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NONSTATIONARY EFFECTS IN THE SYSTEM OF COUPLEDQUANTUM DOTS INFLUENCED BY COULOMB CORRELATIONSV. N. Mantsevih a*, N. S. Maslova a, P. I. Arseev baLomonosov Mosow State University119991, Mosow, RussiabLebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaReeived May 6, 2013We investigate the time evolution of �lling numbers of loalized eletrons in the system of two oupled single-levelquantum dots (QDs) onneted with the ontinuous-spetrum states in the presene of Coulomb interation.We onsidered orrelation funtions of all orders for eletrons in the QDs by deoupling higher-order orrelationsbetween loalized and band eletrons in the reservoir. We analyze di�erent initial harge on�gurations andonsider Coulomb orrelations between loalized eletrons both within the dots and between the di�erent dots.We reveal the presene of a dynamial harge trapping e�et in the �rst QD in the situation where both dotsare oupied at the initial instant. We also �nd an analyti solution for the time-dependent �lling numbers ofthe loalized eletrons for a partiular on�guration of the dots.DOI: 10.7868/S00444510140101671. INTRODUCTIONThe ontrol and manipulation of loalized hargein small-size systems is one of the most important is-sues in nanoeletronis [1; 2℄. Single semiondutorquantum dots (QDs), whih are referred to as �ar-ti�ial� atoms [3; 4℄, and oupled QDs � �arti�ial�moleules [5; 6℄ � are promising strutures to servefor reation of extremely small devies. Several ou-pled QDs an be used in manufaturing eletroni de-vies dealing with quantum kinetis of individual lo-alized states [7�9℄. Therefore, the behavior of ou-pled QDs in di�erent on�gurations is urrently underareful experimental [10; 11℄ and theoretial investiga-tion [12; 13℄.During the last deade, vertially aligned QDs (forexample, indium arsenide QDs in gallium arsenide)have been fabriated and widely studied with great su-ess [14�16℄. Suh an experimental realization allowsorganizing a strongly interating system of QDs withonly one of them oupled to the ontinuous-spetrumstates. Consequently, vertially aligned QDs give anopportunity to analyze nonstationary e�ets in various*E-mail: vmantsev�spmlab.phys.msu.ru

harge and spin on�gurations formation in small-sizestrutures [17℄.Lateral QDs seems to be better andidates for on-trollable eletroni oupling between two or severalQDs by applying individual lateral gates. That is whythey are intensively studied during the last several yearsboth experimentally and theoretially [18; 19℄.Investigation of relaxation proesses, nonequilib-rium harge distribution and nonstationary e�ets inthe eletron transport through a system of QDs arevital problems that have to be solved in order to inte-grate QDs in small quantum iruits [20�26℄. Eletrontransport in suh systems is strongly governed by theCoulomb interation between loalized eletrons and,of ourse, by the ratio between the tunneling transferamplitudes and the QD oupling. Corret interpreta-tion of quantum e�ets in nanosale systems gives anopportunity to reate high-speed eletroni and logidevies [27; 28℄. In some of the reent realizations,Coulomb interation is weak [29℄, but for small-sizeQDs, the on-site Coulomb repulsion is in general strong[30℄, and it is therefore important to take it into a-ount. In some ases, Coulomb orrelations an de-termine time-dependent phenomena [31℄. Hene, theproblem of time evolution of harge in oupled QDsonneted with ontinuous-spetrum states in the pres-156



