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TIME-DEPENDENT PHOTON CORRELATIONSFOR INCOHERENTLY PUMPED QUANTUM DOT STRONGLYCOUPLED TO THE CAVITY MODEA. V. Poshakinskiy *, A. N. PoddubnyIo�e Physial-Tehnial Institute, Russian Aademy of Sienes194021, St. Petersburg, RussiaReeived September 25, 2013The time dependene of orrelations between the photons emitted from a miroavity with an embedded quan-tum dot under inoherent pumping is studied theoretially. Analyti expressions for the seond-order orrelationfuntion g(2)(t) are presented in strong and weak oupling regimes. The qualitative di�erene between theinoherent and oherent pumping shemes in the strong oupling ase is revealed: under inoherent pumping,the orrelation funtion demonstrates pronouned Rabi osillations, but in the resonant pumping ase, theseosillations are suppressed. At high inoherent pumping, the orrelations deay monoexponentially. The deaytime nonmonotonially depends on the pumping value and has a maximum orresponding to the self-quenhingtransition.DOI: 10.7868/S00444510140200591. INTRODUCTIONSemiondutor quantum dots form a promisingplatform for quantum optis devies, inluding single-photon emitters and emitters of entangled photonpairs [1�4℄. The quantum dot-based light soures anbe haraterized by means of photon�photon orrela-tion spetrosopy, i. e., by measuring the seond-orderorrelation funtion g(2)(t) between two photons with adelay t [5, 6℄. Multiple experimental observations of theantibunhing [g(2)(0) < 1℄ of the photons emitted fromquantum dots are already available [7�11℄. One of thepossible routes to further enhaning the performane ofthese light soures is to resonantly ouple the quantumdot exiton to the photon mode on�ned inside the mi-roavity in all three spatial diretions [3℄. The physisof suh quantum miroavites beomes espeially rihin the strong-oupling regime, where the new quasipar-tiles, exiton polaritons, are formed due to the intera-tion between exitons and avity photons [1; 3; 12�15℄.Here, we study the time dependene of the seond-order orrelations between the photons emitted froma quantum dot miroavity under stationary inoher-ent pumping. Experimentally, this regime an be re-*E-mail: poshakinskiy�mail.io�e.ru

alized in quantum dot miroavities driven by eletri-al pumping [16℄ or ontinuous optial pumping [14℄.The oexistene of (i) the strong-oupling regime and(ii) the stationary inoherent pumping regime makesthe time dynamis of the orrelations very spei�.The strong-oupling regime [17�19℄ qualitativelydistinguishes the system from the onventional laser,desribed by the Sully�Lamb theory [20℄. More-over, the inoherent pumping makes it di�erent fromthe single-atom laser in the strong-oupling regime,whih has been demonstrated experimentally and an-alyzed theoretially [21, 22℄. Suh systems are typi-ally oherently pumped by resonant light [4; 23�26℄.As we show in Se. 3, the photon�photon orrela-tions for a resonantly pumped atom and for an in-oherently pumped quantum dot are very di�erent.While both systems show antibunhing, the time-dependent orrelator g(2)(t) demonstrates osillationsat the vauum Rabi splitting frequeny in the inoher-ent pumping ase, but not in the ase of a resonantlypumped atom [21℄. Reent experiments for inoher-ently pumped laser with a single quantum dot in thestrong-oupling regime [14℄, as well as the omprehen-sive theoretial analysis in [27�29℄, were foused on thestationary orrelator g(2)(0) at zero time delay. De-tailed analysis of time-dependent orrelations was lim-ited to the regime with a large exiton�photon detun-237



