ВЛИЯНИЕ СЛАБОГО МАГНИТНОГО ПОЛЯ НА РЕЗОНАНСНЫЕ ОСОБЕННОСТИ ПРОВОДИМОСТИ ОТКРЫТОГО КРУГЛОГО БИЛЛИАРДА СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ ДРЕССЕЛЬХАУЗА

А. И. Малышев^{*}, Г. Г. Исупова

Нижегородский государственный университет им. Н. И. Лобачевского 603950, Нижний Новгород, Россия

Поступила в редакцию 27 апреля 2013 г.

Рассматривается влияние слабого магнитного поля на транспортные свойства открытого круглого биллиарда с подведенными к нему каналами в присутствии спин-орбитального взаимодействия Дрессельхауза. Показано, что включение магнитного поля вызывает расщепление обнаруженных ранее на зависимости проводимости от энергии резонансов Фано на пары резонансов вдвое меньшей амплитуды. Установлено соответствие между значениями энергии, к которым эти резонансы коллапсируют при выключении спин-орбитального взаимодействия, и уровнями энергетического спектра в соответствующем закрытом биллиарде. Показано, что слабое магнитное поле вызывает качественное изменение спиновой поляризации волны в выходном канале.

DOI: 10.7868/S0044451013120158

1. ВВЕДЕНИЕ

Использование спиновых степеней свободы носителей заряда и управление ими посредством спин-орбитального взаимодействия (далее СОВ) является одной из актуальных задач современной полупроводниковой спинтроники. Все больше вопросов этой области науки в последние годы обретают практический смысл (см., например, обзоры [1–3]). Довольно перспективным «материалом» в этом смысле является двумерный электронный газ множество носителей заряда, запертых в тонком слое гетероструктуры. Прикладывая дополнительно отрицательный электрический потенциал к электродам, размещенным над электронным газом, можно различным образом ограничивать движение носителей заряда, формируя квазиодномерные каналы, квантовые точки и т.п.

В наших предыдущих работах [4,5] объектом исследования послужил открытый квантовый биллиард — по сути, квантовая точка круглой формы с симметрично подведенными к ней двумя квазиодномерными каналами. Удалось показать, что включение в такой системе СОВ приводит к появлению на зависимости проводимости от энергии носителей дополнительных асимметричных резонансов Фано, ширина которых, согласно полученной феноменологической зависимости, пропорциональна четвертой степени параметра СОВ (Рашбы или Дрессельхауза). В работе [5] было, в частности, показано, что области появления подобных резонансов однозначно соответствуют уровням энергии в соответствующем закрытом биллиарде без СОВ.

Подобные же результаты, касающиеся проводимости кольца конечной ширины с симметрично подведенными к нему двумя каналами, практически одновременно были опубликованы в работе [6]. В ней авторы в качестве причины появления дополнительных резонансов назвали нарушение симметрии волновых функций, вызванное СОВ.

Настоящая работа построена следующим образом. Разделы 2, 3 являются вводными, в них излагается материал, необходимый в основной части работы: приведено решение стационарного уравнения Шредингера для двумерного электронного газа с СОВ Дрессельхауза в слабом магнитном поле, а также для двумерного электронного газа, запертого в узком (квазиодномерном) канале, также с учетом СОВ. Раздел 4 посвящен постановке задачи с открытым биллиардом, изложению методики ее решения, а также обсуждению результатов.

^{*}E-mail: malyshev@phys.unn.ru

2. ДВУМЕРНЫЙ ЭЛЕКТРОННЫЙ ГАЗ С СОВ В СЛАБОМ МАГНИТНОМ ПОЛЕ

При изложении материала настоящего раздела работы будут приведены лишь основные соотношения, необходимые далее. Дополнительные подробности можно найти, например, в обзорной работе [7].