ÆÝÒÔ, òîì 145, âûï. 1, 2014 Nonstationary e�ets in the system : : :ene of Coulomb orrelations between loalized ele-trons is indeed quite topial.Time evolution of harge states in a semiondutordouble quantum well in the presene of Coulomb inter-ation was experimentally studied in [32℄. The authorsmanipulated the loalized harge by the initial pulsesand observed pulse-indued tunneling eletron osilla-tions. Loalized harge relaxation in the single andoupled quantum wells in the absene of Coulomb inter-ation was theoretially analyzed by Gurvitz [33, 34℄.The author took only two time sales governing theharge time evolution into aount and negleted thethird time sale that is responsible for harge redistri-bution between di�erent wells. Time dependene of theaumulated harge and the tunneling urrent througha single QD in the presene of Coulomb interation weretheoretially analyzed in [35℄. The authors desribedrelaxation proesses and revealed three time rates forloalized harge relaxation in the QD oupled to a ther-mostat. Several di�erent time rates were also found inthe system of two and three interating QDs oupled tothe reservoir [36�38℄. For simpliity, on-site Coulombrepulsion was onsidered only in a single QD. Suh amodel is suitable in the ase where one of the dots isnarrow and the seond is rather wide. In [39, 40℄, theauthors derived rate equations to analyze the ase ofresonant transport in QDs linked by ballisti hannelswith high density of states and revealed the role of in-terferene e�ets.In this paper, we onsider harge relaxation in dou-ble QDs due to the oupling to the ontinuous spetrumstates. Tunneling from the �rst QD to the ontinuumis possible only through the seond dot. We obtaina losed system of equations for the time evolution ofthe loalized-eletron �lling numbers that exatly takesall-order orrelation funtions for loalized eletronsinto aount. We deouple the higher-order orrelationfuntions between ondution eletrons in the reservoir(band eletrons) and eletrons loalized in the QDs.In suh an approximation, the eletron distribution inthe reservoir is not in�uened by hanging the ele-troni states in the oupled QDs. For QDs weakly ou-pled to the reservoir, the proposed deoupling shemeis a good approximation. We onsider di�erent initialharge on�gurations and take Coulomb orrelationsinto aount both within QDs and between eletronsloalized in di�erent dots. We �nd some peuliaritiesin the dynamis of eletron �lling numbers arising dueto the Coulomb orrelation e�ets. We demonstratethat depending on the initial harge on�gurations, thee�et of dynamial harge trapping an be observed inthe proposed system.
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Fig. 1. Sheme of the proposed model. The system ofinterating QDs is oupled to the ontinuous-spetrumstates by the tunneling rate  = ��0t22. THE PROPOSED MODELWe onsider a system of oupled QDs with thesingle-partile levels "1 and "2 oupled to an eletronireservoir (Fig. 1). We disuss three di�erent initialharge on�gurations that are possible in the proposedsystem. The �rst deals with the initial harge loalizedin the �rst QD on the energy level "1 (n11�(0) = 1).The seond orresponds to the situation where loal-ized harge is aumulated in the seond QD on theenergy level "2 (n22�(0) = 1). And the last possibleinitial harge on�guration refers to the ase where theinitial harge is loalized on both eletron levels equally(n11�(0) = n22�(0) = 1). The seond QD with the en-ergy level "2 is onneted with the ontinuous spetrumstates ("p). Relaxation of the loalized harge is gov-erned by the HamiltonianĤ = ĤD + Ĥtun + Ĥres: (1)The Hamiltonian ĤD of interating QDs,ĤD == Xi=1;2� "iyi�i�+U11n11�n11��+U22n22�n22��++ U12(n11� + n11��)(n22� + n22��) ++X� T (y1�2� + 1�y2�); (2)ontains the spin-degenerate levels "i (indies i = 1and i = 2 orrespond to the �rst and seond QDs), theon-site Coulomb repulsion for the double oupation ofthe QDs, and Coulomb interation between eletrons indi�erent dots. The reation/annihilation of an eletronwith spin � = �1 within a dot is denoted by yi�=i�and n� is the orresponding �lling number operator.157



V. N. Mantsevih, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014The oupling between the dots is desribed by the tun-neling transfer amplitude T , whih is assumed to beindependent of momentum and spin.The ontinuous-spetrum states are modeled by theHamiltonian Ĥres =Xp� "pyp�p� ; (3)where yp�=p� reates/annihilates an eletron with spin� and momentum p in the lead. The oupling betweenthe seond dot and the ontinuous-spetrum states isdesribed by the HamiltonianĤtun =Xp� t(yp�2� + p�y2�); (4)where t is the tunneling amplitude, whih we assumeto be independent of momentum and spin. With a on-stant density of states, �0 assumed in the reservoir, thetunnel rate  is de�ned as  = ��0t2.Beause we are interested in the spei� features ofthe nonstationary time evolution of the initially loal-ized harge in oupled QDs, we onsider the situationwhere the ondition ("i � "F )= � 1 is ful�lled. Itmeans that the initial energy levels are situated wellabove the Fermi level and stationary oupation num-bers in the seond QD in the absene of oupling be-tween the QDs is of the order of =("2 � "F ) � 1 andan be omitted. Consequently, the Kondo e�et is alsonegligible in the proposed model.Our investigation deals with the low-temperatureregime where the Fermi level is well de�ned and thetemperature is muh lower than all typial relaxationrates in the system. Consequently, the distributionfuntion of eletrons in the leads (band eletrons) isa Fermi step.We set ~ = 1, and therefore the kineti equations forbilinear ombinations of Heisenberg operators yi�=i� ,y1�1� = n̂�1 (t); y2�2� = n̂�2 (t);y1�2� = n̂�12(t); y2�1� = n̂�21(t); (5)whih desribe time evolution of the �lling numbers forthe eletrons, an be written as