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014ing [30, 31℄ or weak oupling [10℄, where the polaritonsare not formed.Hene, there is still a need to develop a detailed the-ory aounting for the spei�s of the fast-inreasing�eld of quantum-dot-based avity quantum eletrody-namis. Here, we fous on the temporal dynamis oforrelations in the strong-oupling regime and showthat it provides additional information on the lifetimeof polariton eigenstates and the energy splitting be-tween them. Our main goal is to derive transparentanalyti answers for the time-resolved orrelator g(2)(t)as a funtion of the inoherent pumping intensity inboth strong and weak oupling regimes.The rest of the paper is organized as follows. InSe. 2, the model and the alulation approah are de-sribed. Setion 3 is devoted to the role of the pumpingmehanism and demonstrates the di�erene between in-oherent and resonant pumping shemes. Setions 4and 5 respetively present the theory developed in thestrong and weak oupling regime. The results are sum-marized in Se. 6. Auxiliary derivations are given inAppendies A and B.2. MODELWe onsider a zero-dimensional miroavity where asingle photon mode is oupled to a single exiton stateof the quantum dot. Polarization degrees of freedom ofboth photons and exitons are disregarded for simpli-ity. Under these assumptions, the Hamiltonian of thesystem has the standard form [1℄H = ~!0y+ ~!0byb+ ~g(yb+ by); (1)where !0 is the resonane frequeny of the avity, tunedto the exiton resonane,  and y are the boson an-nihilation and reation operators for the avity mode([; y℄ = 1), b = jGi hX j and by = jXi hGj are the or-responding operators for the single-exiton mode, jXiand jGi are respetive states with one exiton and noexitons, and g is the light�exiton oupling onstant.Equation (1) orresponds to a quantum dot smallerthan the exiton Bohr radius. To onsider the ase ofa large quantum dot, one should generalize the modelfollowing Refs. [32, 33℄.To determine the intensity of emission from the av-ity, we should also introdue the proesses of partilesgeneration and deay. We onsider inoherent ontin-uous pumping of exitons into the quantum dot withthe rate W (see Fig. 1a). The �mirosopi� disussionof the pumping mehanism an be found in Ref. [32℄,while the distintion between inoherent and oherent

pumping shemes is disussed in Se. 3. The exitonmode is haraterized by the nonradiative damping �X .Photons an esape the avity through the mirrors withthe rate �C . Hene, the full system state is desribedby a density matrix � and its evolution is determinedby the equation d�=dt = L[�℄ with the Liouvillian [1℄L[�℄ = � i~ [H; �℄+�CL[�℄+�XLb[�℄+WLby [�℄; (2)where La[�℄ = (2a�ay � aya� � �aya)=2 are the Lind-blad terms, aounting for damping and pumping.The stationary density matrix �0 satis�es the equationL[�0℄ = 0. We an alulate the number of photonsin the avity NC = 
y� and the exiton oupationnumber NX = 
byb� asNC = Tr(y�0); NX = Tr(byb�0); (3)where Tr stands for the operator trae and angularbrakets denote the quantum mehanial expetationvalue. The luminesene spetrum of the system isgiven by [5℄I(!) / Re 1Z0 dt ei!t 
y(0)(t)� : (4)A detailed study of the dependene of these �rst-orderorrelators on the pumping and on other parametersan be found in Refs. [28, 34℄. The goal of this paper isto analyze the time dependene of the seond-order or-relator that haraterizes �utuations of the emissionintensity from the avity. They are desribed by theorrelator g(2)(t) determining the probability to regis-ter two photons with the time delay t [5℄:g(2)(t) = 1N2C 
y(0)y(t)(t)(0)� : (5)Equation (5) presents the simplest de�nition of the or-relation funtion, suitable for the analyti treatment inwhat follows. A more general expression, taking the�nite response rate and spetral window of the photondetetor for two- and multiple-photon orrelations intoaount is given in Ref. [6℄. The alulation of g(2)(t)is based on the quantum regression theorem [5℄g(2)(t) = 1N2C Tr[y�(t)℄; (6)where the evolution of the operator �(t) � eLt[�0y℄ isgoverned by the dynami equationd�dt = L[�℄; �(0) = �0y: (7)238
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Fig. 1. The sketh of (a) an inoherently pumped quantum dot in a miroavity system and (b ) a resonantly pumped 3-levelatomi avity system. Panels  and d show the omparison of the luminesene spetra for these systems, while panels e andf present the g(2)(t) dependene. The parameters hosen are g=�C = 10, �X = 0:1�C , and W=�C = 0:1 for the quantumdot in the miroavity system (panels ,e) and g=�C = 10, �X = �IX = �IG = 0:1�C and 
=2g = 0:01 for the atomiavity system (panels d,f )For zero time delay, Eq. (6) assumes the formg(2)(0) = 1N2C Tr(yy�0): (8)For large time delays, the orrelator tends to unity,g(2)(t!1) = 1, beause the probabilities of detetionof two photons beome independent.