Итак, известно, что при описании двумерного электронного газа используются две модели СОВ взаимодействие Рашбы [8] с гамильтонианом

$$\hat{H}_R = \frac{\alpha}{\hbar} \left(\hat{\sigma}_x \hat{p}_y - \hat{\sigma}_y \hat{p}_x \right) \tag{1}$$

и взаимодействие Дрессельхауза [9] с гамильтонианом

$$\hat{H}_D = \frac{\beta}{\hbar} \left(\hat{\sigma}_x \hat{p}_x - \hat{\sigma}_y \hat{p}_y \right). \tag{2}$$

Здесь $\hat{\sigma}_x$ и $\hat{\sigma}_y$ — матрицы Паули. Конкретная форма гамильтониана, описывающего СОВ, зависит от симметрии кристалла или низкоразмерной структуры, при этом в большинстве случаев вклады Рашбы и Дрессельхауза в СОВ присутствуют одновременно, а отношение параметров α/β лежит в диапазоне от 1.5 до 2.2 (см., например, [10]). В настоящей работе мы ограничимся рассмотрением СОВ Дрессельхауза, заметив при этом, что с точки зрения обсуждаемых далее эффектов конкретный вид СОВ роли не играет.

Если кинетическая энергия определяется параболическим законом дисперсии с эффективной массой *m*, а потенциальная энергия постоянна, то квантовые состояния частицы с СОВ Дрессельхауза в слабом однородном магнитном поле описываются гамильтонианом

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{\beta}{\hbar} \left(\hat{\sigma}_x \hat{p}_x - \hat{\sigma}_y \hat{p}_y \right) + \frac{\mu_B}{2} g B_z \hat{\sigma}_z.$$
(3)

Магнитное поле (B_z) здесь ориентировано перпендикулярно структуре — вдоль оси z. В контексте основной задачи, касающейся проводимости системы с биллиардом, слагаемыми с векторным потенциалом допустимо пренебречь. Обоснованием этого послужат численные оценки параметров, характерные для обсуждаемых в работе эффектов.

В силу коммутации операторов \hat{p}_x , \hat{p}_y и \hat{H} решение стационарного уравнения Шредингера удобно искать в виде произведения плоской волны на неизвестный двухкомпонентный спинор:

$$\psi = e^{i\mathbf{k}\cdot\mathbf{r}} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}. \tag{4}$$

Подставляя (4) в уравнение Шредингера, найдем энергетический спектр:

$$E_{\lambda}(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m} + \lambda \sqrt{\beta^2 \mathbf{k}^2 + \chi^2}, \qquad (5)$$

где $\chi = \mu_B g B_z/2$, а $\lambda = \pm 1$ — дискретное квантовое число, которое соответствует двум ветвям исходного параболического спектра, расщепленного СОВ и магнитным полем (см. рис. 1). При этом фиксированному значению энергии E отвечают состояния, расположенные в плоскости (k_x, k_y) на окружностях радиусов

$$k_{\pm} = \frac{\sqrt{2}}{\hbar} \sqrt{\left(\frac{m\beta}{\hbar}\right)^2} \mp \frac{m\beta}{\hbar} \sqrt{2mE + \left(\frac{m\beta}{\hbar}\right)^2 + \left(\frac{\hbar\chi}{\beta}\right)^2} + mE,\tag{6}$$

где индексы « \pm » указывают на знак соответствующего квантового числа λ .

Волновая функция, в свою очередь, примет следующий вид:

$$\psi_{\lambda,\mathbf{k}}(\mathbf{r}) = \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{2}M_{\lambda}} \begin{pmatrix} \beta k \\ N_{\lambda}e^{-i\theta} \end{pmatrix}, \qquad (7)$$

где

$$N_{\lambda} = \chi + \lambda \sqrt{\chi^2 + \beta^2 k^2},$$
$$M_{\lambda} = \sqrt{\chi^2 + \lambda \chi \sqrt{\chi^2 + \beta^2 k^2} + \beta^2 k^2},$$

а θ — угол в плоскости (k_x, k_y) , отсчитываемый от положительного направления оси k_x .

