and negative depending on the value ofP� � 1.To verify the validity of (25) for realisti parame-ters, we have performed the numerial omputation ofthe matrix elements. We did not attempt a full om-putation of the matrix element and its averaging overthe distribution of rij that haraterize the perolat-ing luster. Instead, we omputed the matrix elementfor the harateristi rij and averaged over di�erentdiretion of q. Beause the results do not hange quali-tatively when r is inreased by a fator of 2, we believethat they faithfully reprodue the dependene of themagnetoresistane:ln �(0)�(B) = ln hM2(B)iqhM2(0)iq ; (26)where the angular brakets denote averaging of the di-retions of q. The result of our numerial simulationsfor the uniform density of states P (�) = (1=2)�(1� j�j)is shown in Fig. 13 for two typial distanes: r=� � 8and r=� � 6. In both ases, we observe a large regimeof the pseudo-universal behavior ln(�(0)=�(B)) � B�with � � 0:5, whih is due to the nonuniversal orre-tions to loalization length (19). At larger r=� & 8, weobserve the gradual appearane of the transient lineardependene in the magneti �eld, in agreement withthe expetations from (25). Figure 14 shows the ex-peted magnetoondutane at di�erent typial valuesof r=� onverted into expeted values of the resistanes.3.3. Beyond the single partile modelSo far in our disussion we have ignored the many-body e�ets due to eletron�eletron interation. Gen-erally, one expets that eletron orrelations play amuh bigger role in the hopping regime than in themetalli regime. In this subsetion, we brie�y disusstheir role and the onditions under whih the single-partile results obtained above are valid.At low temperatures, the eletron sites with �� < 0(and �� < 0) are oupied by eletrons, while thesites with �� > 0 are empty. Tunneling between ini-tial and �nal states an be viewed as a virtual proessin whih the eletron hops through the intermediateloalized states. Depending on the ratio between theeletron�eletron interation and the density of states
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistane in the variable-range hopping regimeat the Fermi energy in the impurity band, these loal-ized states an be singly and doubly oupied. Thespins in the singly oupied states interat via the ex-hange interation J . Although the detailed theory ofdisordered eletron systems does not exit, three obvi-ous limit ases are learly possible. In the �rst ase, theinteration between eletrons is large, the majority ofsites are singly oupied, and the resulting spin systemmight form an S = 1=2 spin glass at low temperaturesand a paramagnet at high temperatures. The low-tem-perature spin glass state breaks the time-reversal sym-metry; it might be ollinear or isotropi depending onthe anisotropy of the exhange ouplings. Althoughlogially possible, neither ollinear nor isotropi stateswere observed experimentally, probably beause quan-tum spin �utuations are too large for spin 1=2. Thealternative (seond ase) is that eah spin forms a sin-glet with another spin to whih it is oupled by thestrongest interation [46℄. This state does not breakthe time-reversal symmetry. Finally, in the limit ofsmall interation, the majority of states are doubly o-upied (third ase). Both the seond and third asesare haraterized by zero average spin on eah site.In all ases, the segments of the tunneling pathwhere eletrons travel through oupied sites an beviewed as a tunneling of a hole moving bakwardsthrough oupied states, as is shematially shown inFig. 2. In the interating system, this proess an leadto the reation of many-body exitations in the �nalstate that destroy the oherene between hopping am-plitudes A� along di�erent paths �. When this doesnot happen, the tunneling an be desribed by Eq. (7)with renormalized hopping amplitudes and energies �a.We now disuss the tunneling interferene in dif-ferent eletron states in more detail. We start with astate in whih all sites are singly oupied. At hightemperatures, the resulting spins form a paramagnet,and hene the �nal spin states formed after the hargetransport along di�erent paths � are generally di�erentand do not oinide with the initial state. In this state,the orresponding amplitudes A� do not interfere. Inthis situation, no orbital e�ets of the magneti �eldon the harge transport are expeted. Appliation ofthe magneti �eld an polarize the spin system, restor-ing the path interferene. Thus, in this ase, we expetthat the polarization of the spin system by the in-plane�eld results in a state haraterized by a large negativemagnetoresistane with respet to the �eld perpendi-ular to the plane, while appliation of a small perpen-diular �eld in the absene of an in-plane one givessmall or no negative magnetoresistane. A large out-of-plane �eld (in the absene of the in-plane �eld) has