i ��tn̂�11 = �T (n̂�21 � n̂�12);i ��t n̂�22 = T (n̂�21 � n̂�12)� 2in̂�22;i ��t n̂�21 = T (n̂�22 � n̂�11) ++ [� + (U11 � U21)n̂��11 ℄n̂�21 �� (U22 � U12)n̂�21n̂��22 � in̂�21;i ��t n̂�12 = �T (n̂�22 � n̂�11)�� [� + (U11 � U21)n̂��11 ℄n̂�12 ++ (U22 � U12)n̂�12n̂��22 � in̂�12;
(6)

where � = "1 � "2 is the detuning between the energylevels in the QDs. System of equations (6) ontains ex-pressions for the pair orrelators n̂��1 n̂�21 and n̂��1 n̂�12,whih also determine relaxation of the loalized hargeand onsequently have to be evaluated. In this sys-tem, we neglet higher-order orrelation funtions be-tween loalized and ontinuous-spetrum (band) ele-trons and perform averaging over eletron states in thereservoir.We introdue the notationK��0iji0j0 = hyi�j�yi0�0j0�0ifor the pair orrelators and onsider only the param-agneti ase hn̂�i i = hn̂��i i. Then the relationsK���2111 = hn̂�21n̂��11 i = hn̂��21 n̂�11i;K���1211 = hn̂�12n̂��11 i = hn̂��12 n̂�11i;K���2122 = hn̂�21n̂��22 i = hn̂��21 n̂�22i;K���1222 = hn̂�12n̂��22 i = hn̂��12 n̂�22i (7)hold. The system of equations for pair orrelatorsan be written in the ompat matrix form (symbol[ ℄ means ommutation and the symbol f g � antiom-mutation) i ��t bK = [ bK; bH 0℄ + f bK; b�g+ b�; (8)wherebK = 0BBBB� K���2211 K���1211 K���2221 K���1221K���2111 K���1111 K���2121 K���1121K���2212 K���1212 K���2222 K���1222K���2112 K���1112 K���2122 K���1122 1CCCCA == jjKij jj (9)is the pair orrelators matrix,158
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1CCCCCCCA ; (10)

and
b� = 0BBBB� �i 0 0 00 0 0 00 0 �2i 00 0 0 �i 1CCCCA (11)are the tunneling oupling matries.We an easily see that Eqs. (8) ontain expressionsfor the higher-order orrelators K�����121122 and K�����211122 .Their ontribution an be easily written in the matrixformb� = 0BBBB� 0 U2K�����121122 U1K�����211122 0�U2K�����211122 0 0 �U2K�����211122�U1K�����121122 0 0 �U1K�����1211220 U2K�����121122 U1K�����211122 0 1CCCCA ; (12)where U1 = U11 � U21 and U2 = U22 � U12.When evolution starts from the state with theharge in the �rst QD and with the seond QD empty,system of equations (8) for pair orrelators satis�es theinitial onditions K���1111 (0) = 1, K���2222 (0) = 0, andK���iji0j0(0) = 0 for the other ombinations of indiesi, j. If we are interested in the ase where all theinitial harge in the system is loalized in the seondQD, system of equations (8) for pair orrelators satis-�es the initial onditions K���2222 (0) = 1, K���1111 (0) = 0,and K���iji0j0(0) = 0 for the other ombinations of indiesi, j. In the ase where the initial harge is equally dis-tributed between the dots, system of equations (8) forpair orrelators satis�es the initial onditionsK���1111 (0) = K���2222 (0) = K���1122 (0) = 1; K���iji0j0 (0) = 0for the other ombinations of indies i, j.The higher-order orrelators K�����121122 and K�����211122are exatly equal to zero beause they are the solutionof a linear homogeneous system of equations with zeroinitial onditions. Consequently, system of equations(6), (8), whih determines the loalized harge evolu-tion in oupled QDs onneted with the reservoir, anbe solved numerially. The obtained results for all theinitial onditions are disussed in Se. 3.2.1. Analyti solution for time-dependent�lling numbersWe now fous on the spei� on�guration of theproposed system, whih allows obtaining an analyti