3. COMPARISON OF INCOHERENT ANDCOHERENT PUMPINGIn this setion, we ompare the harateristis ofemitted photons in the ases of oherent and inoher-ent pumping. We fous on the strong-oupling regime,when the light�exiton oupling g is stronger than thedeay rates of the exiton and photon. We demon-strate below that these two pumping shemes are qual-239



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014itatively di�erent even at a small pumping rate. Theinoherent pumping sheme is used for the quantumdot in a miroavity as skethed in Fig. 1a and was de-sribed in Se. 2. The density matrix equations an beonveniently analyzed using the basis of eigenstates ofHamiltonian (1), whih are well de�ned in the strong-oupling regime (g � �C ;�X). The eigenstates aregiven by [35℄j0i = j0; Gi ; jm;�i = jm;Gi � jm� 1; Xip2 ;m � 1; (9)where jm;Gi and jm;Xi are the respetive states withm photons and no exitons or one exiton. The energyspetrum forms the Jaynes�Cummings ladderE0 = 0; Em;� = m~!0 �pm~g: (10)Eah rung of the ladder ontains two states split by theRabi frequeny 2pmg, inreasing with the rung num-ber m. In the limit of vanishing pumping W � �C ,the luminesene spetrum is determined by transitionsfrom the lowest oupied exited levels j1;�i to theground state j0i, and therefore ontains two peaks atthe frequenies !0�g (vauum Rabi splitting [12℄), seeFig. 1. The detailed study of the luminesene spetraat higher pumping intensities an be found in Ref. [34℄.The presene of the split level j1;�i also results in os-illations of the photon�photon orrelator, see Fig. 1e.The frequeny of the osillations is 2g, whih allowsinterpreting them as Rabi osillations between photonand exiton states.To illustrate the di�erene between these emissionharateristis and those in the ase of resonant pump-ing, we onsider the simplest 3-level sheme, see Fig. 1b.Suh a sheme may be used for atomi avity sys-tems [4; 27℄. For this, we add a new ground state jIi tothe system, while the transition between levels jXi andjGi remains strongly oupled to the avity mode. Thepumping is performed by the oherent external �eldthat resonantly exites the system from the state jIito the state jXi. This an be desribed by adding theterm V = 
2 (jXi hI j+ jIi hX j) (11)to Hamiltonian (1), where 
 is the Rabi frequeny or-responding to the pumping �eld. We also introdue thedeay rates �IX and �IG from the respetive states jXiand jGi to the state jIi. They are taken into aountby adding the terms �IXLjIihXj[�℄ and �IGLjIihGj[�℄ toLiouvillian (2). The eigenstates of the total Hamilto-nian taking pumping term (11) into aount are

j0i = j0; Gi ; jm;Ci = jm� 1; Ii � �m jm;Gip1 + �2m ; (12)jm;�i = 1p2  jm;Gi+ �m jm� 1; Iip1 + �2m � jm� 1; Xi! ;where �m = 
=(2pmg) desribes the pumping-induedstate intermixture strength. The energy spetrumforms the Jaynes�Cummings ladder with eah rung nowonsisting of three states,E0 = 0; Em;C = m~!0;Em;� = m~!0 � ~pmg2 + (
=2)2: (13)In the ase of low pumping 