two e�ets: it might polarize the spin system and auseorbital e�ets. Thus, we expet a ompliated behavioras a funtion of the out-of-plane �eld.At low temperatures, the spins may freeze in a spinglass state or form a spin liquid. If the spins freezein the ollinear spin glass state, the �nal states orre-sponding to two paths mostly oinide and the inter-ferene reappears. In this situation, the eletron hop-ping amplitude an be desribed by essentially the sameequation (7). Thus, we expet the same orbital e�etof the magneti �eld as disussed in Se. 3.1.The eletron hopping beomes very di�erent in thenonollinear spin glass beause the eletron amplitudesaquire a nontrivial phase fators due to spin non-ollinearity, whih an be desribed by omplex sat-tering amplitudes �a. We expet that the magneti�eld does not a�et the interferene in this ase anddoes not lead to orbital magnetoresistane. However,the isotropi spin glass state is rather unlikely to berealized in physial two-dimensional and even three-dimensional glasses [47℄.In ontrast to the spin glass states, the spin singletsformed in the seond and third ases do not break thetime-reversal symmetry. Thus, the sattering ampli-tudes in these situations remain real as in the single-partile model. At low temperatures, the �nal statesformed after harge motion should oinide, and henethe interferene between di�erent paths remains thesame as it was in the one-partile model in Se. 3.1.We do not disuss the e�et of the magneti �eldon the spin on�guration, whih also a�ets the trans-port of harges. This disussion is beyond the sopeof this paper devoted to the orbital e�ets. But webrie�y mention possible senarios in Se. 5, where wedisuss the experiment that indiates that these e�etsare important.4. APPLICATION TO OTHER PHYSICALSYSTEMSThe sign phase transition that appears for the bi-nary distribution of sattering amplitudes disussed inSe. 2.3 an be observed in very di�erent physial sys-tems. Here, we show that it a�ets the physis of ran-dom lassial magnets at high temperatures. The sim-plest example is given by the Ising model on a ubilattie H =Xi;j Jijsisj ; (27)647



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013where si = �1 and the exhange interation takes twovalues: Jij = J0 > 0 with probability 1�X and Jij == J0 with probability X .At high temperatures, the suseptibility in thismodel is given by�(ri; rf ) = hs(ri)s(rf )i == Xfs0g s(ri)s(rf ) exp��HT � ; (28)whih is a random quantity at large rif � 1. To showthe existene of the sign phase transition in this quan-tity, we notie that at T � jJij j, we an expand theexponent in (28) and take only direted paths betweensites i and f into aount. Summing over direted pathsis equivalent to solving the reursion equation�km = �k�1mJkmk�1m + �;m�1Jkmkm�1n; (29)where indies �km� denote the site with oordinatesk;m on the square lattie and Jkmk�1m denote the bondonneting two suh sites. Reursion (29) is very sim-ilar to (16) with the binary distribution of �ij , and wean therefore expet that it shows the same sign tran-sition as a funtion of the onentration X of negativebonds. The only di�erene between (29) and (16) isthat the negative signs are assoiated with bonds inthe former and with sites in the latter. This is similarto the di�erene between site and bond disorder in theperolation problem whih is known to have very littlee�et. Thus, we expet that at r !1, the distributionfuntion of �(r) exhibits the sign phase transition as afuntion of X . At high temperatures, the ritial valueX is T -independent. As the temperature dereases,the sign orrelations inrease, whih an lead to theformation of the sign-ordered phase. This means thatthe transition from the spin-disordered to spin-orderedphase shifts to largerX at lower temperatures. Finally,at su�iently low temperatures, the system might be-ome a ferromagnet. At the transition point, susep-tibility (28) dereases as a power of jri � rf | and thesign orrelations are long-range whereas spin orrela-tor dereases exponentially. Thus, the transition tothe sign-ordered state ours above the transition to aferromagnet.The staggered suseptibility is de�ned by ~�(r) == (�1)n�(r), where n is the number of steps in a di-ret path on a square lattie between the sites 0 andr. Obviously, it also exhibits a sign phase transition.Thus, at high temperatures, the sign-disordered phaseis separated from the phases in whih the sign of thesuseptibility is positive or alternating. At su�iently