solution. In this setion, we disuss only the situationwhere at the initial time two eletrons with oppositespins are loalized only in the �rst QD on the energylevel "1 (n1�(0) = n0 = 1). Moreover, we onsider theCoulomb interation only in the �rst QD for simpliity.Suh a model is suitable in the ase where the �rst QDis narrow and the seond is rather wide [37; 41℄. Be-sides, if eletrons are initially loated in the �rst QDand the seond dot is empty, then �lling numbers forthe eletrons in the seond QD remain rather smallduring the time evolution of the harge and Coulombe�ets in the seond QD are not so important as in the�rst one. Moreover, Coulomb interation in the seondQD does not lead to an essentially new physis. It anbe treated by a rather simple renormalization of detun-ing: � has to be substituted by e� = � � U22 + U12 andthe Coulomb oupling in the �rst QD, U11, has to besubstituted by eU11 = U11 + U22 � 2U12.The formal solution of the system for pair orrela-tors (see Eq. (8)) an be written using the evolutionoperator. Time evolution of the matrix elements Kij(see Eq. (9)) is given by the expressionKij(t) =Xmn (e�i bHt)imKmn(0)(ei bHyt)nj ; (13)where bH = bH 0 + b�.We introdue the evolution operator�ij(t) = (e�i bHt)ij : (14)The time evolution of the pair orrelators an then befound from the expressions159



V. N. Mantsevih, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014K���2111 = (e�i bHt)12K(0)22(ei bHyt)22 == �12(t)e�22(t);K���1211 = (e�i bHt)22K(0)22(ei bHyt)21 == �22(t)e�21(t); (15)sine K(0)22 in the matrix (see Eq. (9)) is equal toK���1111 (0) = 1. The evolution operator e�22(t) an beobtained from the operator �22(t) by the substitutionst ! �t and  ! �. The pair orrelator K���1211 is aomplex onjugate of K���2111 .Finally, the evolution operators �ij(t) are deter-mined by the equations0BBBBBBBBBBBB�
i ��t�12(t)i ��t�22(t)i ��t�32(t)i ��t�42(t)

1CCCCCCCCCCCCA = bH0BBBB� �12(t)�22(t)�32(t)�42(t) 1CCCCA ; (16)
with the initial onditions�ij(0) = Æij : (17)The harateristi equation for the eigenvalues �i ofthe evolution operator �ij(t) has the form(H11 � �)(H22 � �)(H33 � �)(H44 � �)��T 2[(H11��)(H22��)+(H11��)(H33��)++ (H33��)(H44��)+(H22��)(H44��)℄ = 0; (18)where H11 = H44 = �i;H22 = � + U11;H33 = �� � 2i: (19)Eah eigenvalue �i determines the orresponding eigen-vetor  i = 0BBBB� �i�iiÆi 1CCCCA : (20)We have to obtain expressions for the evolution op-erators �12(t) and �22(t) with the initial onditions�22(0) = 1 and �ij(0) = 0.

The solution of the system of equations for �12(t)and �22(t) an be written as�12(t) = 4Xi=1 Ci�i exp(�i�it);�22(t) = 4Xi=1 Ci�i exp(�i�it); (21)where the onstants Ci an be obtained from the initialonditions for the system of equations:Xi Ci�i = 0;Xi Ci�i = 1;Xi Cii = 0;Xi CiÆi = 0: (22)
2.2. Equations for time-dependent �llingnumbersThe time-dependent �lling numbers n1(t) an befound from the inhomogeneous part of Eqs. (6), whihgives("�i ��t + i�2 + 2#"�i ��t + i�2 � �2# �� 4T 2�i ��t + i�2)n1(t) = �i ��t + 2i��� T �U1(G�12 K���1211 +G�11 K���2111 ) �� U2(G�12 K���2111 +G�11 K���2122 )� ; (23)where G�12 = i ��t + � + i;G�11 = i ��t � � + i: (24)The solution of the Eq. (23) desribes loalized hargerelaxation and onsists of the two parts: the �rst isthe general solution of the homogeneous equation nh1 (t)(the right-hand side is equal to zero) and the seond is apartiular solution, en1(t), of the inhomogeneous equa-tion:n1(t) = nh1(t) + en1(t) == nh1 (t) + tZ0 G(t� t0)P (t0) dt0; (25)160