 � g, the state j1; Ci,whih is lose to the ground state j0; Ii, is oupied witha probability lose to unity. The luminesene spe-trum is determined by transitions from the state j1; Cito j0i (due to an admixture of j1; Gi to j1; Ci), andfrom j2; Ci to j1; Ci. Contributions from both thesetransitions are linear in the pumping intensity. Sineboth transitions our at the frequeny !0, the lumi-nesene spetrum has the only peak at !0, see Fig. 1d.The dependene g(2)(t) is plotted in Fig. 1f. We an seethat the osillations with the frequeny of the vauumRabi splitting 2g are strongly suppressed in ontrast tothe ase of inoherent pumping onsidered above.Thus, we have shown that both the luminesenespetrum and the g(2)(t) dependene are ruiallydi�erent for the inoherent and oherent pumpingregimes. More omplex atomi avity systems withmore atomi levels and more ompliated resonanepumping shemes have been studied in experimentaland theoretial works [4; 21; 22; 27℄. To the best of ourknowledge, despite the strong-oupling regime, osilla-tions of the orrelator g(2)(t) with the frequeny of thevauum Rabi splitting 2g have not been observed inany of these systems.4. EFFECT OF PUMPING INTENSITYIn this setion, we analyze the time dependeneg(2)(t) for the inoherently pumped quantum dotstrongly oupled to the avity mode. We �rst presenta general overview of the results and then provide adetailed analyti desription in di�erent regimes, de-termined by the pumping strength.Our main alulation results are summarized inFig. 2. Panel a shows the dynamis of the orrelatorg(2)(t), and panels b and  present the average lifetimeof the orrelations240
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while the orrelation lifetime � (2) demonstrates non-monotoni behavior with a sharp peak. It inreases as� (2) / 1=jW �W �j near the ritial point W = W �.The peak height is of the order of g=�2C , and muhlarger than the value of the orrelation time in all otherregimes.At large pumping W � W �, the strong-ouplingregime is destroyed: the emission statistis is thermal[g(2)(0) = 2℄ and the deay time of the orrelations isequal to the empty-avity mode lifetime 1=�C.We now proeed to a more detailed analysis ofregimes (A)�(C).4.1. Low pumping, W � �CIn the limit of vanishing pumping W � �C , it issu�ient to take only the rungs of Jaynes�Cummingsladder (10) with m � 2 partiles into aount. Thisyields the orrelation funtiong(2)(t) = 1� 3�C � �X � (�C + �X) os 2gt2(3�C + �X) �� exp�� (�C + �X)t2 � : (15)4 ÆÝÒÔ, âûï. 2 241



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014Equation (15) shows osillations of the photon�photonorrelator. This is a diret manifestation of the strong-oupling regime. Due to the photon�exiton intera-tion g, the photon is fully onverted into the exi-ton and vie versa every period �=(2g) (Rabi osilla-tions). This results in the ontribution to the orre-lator, osillating with the Rabi frequeny of the �rstrung (E1;+�E1;�)=~ = 2g. The deay rate of the Rabiosillations is the mean of the photon and exiton de-ay rates (�C + �X)=2. This is also a manifestationof strong oupling and shows formation of the exitonpolaritons. For realisti avities, �C � �X [12℄ whihmeans that g(2) � 2=3 < 1 (antibunhing) [29℄. Theblak-dotted urve in Fig. 2a is plotted in aordanewith Eq. (15) and well reprodues the numerial resultsfor a low pumping rate (the blak solid urve).4.2. Moderate pumping, �C ...W � g2=�CFor moderate pumping, in ontrast to the lowpumping ase (Se. 4.1), it is neessary to take all therungs into aount. First, we must determine the sta-tionary density matrix �(0). As