3. КВАНТОВЫЕ СОСТОЯНИЯ В КВАЗИОДНОМЕРНОМ КАНАЛЕ СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ

Рассмотрим теперь двумерный электронный газ в бесконечном канале шириной *d* в присутствии СОВ типа Дрессельхауза. В этом случае гамильтониан системы имеет вид

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2}{2m} + \frac{\beta}{\hbar} \left(\hat{\sigma}_x \hat{p}_x - \hat{\sigma}_y \hat{p}_y \right) + V(y), \quad (8)$$

где V(y) описывает бесконечно глубокую потенциальную яму:

Рис.1. Качественный вид закона дисперсии (5) в к-пространстве

$$V(y) = \begin{cases} 0 & \text{при} \quad |y| < d/2, \\ \infty & \text{при} \quad |y| \ge d/2. \end{cases}$$
(9)

Поскольку в условиях данной задачи p_x — интеграл движения, решение стационарного уравнения Шредингера имеет следующую структуру:

$$\psi = \frac{e^{ik_x x}}{\sqrt{2}} \begin{pmatrix} a(y) \\ b(y) \end{pmatrix}, \tag{10}$$

где функции a(y) и b(y) удовлетворяют нулевым граничным условиям на стенках канала.

Один из способов определения явного вида функций a(y) и b(y) заключается в поиске их в виде разложения по собственным функциям поперечных мод в канале без СОВ:

$$a(y) = \sum_{n=1}^{\infty} a_n \varphi_n(y), \quad b(y) = \sum_{n=1}^{\infty} b_n \varphi_n(y), \quad (11)$$

где

$$\varphi_n = \sqrt{\frac{2}{d}} \sin \frac{\pi n(y+d/2)}{d}.$$

Это обеспечивает автоматическое выполнение нулевых граничных условий.

Прежде чем перейти непосредственно к анализу каких-либо расчетных данных, определимся с используемыми единицами измерений. Пусть безразмерные постоянная Планка и эффективная масса носителей равны единице. Приняв за l_0 единицу длины, определим тем самым единицу энергии

Рис. 2. Фрагмент энергетического спектра электрона в квазиодномерном канале с СОВ Дрессельхауза. Здесь $\beta/\beta_0=0.5,\ d/l_0=1$

 $e_0 = \hbar^2/ml_0^2$ и единицу измерения константы СОВ $\beta_0 = \hbar^2/ml_0$.

Пример энергетического спектра в канале с СОВ Дрессельхауза, нормированного для удобства на энергию первой поперечной моды $E_1 = \pi^2 \hbar^2/2md^2$, представлен на рис. 2. Показана лишь первая пара из серии ветвей, расщепленных СОВ. Фиксированному значению энергии здесь отвечают четыре состояния — волны с волновыми векторами $\pm k_1$ и $\pm k_2$, бегущие вправо и влево вдоль канала. При этом пара состояний с волновыми векторами k_1 и $-k_2$ отличается от пары состояний с векторами $-k_1$ и k_2 спиновой поляризацией: компоненты спиновой плотности $\overline{s}_i(x, y) = (\hbar/2)\psi^{\dagger} \hat{\sigma}_i \psi$ в каждой точке пространства имеют противоположные знаки. Заметим, что $\overline{s}_y(x, y) \equiv 0$, поскольку функции a(y) и b(y) здесь могут быть выбраны действительными.

4. ТРАНСПОРТНЫЕ СВОЙСТВА ОТКРЫТОГО БИЛЛИАРДА С СОВ В СЛАБОМ МАГНИТНОМ ПОЛЕ

Теперь обратимся к расчету транспортных характеристик открытого круглого биллиарда радиуса R с учетом СОВ Дрессельхауза и слабого однородного магнитного поля, ориентированного перпендикулярно плоскости структуры (см. рис. 3). Итак, необходимо решить стационарное уравнение Шредингера с гамильтонианом

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2}{2m} + \frac{\beta}{\hbar} \left(\hat{\sigma}_x \hat{p}_x - \hat{\sigma}_y \hat{p}_y \right) + \frac{\mu_B}{2} g B_z \hat{\sigma}_z + V(x, y), \quad (12)$$

где поле B_z отлично от нуля лишь в области биллиарда, а V(x, y) описывает бесконечный скачок потенциала на границе биллиарда и примыкающих к нему каналов.