ÆÝÒÔ, òîì 145, âûï. 1, 2014 Nonstationary e�ets in the system : : :where G(t � t0) is the Green's funtion of Eq. (23)with Æ(t � t0) in the right-hand side and P (t0) is theright-hand side of Eq. (23), whih appears due to theCoulomb orrelations.The general solution of the homogeneous equationhas the form [36℄nh1 (t) = n01[A0 exp (�i(E1 �E�1 )t) ++ 2Re(B0 exp(�i(E1 �E�2 )t)) ++ C 0 exp(�i(E2 �E�2 )t)℄; (26)where A0 = jE2 � "1j2jE2 �E1j2 ; C 0 = jE1 � "1j2jE2 �E1j2 ;B0 = � (E2 � "1)(E�1 � "1)jE2 �E1j2 : (27)The eigenfrequenies Ei an be found from the equa-tion (E � "1)(E � "2 + i)� T 2 = 0; (28)and are given byE1;2 = 12("1 + "2 � i)�� 12p("1 � "2 + i)2 + 4T 2: (29)The Green's funtion G(t � t0) of Eq. (23) an bewritten asG(t� t0) = 4Xi=1 ai exp (�i�i(t� t0))�(t� t0); (30)and onsequently, the partiular solution of the inho-mogeneous equation has the formen1(t) =Xijk aiCj exp(��it) 1�i(�j � ��k � �i) �� [exp (�i(�j � ��k � �i)t)� 1℄ ; (31)where �j(k) an be found from Eq. (18) and �i arethe roots of the harateristi equation arising fromEq. (23):�1;2 = �i � �4T 2 + �2 � 22 ++ 12p(4T 2 + �2 � 2)2 + 4�22 �1=2 ;�3;4 = �i � �4T 2 + �2 � 22 �� 12p(4T 2 + �2 � 2)2 + 4�22 �1=2 : (32)

These roots are related to the eigenfrequenies Ei as�1;2 = E1;2 �E�1;2;�3 = E1 �E�2 ;�4 = E2 �E�1 : (33)The oe�ients ai area1 = 1(�2 � �1)(�3 � �1)(�4 � �1) ;a2 = 1(�1 � �2)(�3 � �2)(�4 � �2) ;a3 = 1(�1 � �3)(�2 � �3)(�4 � �3) ;a4 = 1(�1 � �4)(�2 � �4)(�3 � �4) : (34)
We now fous on the two limit ases where the ex-pressions that determine the dynamis of the �llingnumbers have a rather ompat form. The �rst aseis where the detuning between the empty energy levelsin the QDs is equal to zero: �= � 1. The seond asedeals with the situation where the sum of the detun-ing and half the Coulomb oupling value is equal tozero. This means that the resonane between the half-oupied energy level in the �rst QD and the emptylevel in the seond QD ours:� + U11=2 � 1:We also assume that the ondition T �  � U11 isful�lled in both ases.2.3. �=� 1The eigenvalues of the harateristi equation in the�rst ase (�= � 1), to within T 2=U211 have the form�1 = U11 � i2T 2U2 ;�2 = �i � i2T 2 ;�3 = �2i � i2T 2 ;�4 = �i: (35)
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V. N. Mantsevih, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014Hene, the evolution operators an be written as�12(t) = TU11 �exp��iU11t� 2T 2U211 t� �� exp��t� 2T 2 t�� ;�22(t) = �1� 2T 2U2 � exp��iU11t� 2T 2U211 t�++ 2T 2U211 exp��t� 2T 2 t� ; (36)
and time dependene of the pair orrelators K���2111 andK���1211 is determined by the produtK���2111 (t) = �12(t)��22(t);K���1211 (t) = (K���2111 )�: (37)Th expression for P (t) (see Eq. (25)) in the ase ofthe resonane between empty levels, �= = 0, has theformP (t) = 4T 2 exp��4T 2� t�++ 2T 2U11 exp (�t) os(U11t); (38)where � = 2=(U211 + 2). For � = 1=2, the inhomoge-neous part of the time evolution of the �lling numbersen1(t) an be written asen1(t) = T 22 ���2t� exp��2T 2 t�� �� exp��2T 2 t�+ exp(�2t) ++ 4 exp��2T 2 t�� 4 exp(�t)�++ 2T 2U11 exp(�t)3 [os(U11t)� 1℄ ++O� T 2U211 U11� : (39)For � � 1, the time evolution of the �lling numbersen1(t) is given byen1(t) = 11�2� �exp��4T 2� t�� exp��2T 2 t��++O�T 22 � : (40)