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0 1XSGFig. 15. Qualitative piture of the phase diagram ofIsing spin glass. Dashed lines separate sign-ordered andsign-disordered phases at high temperatures. The spinglass phase (SG, dots) appears in dimension three andhigher. In two dimensions, the spin system remainsparamagneti down to lowest temperatures in the ab-sene of the ferromagneti (F) (or antiferromagneti(AF)) long-range orderlow temperatures, the system freezes into a magnet-ially ordered or a spin glass phase. The spin glassphase may be sign-ordered or sign-disordered, the for-mer orresponds to the oexistene of ferromagneti(or antiferromagneti) and spin glass order parameters.These onlusions are summarized by the phase dia-gram shown in Fig. 15.5. REVIEW OF THE EXPERIMENTALRESULTS AND CONCLUSIONSTheoretial expetations desribed in the previ-ous setions an be separated into the qualitative andquantitative preditions. Veri�ation of the qualitativepredition of the orbital mehanism of a large nega-tive magnetoresistane in the variable-range hoppingregime is relatively simple: it requires measurements ofthe anisotropy with respet to the parallel and perpen-diular magneti �eld. By ontrast, verifying quanti-tative preditions represented by (18) and (19) wouldrequire stronger onditions ln [% (0) =� (B)℄ > 1 andB�2 > �0. We are not aware of experiments on the neg-ative magnetoresistane where all these requirementswere satis�ed. Below, we disuss the urrently avail-able data on large negative magnetoresistane in thevariable-range hopping.We begin with the maximal value of the magnetore-sistane observed experimentally and expeted theoret-648
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Fig. 16. Data from [8℄ and their �t to the behav-ior in (18) expeted for relatively small resistanesR�=RQ � 103�104 involving the matrix elements om-puted in Se. 3.2. Curve 1 orresponds to the �eld per-pendiular to the plane of the sample. Data points 2show the e�et of the �eld in the plane of the sampleperpendiular to the diretion of the urrent, and dataset 3 � to the �eld in the diretion of the urrent.The gray line shows the theoretial expetations. Theupturn at large �elds is due to the e�et of the �eld atsmall sales, where it modi�es the hopping amplitudebetween the sites, whih was not taken into aountproperly in the modelially. In our numerial simulations, we obtained themaximum value Æ�=� = 0:2 for the uniform density ofstates (Mott regime) and Æ�=� = 0:05 for the densityof states linear in " (Efros�Shklovskii regime). Themeasurable values of the resistane (R . 1011
) orre-spond to (T0=T )� . 15. Hene, Eqs. (18) and (19) de-sribe the negative magnetoresistane whose value doesnot exeed % (0) =� (B) < 30 in the Mott regime, and isexpeted to be more moderate, ln[� (0) =� (B)℄ < 1, inEfros�Shklovskii regime. This is in agreement with thefat that in all papers [8�18℄ where both the large nega-tive magnetoresistane has been observed and the tem-perature dependene of the resistane has been mea-sured, it followed Mott's law.Surprisingly, one of the most omprehensive stud-ies of the negative magnetoresistane in the variable-range hopping regime in a two-dimensional materialwas done in the early work [8℄ that studied Ge-soppedGaAs �lms. It observed a strongly anisotropi nega-tive magnetoresistane, the largest one orrespondingto the out-of-plane �eld. The e�et of the in-plane �eldan be aounted for by a signi�ant thikness of the�lm (deff � 30 nm). Moreover, the in-plane negativemagnetoresistane was also anisotropi with respet to

the angle between the magneti �eld and the urrent.Finally, mirosopi �utuations of the resistane as afuntion of the magneti �eld in small samples wereobserved. These observations prove the orbital natureof the e�et. In this experiment, the resistane of thesample was R� . 30 M
 at lowest temperatures, in-diating that r=� . 5. Aordingly, the magnitudeof the negative magnetoresistane remained moderate:((� (0)� � (B)) =� (0))max � 0:4. In Fig. 16, we presentresults of our numerial simulations of Eq. (26) andtheir omparison with the experimental data in [8℄.Paper [10℄ observed negative magnetoresistane witha similar amplitude and a similar dependene on themagneti �eld in thin �lms of polyrystalline In2O3�x.A subsequent paper [9℄ on GaAs/AlxGa1�xAsdisordered heterojuntions observed the signi�antlylarger negative magnetoresistane %(0)=�(B) � 7.Strong anisotropy of the negative magnetoresistanehas been observed, indiating the orbital nature of thee�et. The magneti �eld dependene of �(B) in low�elds B . 