shown in Appendix A,this matrix �(0) is diagonal in the basis of states (9) andhas the elements �(0)0;0 = f (0)0 , �(0)m;�;m;� = f (0)m , wherethe distribution funtion f (0)m isf (0)m = p�2E(w) + 1 wm�(m+ 1=2) : (16)Here, w = W=2�C is the dimensionless pumping, andE(w) = ewp�w erfpw, �(x) and erf(x) are the gammaand error funtions. For simpliity in this setion, theexiton deay rate �X is negleted, beause �X � �Cfor typial miroavities [12, 36℄. Equation (16) gener-alizes the analyti result for the distribution funtionobtained in Ref. [34℄.Distribution Eq. (16) yields the following expres-sions for the partile numbers and the stationary or-relator g(2)(0):NX = E2E + 1 ; NC = 2w E + 12E + 1 ; (17)g(2)(0) = (2E + 1)[4w2(E + 1) +E � 2w℄8w2(E + 1)2 :Solid urves in Figs. 3a,b, show the dependene ofNX , NC , and g(2)(0) on the pumping rate. The urvesare presented at di�erent values of the exiton�photonoupling strength g. The results in Figs. 3a,b, agreewith those obtained numerially in Ref. [28℄. Here, wefous on the strong-oupling regime (blak urves); the
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ÆÝÒÔ, òîì 145, âûï. 2, 2014 Time-dependent photon orrelations : : :pumping as NC = W=�C and NC = W=(2�C) respe-tively. The seond-order orrelator g(2)(0) (see Fig. 3)inreases with the pumping and reahes the plateaug(2)(0) = 1 at W � �C (the lasing regime [27, 34℄). Inthe moderate pumping regime, all the urves NX , NC ,and g(2)(0) are well desribed by Eq. (17) (see blakdotted urves).We now proeed to the disussion of the dynamis ofg(2)(t). Two independent ontributions an be singledout in the time dependene (see Fig. 2a): (i) the osil-latory ontribution and (ii) the monotonially deayingontribution. As shown in Appendix A, the osillatoryterm demonstrates a superposition of the Rabi beatingsbetween the split states inside di�erent rungs of theJaynes�Cummings ladder with the frequenies 2pmg.The weight of the term orresponding to the rung mis determined by the distribution funtion f (0)m+1. Thedamping of the osillations is due to the stimulatedphoton deay and exiton pumping and is equal to�C(m � 1=2) +W=2. The nonosillating term deaysin time toward unity on the time sale of �C . Calula-tion shows that this deay an be approximated as anexponential one with the rate�1 = �C �1� 2w � 14w(E + 1) � (2w � 1)24w(2E + 1)��1 : (18)For small pumping W � �C , Eq. (18) redues to �1 == �C=2, whereas for moderate pumping W � �C , weobtain �1 = �C . The resulting expression for the or-relator g(2)(t) assumes the formg(2)(t) = 1� 12(E + 1) e��1t ++ 12N2C 1Xm=1 f (0)m+1 os �2pmgt ��� exp�� ��C �m� 12�+W=2� t� : (19)For low pumping, the sum in Eq. (19) is determined bythe �rst term with m = 1 and the result agrees withEq. (15) assuming that �X = 0.Analyti results plotted in aordane with Eq. (19)are shown in Fig. 2a by dashed urves. The di�erenefrom the exat alulation at small pumping is due tothe negleted exiton deay rate �X . Equation (19)well reprodues the main features of the numeriallyalulated dependene: for larger pumping, the osil-lations amplitude signi�antly dereases and the osil-lations deay faster. This is a harateristi feature ofthe two-level system, distint from the boson systemwhere the lifetime of �utuations inreases with pum-ping [37, 38℄.