2.4. (�+U11=2)=� 1In the seond ase of interest ((� + U11=2)= � 1but U11= � 1), the eigenvalues are�1 = U112 � i8T 2U211 ;�2 = �i + 8T 2U11 ;�3 = �2i + U112 � i8T 2U211 + 4T 2U11 ;�4 = �i: (41)
Th evolution operators take the form�12(t) = 2TU11 �� �exp��iU112 t�8T 2U211 t�� exp(�t)� ;�22(t) = �1�8T 2U211 � exp��iU112 t�8T 2U211 t�++ 8T 2U211 exp(�t): (42)
When the ondition (�+U11=2)= = 0 is ful�lled, P (t)is determined by the expressionP (t) = �T 2U211�exp�iU112 t� t�+ h..��� 4T 22 exp��16T 2U211 t� (43)to within T 3=U311 and 2=U211.The inhomogeneous part of the time evolution ofthe �lling numbers en1(t), to within T 2=U211, has theformen1(t) = �47 �1� exp��14T 2U211 t�� exp��2T 2U211 t��� 2 T 2U11 exp(�t) sin�U112 t�+O� T 2U211� : (44)We note that relaxation of the �lling numbers inthe proposed model an be analyzed by means of asimpler method, the self-onsistent mean-�eld approx-imation [37; 42; 43℄. In this approximation, the orrela-tion funtions U11hn̂��i n̂�iji in Eqs. (6) are substitutedby the expressions U11hn̂��i ihn̂�iji. This substitution isvalid in the ase where �lling numbers for the loalizedeletrons n��i hange their values rather slowly. Thealulation sheme onsists of two steps. In the �rststep, the initial energy level position "i is replaed bythe expression e"i = "i + U11hn̂��i i162