4T where magnetoresistane is negative wasroughly linear in oordinates ln �(B), B1=2, whih is ingood agreement with the dependene expeted theoret-ially (25) and shown in Fig. 14. In these experiments,the loalization length � varied in the range 25�100 nmfor di�erent gate voltages, with B�2 � �0 ourring atB � 4T. Generally, one expets that the magnetoon-dutane should show a rossover to a di�erent regimewhen B�2 � �0. It is surprising that this rossoveris not observed in the data. On the other hand, thispaper and the papers disussed below give values forthe loalization length � extrated from the Mott law.This proedure is prone to a number of unertaintiessuh as the value of the density of states, the exatform of the temperature dependene, et., and the val-ues of the loalization length might therefore be wrongby a fator 2�5, whih would be su�ient to explain theabsene of the rossover in [9℄. A similar large nega-tive magnetoresistane (%(0)=�(B) � 20) of the orbitalnature was observed in polyrystalline In2O3�x �lmsin [1℄. The behavior of %(0)=�(B) in these experimentsresembles a small power of magneti �elds in a widerange of �elds for all �elds; the quadrati behavior wasobserved only in very low �elds (B < 0:2T), at whihthe relative hange in the resistane was very small,ÆR=R� 1, in agreement with the theoretial expeta-tions (f. Fig. 13 in whih the B2 behavior appears atÆR=R . 10�2�10�1).The maximal value of magnetoresistane in [9�11℄is somewhat above the value expeted theoretially forthe �lms of these resistanes. For instane, the resis-tane of GaAs/AlxGa1�xAs �lms in [9℄ implies that at649



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013the lowest temperature, the maximal value for these�lms is (T0=T )1=3 � 7, whih translates into the max-imal expeted value � (0) =� (B) � 2�3. It is possible,however, that the largest �elds studied in these papersorrespond to the regime B�2 & �0, in whih the mag-netoresistane may ontinue to grow with B.A huge e�et of the transverse �eld on the on-dutivity (% (0) =% (B) & 30) of high mobility silionMOSFET was observed [12; 13℄ at low arrier onen-trations. Remarkably, the large magnetoresistane inthe transverse �eld appears in these experiments onlywhen the spins are polarized by a large in-plane �eld,while low �elds result in an isotropi small and positivemagnetoresistane. The latter indiates the spin natureof the magnetoresistane, whih is in agreement withthe strong orrelations expeted in this material. Asdisussed in Se. 3.3, this implies the existene of loal-ized spins in the system that suppress the orbital e�etof the magneti �eld. Appliation of a large in-plane�eld polarizes the spins, making the path interferenepossible, suh that a transverse �eld added to the sys-tem leads to a large negative magnetoresistane, as isobserved experimentally. Unfortunately, paper [12℄ didnot study the temperature dependene of the resistiv-ity in these samples. It is likely that the hange of thesign of magnetoresistane observed in [14℄ in studyingthe pregraphiti arbon nano�bers that obey the Efros�Shklovskii law is due to a similar mehanism. Unfortu-nately, this work did not study the �eld anisotropy.Paper [15℄ reported a big negative magnetoresis-tane (% (0) =% (B) � 10) of H-doped graphene, whilethe in-plane �eld had pratially no e�et on the resis-tane. The observed negative magnetoresistane an beinterpreted as a large hange in the loalization length�(B)=�(0) = 4 indued by the �eld B = 9T. Theseresults annot be ompared diretly with the univer-sal saling dependene derived in this paper beausethe large hanges in the loalization length imply thatB�2 � 1. We expet that at lower temperatures, thesamples studied in this work should exhibit large mag-netoresistane at low �elds assoiated with small Æ�=�,but these data are not available.Finally, it is possible that negative magnetoresis-tane due to the orbital e�et was also observed inother materials but was not studied in any detail. Forinstane, a sharp (fator of 2) drop of the resistane inthe �elds B = 1T at T = 100mK was observed in [16℄for CdSe: in samples that display the three-dimensionalMott resistane with the exponent � = 1=4 and R(0) == 6 M
 � m, signi�ant (ÆG=G � 0:2) negative mag-netoresistane was also observed in three-dimensionaldoped n-type InP samples that also show the Mott law

but a muh lower resistane R(0) � 10
 � m. Pa-per [17℄ reported a derease in the resistane by a fatorof 100 in the �eld B = 1 T for Ge �lms at T = 36mKharaterized by R = 400 k