4.3. High pumping, W � 4g2=�CWhen the pumping rate inreases to W � g2=�C ,the exiton level broadening aused by pumping be-omes omparable to the rung splitting. This re-sults in saturation of the exiton number at unity (seeFig. 3a) and a drasti derease in the photon number(see Fig. 3b).A detailed desription of the stationary densitymatrix and orrelator dynami equations is given inAppendix B. It is shown that the emission statistishanges qualitatively when the pumping rate rossesthe ritial value W � = 4g2=�C . For lower-than-ritial pumping, the distribution funtion is Gaussian,while for larger pumping it beomes thermal. Thetransition ours in the viinity of the ritial pointjW � W �j . 4g. Below, we present analyti expres-sions for emission harateristis valid outside this nar-row region.The stati harateristis for jW � W �j & 4g aregiven byNX = 8>>><>>>:1 +W=W �2 ; W < W �1� �CW (W=W � � 1) ; W > W �;NC = 8>><>>: W2�C (1�W=W �); W < W �;1W=W � � 1 ; W > W �;g(2)(0) = 8>><>>:1 + 2�CW �(1�W=W �)2 ; W < W �;2� 4�CW (1�W �=W )2 ; W > W �:
(20)

Dash-dotted lines in Figs. 3a,b, present the depen-dene of NX , NC , and g(2)(0) on the pumping ratenear the ritial point W � plotted in aordane withEq. (20). We an see a perfet agreement of the analytiresults with the numerial alulation (the blak solidurve) outside the narrow patterned transition region.The time dependene of the orrelator g(2)(t) ismono-exponential,g(2)(t) = 1 + [g(2)(0)� 1℄ e�t=� (2) ; (21)where the orrelation lifetime is given by� (2) = 1�C 8>><>>: 11�W=W � ; W < W �;11�W �=W ; W > W �: (22)243 4*



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014Equation (22) shows that the orrelation lifetime dras-tially inreases near the ritial point W = W �. Itsmaximum value an be estimated from Eq. (22) bysubstituting jW � W �j = 4g, whih gives the value� (2);max = g=�2C , whih is larger than the orrelationlifetime in all other regimes by the fator g=�C . Thedependene of the lifetime � (2) on the pumping ratenear the ritial point W � is shown in Fig. 3d by thedash-dotted line.The origin of the peak in the orrelation lifetime atW = W � an be qualitatively understood as follows.At W > W �, the strong-oupling regime is alreadydestroyed due to the self-quenhing. But if W �W � �� W �, then the number of photons in the avity isstill large (see Eq. (20)). Hene, this system an beviewed as a onventional weakly oupled laser, wherethe �utuation lifetime is inreased due to the bosonstimulation fator, � (2) = (NC + 1)=�C [37, 38℄. Fora single dot in the avity, suh a deay time enhane-ment an be realized only at strong oupling, beausein the weak oupling ase, the number of photons re-mains small at any pumping (see Fig. 3b and Se. 5below). 5. WEAK COUPLING REGIMEIn this setion, we analyze quantum dot miroavi-ties where the strong-oupling ondition g � �C ; �X isviolated. Figures 3a,b,,d show the dependene of thepartile numbers, the stationary two-photon orrelator,and the orrelation lifetime on the oupling strength. Aderease in the oupling strength parameter g=�C sup-presses the maximal number of photons and the peakvalue of � (2), and also shifts the self-quenhing transi-tion to lower values of the pumping (urves (g=�C = 2)in Fig. 3). As soon as the oupling strength g beomessmaller than �C , the regime of weak oupling betweenthe photon and the exiton is realized. At weak ou-pling, the number of photons is muh less than unityat any pumping, as an be learly seen from the urve(g=�C = 0:1) in Fig. 3b.The smallness of the photon number allows onsid-ering only the lowest levels of the system when derivinganalyti results. Hene, we take states with no morethan one photon into aount when alulating photonnumber and dot oupation, and states with up to twophotons for the photon�photon orrelator. Analyti ex-pressions for the partile numbers in the weak-ouplingregime are [39℄