ÆÝÒÔ, òîì 145, âûï. 1, 2014 Nonstationary e�ets in the system : : :and the time-dependent �lling numbers are evaluated.The seond step deals with the self-onsistent alula-tion of the time-dependent �lling numbers for the ele-trons. For some ranges of the system parameters, themean-�eld approximation reveals qualitatively good re-sults [37℄. But in general ase, the mean-�eld approx-imation is insu�ient to desribe relaxation proessesin systems with orrelations.3. MAIN RESULTS AND DISCUSSIONTime evolution of the eletron �lling numbersstrongly depends on the initial harge on�guration ofthe system and on the relations between the systemparameters (energy levels positions, the di�erene ofCoulomb interation between various loalized states,and the relations between tunneling rates). We on-sider the situation where T <  < Uij .We �rst analyze the situation where all the hargein the system is loalized in the �rst QD at the initialtime instant and the seond QD is empty (see Fig. 2 andFig. 3a,d). In what follows, we disuss the ase of bothpositive (see Fig. 2) and negative (see Fig. 3a,d) initialdetunings �. We start from the energy level on�gu-ration with positive detuning. Figure 2a demonstratesthe derease in the loalized harge relaxation rate inthe �rst QD with the inrease in the Coulomb ou-pling values (the grey line and the blak dashed line)in omparison with the ase where Coulomb intera-tion is absent (blak line). This e�et ours beausethe presene of strong Coulomb repulsion results in aninrease in the initial detuning value. Simultaneously,the inrease in Coulomb oupling values leads to a de-ease in the �lling number amplitudes in the seondQD (see Fig. 2b ). Time evolution of the �lling num-bers demonstrates several typial time intervals withextremely di�erent values of relaxation rates if �= < 1.At the �rst stage, relaxation ours with the rate verylose to res = 2T 2=. This stage also demonstratesthe inrease in the �lling number amplitudes in the se-ond dot (see Fig. 2b ). Further time evolution in bothdots reveals a derease in the harge amplitude, whihours with the typial relaxation rate very lose tononres = res 22 + �2 :The energy-level on�guration that orresponds tothe negative initial detuning reveals muh more inter-esting results (see Fig. 3a,d). It an be found that rit-ial Coulomb oupling values exist in the system for agiven set of parameters that orresponds to the relax-ation regime hanging. For the values smaller than the
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nonres = 2 T 2(U1 � U2)2 ;whih is typial for the system of two oupled QDswithout Coulomb interation and with j�j � U1 � U2.By the dereasing the Coulomb oupling value U1�U2,we ahieve the situation of resonant tunneling betweenthe loalized states, and onsequently the relaxationrate inreases. In Fig. 4, the situation of resonant tun-neling between empty energy levels �= = 0 is demon-strated. In this ase, the relaxation of the loalizedharge ours with the typial rate very lose to thevalue res = 2T 2= and is almost independent of theCoulomb interation value. We note that relaxationproesses are governed not only by the typial expo-nentials exp(�t) and exp(�2T 2t=) but also by thepreexponential fator, whih linearly inreases in timein the resonant ase (see Eq. (39)).A very speial relaxation regime exists in the systemif the ondition � + U1 � U2 � 1holds (see Fig. 4b ). In this regime, Coulomb orrela-tions result in formation of a dip in the time evolutionof the loalized harge. At the initial relaxation stage,the harge in the �rst QD rapidly dereases due to thealmost resonant relation between the level in the se-ond QD and the e�etive single-eletron energy in the�rst dot. It follows from the third and the fourth equa-tions in (6) that hanging of the e�etive energy leveldetuning is determined by165



V. N. Mantsevih, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014(U1 � U2)Re � hn̂��1 (t)n̂�12(t)ihn̂�12(t)i � ;whih di�ers from the typial mean-�eld expression(U1 � U2)hn̂��i (t)i [42℄.At a ertain instant of time the e�etive single-elet-ron level falls down below the level in the seond QD. Atthis instant, the inverse harge begins to �ow from theseond QD to the �rst one. The oupation in the �rstQD demonstrates a signi�ant inrease after reahingthe minimum value (the dip formation). Filling num-bers almost reah the initial value for large values ofCoulomb interation. After the dip formation, the typ-ial time sale that determines relaxation of the �llingnumbers is su�iently lose to the valuenonres = 2T 2�2 :This explanation gives a qualitative piture of the dipformation. The exat solution shows that Coulomb or-relations are responsible for suh nonmonotoni behav-ior. This e�et is determined by the inhomogeneouspart of the exat solution for time evolution of the�lling numbers in the �rst QD (see the �rst term inEq. (44)). And this inhomogeneous part appears be-ause time dependene of the higher-order orrelators(P (t) in Eq. (23) and Eq. (25)) is ompletely taken intoaount. That is why time evolution of the �lling num-bers for the eletrons di�ers onsiderably from that inthe mean-�eld approximation. The width of the dipan be roughly estimated as (1=8)�1nonres.Comparison between the exat solution and themean-�eld approximation is demonstrated in Figs. 5,6. It is lear that both methods reveal similar peuliar-ities of the system behavior suh as several time rangeswith onsiderably di�erent relaxation rates. For someranges of the system parameters, formation of the dipan also be reprodued in the mean-�eld approxima-tion (see Fig. 5). Figure 5 also demonstrates similarbehavior of the exat and mean-�eld solutions at theinitial stage of relaxation. But the dip is reproduedinorretly in the mean-�eld approximation.In the ase of resonant tunneling between the en-ergy levels in the QDs (�= = 0), the exat solution andthe mean-�eld approximation reveal a strong mismath(see Fig. 6a). The exat solution demonstrates rathersmooth time evolution of the loalized harge, while thesolution obtained by means of the mean-�eld approxi-mation reveals abrupt hanges in the loalized hargeamplitude. As the Coulomb repulsion dereases, theorrespondene between the exat and the mean-�eldsolutions improves (see Fig. 6b ).
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