Рис. 3. Круглый биллиард с примыкающими входным (1) и выходным (2) каналами

Рассматривая первую пару ветвей спектра (см. рис. 2), будем придерживаться следующей постановки задачи. Пусть в один из каналов («входной») входит волна с волновым вектором k_1 , а в другом канале («выходном») распространяются прошедшие волны с волновыми векторами k_1 и k_2 , с амплитудами соответственно c_1 и c_2 . Во входном канале при этом распространяются и отраженные волны с волновыми векторами $k_3 = -k_1$ и $k_4 = -k_2$, с амплитудами соответственно c_3 и c_4 . Таким образом, волновая функция имеет следующий вид:

$$\psi_{out,1}(x,y) = \frac{e^{ik_1x}}{\sqrt{2}} \begin{pmatrix} a^{(1)}(y) \\ b^{(1)}(y) \end{pmatrix} + c_3 \frac{e^{ik_3x}}{\sqrt{2}} \begin{pmatrix} a^{(3)}(y) \\ b^{(3)}(y) \end{pmatrix} + c_4 \frac{e^{ik_4x}}{\sqrt{2}} \begin{pmatrix} a^{(4)}(y) \\ b^{(4)}(y) \end{pmatrix}$$
(13)

во входном канале и

$$\psi_{out,2}(x,y) = c_1 \frac{e^{ik_1 x}}{\sqrt{2}} \begin{pmatrix} a^{(1)}(y) \\ b^{(1)}(y) \end{pmatrix} + c_2 \frac{e^{ik_2 x}}{\sqrt{2}} \begin{pmatrix} a^{(2)}(y) \\ b^{(2)}(y) \end{pmatrix}$$
(14)

 в выходном. Во внутренней области биллиарда решение запишем в виде суперпозиции плоских волн:

$$\psi_{in}(x,y) = \frac{1}{\sqrt{d}M_1} \int_0^{2\pi} c(\theta) \times \\ \times \exp\left(ik_+ (x\cos\theta + y\sin\theta)\right) \left(\frac{\beta k_+}{N_1 e^{-i\theta}}\right) d\theta + \\ + \frac{1}{\sqrt{d}M_{-1}} \int_0^{2\pi} d(\theta) \exp\left(ik_- (x\cos\theta + y\sin\theta)\right) \times \\ \times \left(\frac{\beta k_-}{N_{-1} e^{-i\theta}}\right) d\theta, \quad (15)$$

где величины $M_{\pm 1}, N_{\pm 1}, k_{\pm}$ и θ были определены ранее.

Сшивка решений (13)–(15) между собой в местах примыкания каналов к биллиарду (при $x = \pm \sqrt{R^2 - d^2/4}$), а также выполнение нулевых граничных условий на стенках биллиарда могут быть обеспечены применением метода, развитого в работе [11]. В результате появляется возможность анализировать особенности распределения как плотности вероятности, так и компонент спиновой плотности, а также рассчитывать проводимость. Последняя в данном случае может быть найдена по формуле Ландауэра:

$$G = \frac{e^2}{h} \left(|c_1|^2 + |c_2|^2 \right).$$
 (16)

Одним из ранее полученных результатов явилось установление наличия на зависимости проводимости от энергии носителей узких резонансов Фано (см., например, обзор [12]), чья ширина степенным образом связана с константой СОВ [4,5]. Результаты, представленные на рис. 4а, как раз демонстрируют это: черная кривая с двумя пиками здесь соответствует случаю слабого ${\rm COB},$ а в отсутствие ${\rm COB}$ сумма $|c_1|^2 + |c_2|^2$ на этом участке не превышает 10⁻⁴. Здесь же представлена серая кривая, отвечающая той же амплитуде СОВ при наличии слабого магнитного поля (параметры указаны в подписи к рисунку). Видно, что включение магнитного поля приводит к расщеплению этих резонансов на пары, причем, если ранее высота резонансов достигала единицы, то теперь — лишь одной второй (более общим свойством, по-видимому, является перепад значений суммы $|c_1|^2 + |c_2|^2$ в области резонанса, равный одной второй). Принципиальный результат здесь заключается еще и в том, что амплитуды c_1 и c_2 в области резонансов дают равный вклад в проводимость: в районе максимумов их квадратов модулей (на уровне (0.25) графики их зависимости от k_F практически совпадают. Что же касается поведения этих величин в целом, то можно заметить, что пики на зависимо-