NX = W [4g2 + �C(W + �C + �X)℄(W + �C + �X)[4g2 + �C(W + �X)℄ ;NC = 4g2W(W + �C + �X)[4g2 + �C(W + �X)℄ : (23)At low pumping, both NX and NC inrease lin-early with pumping. At large pumping, the dot isompletely populated, NX = 1, while the avity isempty (NC ! 0) due to the self-quenhing e�et (seeFigs. 3a,b).An analyti expression for g(2)(0) in the �bad� av-ity regime (g � �C) isg(2)(0) = 2 W + �X + 4g2=�CW + �X + 3�C : (24)In the limit of vanishing pumping and �X �� �C ; g2=�C , the value of g(2)(0) is smaller than thestrong-oupling limit 2=3. With a derease in theoupling strength g, antibunhing beomes strongerdue to a smaller admixture of photons to the exitonstate.With an inrease in the pumping rate the initialvalue g(2)(0) inreses from zero (antibunhing) to 2(thermal regime) (see Fig. 3). The lasing regime witha plateau at g(2)(0) = 1 is destroyed in the weak-oupling ase. Shown in the Figs. 3a,b, by the dashedlines is the analyti dependene plotted in aordanewith Eqs. (23) and (24). We an see a perfet agree-ment with the numerial alulation shown by the solidlines.The time dependene g(2)(t) is alulated in aor-dane with the proedure de�ned by Eq. (7). For sim-pliity, we neglet the exiton damping (�X = 0) andonsider only the two limit ases of low and high pump-ing ompared with the spontaneous deay rate of theexiton 4g2=�C . At the low pumping, we obtaing(2)(t) = 1� e�4g2t=�C : (25)The system demonstrates antibunhing similar to thease of the quantum dot without a avity. The onlye�et of the avity is the enhanement of the exitondeay rate due to the Purell e�et. In the oppositease of high pumping, W � g2=�C , we obtaing(2)(t) = 1� �2C(W � �C)2 �� �2W (W � 5�C)�C(W + 3�C) e�(W+�C )t=2 ++ W (2�2C + 3W�C �W 2)�2C(W + 3�C) e��Ct + e�Wt� : (26)244
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inoherently stationary pumped miroavity with asingle quantum dot strongly oupled to the photonmode. Expliit analyti expressions for the photonnumber, exiton number, and photon�photon orrela-tor g(2)(t) have been obtained. We have shown that theinoherent pumping sheme, typial for semiondutorsystems, leads to qualitatively di�erent orrelationdynamis than the resonant pumping sheme. Inthe ase of inoherent pumping, the funtion g(2)(t)demonstrates osillations at the frequeny of thevauum Rabi splitting, while suh osillations arestrongly suppressed in the ase of oherent pumping.Both the frequeny and the deay rate of these os-illations inrease as the pumping rate inreases. Atlarger pumping, the dynamis of the orrelations is mo-noexponential. The deay time nonmonotonially de-pends on the pumping and has a sharp peak at the rit-ial pumping value orresponding to the self-quenhingtransition between the lasing regime [where g(2)(0) = 1℄and the thermal regime [g(2)(0) = 2℄. The peak valuestrongly exeeds the lifetime of the empty avity mode.Suh a nonmonotoni behavior of the orrelation life-time is a harateristi feature of the avity with a sin-gle dot in the strong-oupling regime.In the weak-oupling regime, the orrelation fun-tion almost monotonially hanges from the initialvalue at t = 0 to unity at large delays. The value ofthe zero-delay orrelator g(2)(0) in the weak-ouplingregime is smaller than unity at low pumping (photonantibunhing) and tends to 2 at large pumping (ther-mal bunhing). The inrease in pumping shortens thedeay time of the photon�photon orrelations.The authors aknowledge numerous fruitful disus-sions with M. M. Glazov. This work was supportedby the RFBR, RF President Grants MD-2062.2012.2and NSh-5442.2012.2, EU projets SPANGL4Q andPOLAPHEN, and the �Dynasty� Foundation.APPENDIX ADynami equations in the strong-ouplingregimeIn this Appendix, we present the details of thederivation of analyti answers (16)�(19) for the station-ary density matrix and for the time-dependent two-photon orrelator. We fous on the strong-ouplingregime and the moderate pumping W � 4g2=�C .The key simpli�ation in the strong-oupling regimeis the smallness of the nondiagonal omponents of thestationary density matrix. This is so beause the en-245