.The omplexity of the data outlined above showsthat they annot be explained solely by a single-partiletheory. In partiular, it annot explain why some ma-terials exhibit only positive while others only nega-tive magnetoresistane in the whole range of tempera-tures and magneti �elds in the variable-range hoppingregime. Moreover, there are also materials that exhibitan isotropi positive magnetoresistane only at small�elds. At larger in-plane �elds, the magnetoresistaneof these samples saturates, and addition of a small per-pendiular �eld results in a giant negative magnetore-sistane [12; 13℄. Evidently, the spin physis plays animportant role in the these materials.Positive magnetoresistane of several orders of mag-nitude in high magneti �elds has been observed inmany experimental works (see, e. g., [23; 48; 49℄). How-ever, no data set is su�iently omplete to allow asso-iating it with the orbital interferene mehanisms [19℄desribed by (18) and (19). For example, these worksdid not study the anisotropy of the magnetoresistane.We now brie�y disuss the origin of the isotropipositive magnetoresistane in small �elds, whih wasobserved in a number of works. There are at leastthree possibilities. The �rst is that the eletron spinpolarization inreases the eletron energy. As a result,the density of states at the Fermi energy hanges aswell. This is expeted to be a relatively small e�et.An alternative mehanism assoiates it with the pres-ene of both singly and doubly oupied states near theFermi energy in the impurity band. In the absene of amagneti �eld, the proess in whih the eletron hopsfrom one oupied site to another (reating a singlet)is possible. The magneti �eld polarizes spins, whihsuppresses suh proesses [50℄. Thus, the magneti �elde�etively hanges the density of states in the impurityband. This mehanism provides ontribution to log�that are quadrati in B. Therefore, it an be e�etiveonly in the absene of the orbital ontribution, whihis nonanalyti in B.A di�erent mehanism might be e�etive if the ele-tron system is strongly orrelated and in the abseneof disorder is lose to the Wigner-rystal�Fermi-liquidtransition. In the presene of disorder, the system maybe visualized as a random mixture of rystal and liquidpuddles. In this ase, the insulating phase orrespondsto the situation where metalli puddles do not over-lap. Beause the magneti suseptibility of the Wignerrystal is higher than that of the Fermi liquid, the fra-650



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistane in the variable-range hopping regimetion of the Wigner rystal grows with inreasing themagneti �eld, leading to the positive magnetoresis-tane [13℄. In the theory of 3He, this phenomenon isknown as the Pomeranhuk e�et. It is possible thatthe huge positive isotropi magnetoresistane observedin [12; 13; 51℄ in the metalli regime of Si MOSFET'sand GaAs quantum wells is due to this mehanism.We believe that the same mehanism may be responsi-ble for the positive isotropi magnetoresistane in thehopping regime [13℄.Finally, the spin alignment in the parallel �eld pro-dues the interferene between the paths and orre-sponds to a new mehanism of magnetoresistane. Al-though this mehanism in the hopping regime has neverbeen onsidered theoretially, it is lear that it also pro-dues a negative magnetoresistane. We expet thatthis ontribution will be isotropi.While this work was in progress, we learned aboutpaper [52℄ that gives the arguments for the univer-sal orretions to the magnetoresistane of stronglydisordered superondutors desribed by a modelsimilar to the eletron hopping disussed here. In ourterminology, this model orresponds to the ase ofthe uniform density of states and positive satteringamplitudes.We aknowledge useful disussions with M. Feigel-man, J. Folk, X. P. A. Gao, M. Gershenson, D. Huse,S. Kravhenko, I. Sadovskyy, M. Sarahik, andB. I. Shklovskii. B. S. thanks the InternationalInstitute of Physis (Natal, Brazil) for the hospitalityduring the ompletion of the paper. This researhwas supported by grants ARO W911NF-09-1-0395,ANR QuDe, and John Templeton Foundation. Theopinions expressed in this publiation are those of theauthors and do not neessarily re�et the views of theJohn Templeton Foundation and Templeton.REFERENCES1. A. L. Efros and B. I. Shklovskii, in Modern Problemsin Condensed Matter Sienes. Eletron-Eletron In-terations in Disordered Systems, ed. by A. Efros andM. Pollak, North-Holland (1985), Vol. 10, h. 5, p. 409.2. N. F. Mott, Metal-insulator Transitions, Taylor andFranis (1990).3. A. A. Abrikosov, Fundamentals of the Theory of Me-tals, North-Holland (1988).4. B. L. Altshuler, P. A. Lee, D. Khmel'nitzkii, andA. I. Larkin, Phys. Rev. B 22, 5142 (1979), URLhttp://dx.doi.org/10.1103/PhysRevB.22.5142.
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