Рис. 4. а) Фрагмент зависимости кондактанса открытой системы с биллиардом от модуля волнового вектора k_F , определяющего полную энергию $E = \hbar^2 k_F^2/2m$, в системе с СОВ Дрессельхауза без магнитного поля (черная кривая), а также с магнитным полем $B_z/B_0 = 0.5$, g = -0.45 (серая кривая). δ) Фрагменты зависимостей $\overline{S}_i(R)$ от k_F для этих случаев. Здесь $\beta/\beta_0 = 0.005$, $d/l_0 = 1$, $R/l_0 = 15$

сти $|c_1|^2$ от k_F имеют структуру резонансов Фано с четкими нулями и максимумами на уровне 0.25, в то же время пики на зависимости $|c_2|^2$ имеют, скорее, лоренцевский характер без четко выраженных нулей. Следствием этого является отсутствие нулей на зависимости проводимости от k_F (см. вставку на рис. 4a).

То, что в области резонансов амплитуды c_1 и c_2 дают равный вклад в проводимость, принципиально влияет на распределение спиновой плотности в выходном канале. Так, одним из ранее полученных результатов было установление того, что при прохождении через структуру с биллиардом спиновая поляризация волны не изменяется [4, 5]. Это проявлялось, например, в том, что амплитуда c_2 не давала вклада в проводимость: ее абсолютная величина не превышала 10^{-5} . Сохранение спиновой поляризации было также аналитически доказано в работе [13] для биллиарда произвольной формы с СОВ Рашбы.

Сохранение спиновой поляризации практически означает следующее. Вектор среднего спина, определенный для каналов как

$$\overline{S}_i(x) = \int_{-d/2}^{d/2} \overline{s}_i(x,y) \, dy$$

для входной волны (состояние 1 на рис. 2), независимо от x, имеет компоненты $(-\hbar/2, 0, 0)$. В отсутствие магнитного поля вектор среднего спина в выходном канале коллинеарен вектору на входе в систему и также не зависит от координаты x, причем $\overline{S}_x = -(\hbar/2)|c_1|^2$; это проиллюстрировано на рис. 4 δ черной штриховой линией. Аналогичные зависимости для двух других проекций на рисунке не показаны: они равны нулю.

На рис. 4б показаны таже зависимости проекций $\overline{S}_i(R)$ в системе с магнитным полем, перпендикулярным структуре. Как видно, в этом случае ситуация качественно меняется: ввиду равного вклада амплитуд c_1 и c_2 в проводимость в области резонансов спиновое состояние на выходе из биллиарда (в данном случае в точке x = R), вообще говоря, отличается от состояния на входе. Так, легко видеть, что максимумам проводимости отвечают максимальные значения модуля *z*-проекции вектора среднего спина, что вполне естественно, ввиду соответствующей ориентации магнитного поля. Но при этом оказывается ненулевой и проекция $\overline{S}_y(R)$. Не менее существенно меняется х-проекция вектора среднего спина — теперь максимуму проводимости отвечает нулевое ее значение (см. вставку на рис. 4б). Последний факт вызван тем, что при соответствующих значениях энергии в выходном канале с равными по модулю амплитудами распространяются две волны, которым отвечают противоположные по знаку x-проекции вектора **S**.

Расщепление резонансов на пары находится в хорошем согласии с отмечавшимся ранее результатом — при стремлении константы СОВ к нулю эти резонансы коллапсируют к значениям энергии, отвечающим дискретным уровням энергии в закрытом биллиарде, т. е. в данном случае — к уровням в бесконечно глубокой потенциальной яме круглой формы радиуса R. Можно показать, что в таком случае энергетический спектр частицы массы μ , обладающей моментом $m\hbar$, с учетом зеемановского члена определяется нулями функций Бесселя x_{ml} следующим образом:

$$E_{ml}^{\pm} = \hbar^2 x_{ml}^2 / 2\mu R^2 \pm \chi,$$

Рис. 5. Положения нулей (•) и максимумов (•) резонансов Фано для зависимости $|c_1|^2$ от k_F как функция параметра СОВ Дрессельхауза при $B_z/B_0 = 0.5, g = -0.45.$ Серые кривые отвечают уровням в бесконечно глубокой потенциальной яме круглой формы радиуса R с учетом взаимодействия Зеемана. Резонансы коллапсируют при eta
ightarrow 0 к значениям k_F , равным $k_{\pm 19,7}^+$, $k_{\pm 19,7}^-$, $k_{\pm 28,4}^+$ и $k_{\pm 28,4}^-$ (снизу вверх). Здесь $d/l_0 = 1$, $R/l_0 = 15$

где знаки «±» отвечают различной ориентации спина относительно направления магнитного поля. Это означает, что значениям k_F можно ставить в соответствие величины

$$k_{ml}^{\pm} = \sqrt{x_{ml}^2/R^2 \pm 2\mu\chi/\hbar^2}$$

— именно к ним и коллапсируют резонансы при стремлении константы СОВ к нулю. Это наглядно демонстрирует рис. 5, где отмечены положения нулей и максимумов резонансов Фано (на уровне 0.25) для зависимости $|c_1|^2$ от k_F как функция параметра СОВ Дрессельхауза. Видно, что при конечном значении β положения нулей и максимумов резонансов уже не совпадают со значениями энергии в закрытом круглом биллиарде с СОВ и слабым магнитным полем.

Обратим внимание также еще на один результат, не отмеченный ранее. Как при наличии, так и при отсутствии магнитного поля в системе проводимость оказывается независящей от того, какое состояние — 1 или 2 на рис. 2 — выбрано в качестве входного. Результат этого выбора сказывается лишь на ориентации вектора среднего спина на выходе из биллиарда: если в качестве входного взять состояние 2, изменит знак его *х*-компонента.

В заключение приведем некоторые численные оценки. Так, например, выберем ширину входного и выходного каналов равной 30 нм, тогда диаметр самого биллиарда составит 0.9 мкм. Ориентируясь Влияние слабого магнитного поля ...

димости в GaAs $0.067m_0$, получим, что значения постоянной СОВ Дрессельхауза от нуля до 0.01 β_0 соответствуют интервалу от нуля до 0.38 мэВ·нм. Это меньше характерных значений, имеющих место в реальных структурах. Что касается индукции магнитного поля, то ее единица B_0 была взята равной 1 Гс. Это отвечает максимальной величине индукции, использовавшейся в расчетах.

Выбор такого диапазона величин β и B_z продиктован, во-первых, необходимостью подробнее проследить процесс коллапса резонансов при стремлении константы СОВ к нулю, а во-вторых, избежать сложностей, вызванных взаимодействием резонансов между собой. Заметим также, что минимальное значение магнитной длины $\sqrt{\hbar/qB_z}$ при этом составляет 2.6 мкм, что приблизительно в три раза превышает диаметр биллиарда. Поэтому полагаем, что использование приближенного гамильтониана (3), не содержащего членов с векторным потенциалом, вполне допустимо.

Работа выполнена при финансовой поддержке РФФИ (грант № 13-02-00717).

ЛИТЕРАТУРА

- 1. M. W. Wu, J. H. Jianga, and M. Q. Weng, Phys. Rep. **493**, 61 (2010).
- **2**. Ю. Г. Кусраев, УФН **180**, 759 (2010).
- 3. D. Awshalom and M. E. Flatte, Nature Phys. 3, 153 (2007).
- 4. Г. Г. Исупова, А. И. Малышев, Письма в ЖЭТФ 94, 597 (2011).
- 5. А. И. Малышев, Г. Г. Исупова, Изв. РАН, сер. физ. 77, 92 (2013).
- 6. M. P. Nowak, B. Szafran, and F. M. Peeters, Phys. Rev. B 84, 235319 (2011).
- 7. Д. В. Хомицкий, Наноструктуры. Матем. физ. и моделир. 1, 83 (2009).
- 8. Э. И. Рашба, ФТТ 2, 1224 (1960).
- 9. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
- 10. S. D. Ganichev et al., Phys. Rev. Lett. 92, 256601 (2004).
- 11. Г. Г. Исупова, А. И. Малышев, Ж. вычислит. матем. и матем. физ. 52, 342 (2012).
- 12. S. J. Yong, A. M. Satanin, and C. S. Kim, Phys. Scripta 74, 259 (2006).
- 13. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 66, 075331 (2002); Phys. Rev. E 70, 056211 (2004).