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014ergy width of polariton eigenstates (9) is of the orderof max(�C ;W ) and muh less than the splitting 2pmgbetween these states, wherem is the relevant rung num-ber of the Jaynes�Cummings ladder. Estimating thetypial values of m as W=�C , we obtain the small pa-rameter max(�C ;pW�C)=g for the nondiagonal den-sity matrix elements. We note that for a su�ientlyhigh pumping W � g2=�C , this parameter is no longersmall. The nondiagonal density matrix elements in thisase are given by Eq. (B.3) and their e�et is disussedin detail in Appendix B.Thus, in the regime of moderate pumping, wean onsider the dynamis of diagonal and nondiag-onal density matrix elements separately. The kinetiequation for the diagonal elements fm = �m;+;m;+ == �m;�;m;�, f0 = �0;0 is obtained from Liouvillian (2)and is given bydfmdt =�W2 (fm�fm�1)��X2 (fm�fm+1)�� �C [(m�1=2)fm�(m+1=2)fm+1℄;df0dt =�Wf0 + (�X + �C)f1: (A.1)A stationary solution of this equation an be found us-ing the fat that the probability �ow between the twoadjaent rungs m and m+ 1 should be zero, i. e.,�W2 f (0)m + �X2 f (0)m+1 + �C �m+ 12� f (0)m+1 = 0: (A.2)This yields the probability distributionf (0)m / (W=2�C)m�(m+ 1=2 + �X=2�C) ; (A.3)whih should be normalized asf (0)0 + 2 1Xm=1 f (0)m = 1: (A.4)Hereinafter, we neglet the exiton damping for sim-pliity, �X = 0. In this ase, Eqs. (A.3) and (A.4) leadto Eq. (16). The stationary photon (NC) and exiton(NX) numbers and the two-photon orrelator g(2)(0)are readily found from the distribution f (0)m :NX = 1Xm=1 f (0)m ; NC = 1Xm=1 f (0)m (2m� 1); (A.5)g(2)(0) = 2N2C 1Xm=2 f (0)m (m� 1)2; (A.6)whih yields Eqs. (17).The time dynamis of g(2)(t) is governed by Eq. (7).We must determine the time dependene of the oper-ator �(t) � eLt[�0y℄. This operator an be split into

diagonal and nondiagonal parts in the basis of polaritoneigenstates: �0;0 = �(d)0 , �m; �;m;� = �(d)m (diagonalpart), and �m;+;m;� = ��m;�;m;+ = �(nd)m (nondiago-nal part). These two parts evolve independently in thestrong oupling and moderate pumping regime. Cor-relation funtion (6) an be expressed in terms of thematrix elements asg(2)(t) = 1N2C �� 1Xm=1 h(2m� 1)�(d)m (t) +Re�(nd)m (t)i : (A.7)The initial onditions at t = 0 is�(d)0 (0) = f (0)1 ; �(d)m (0) = (m+ 1=2)f (0)m+1;�(nd)m (0) = f (0)m+1=2; m � 1: (A.8)Below, we �rst onsider the time dynamis of the diago-nal matrix elements, and then analyze the nondiagonalones.Diagonal elements satisfy Eqs. (A.1), where fmshould be replaed with �(d)m . To determine their timedependene, we analyze the eigenvetors and eigenval-ues of this linear system. The largest eigenvalue is zeroand orresponds to the stationary distribution funtionf (0)m . All other eigenvalues are negative and desribe so-lutions deaying with time. Our goal is to provide anestimation for the nonzero eigenvalue with the smallestabsolute value �1. Comparison with the numerial al-ulation demonstrates that this single eigenvalue satis-fatorily desribes the dynamis of the diagonal matrixelements �(d)(t).The Lindblad-type matrix orresponding to theright-hand side of Eqs. (A.1) is not Hermitian. Theproblem an be still redued to a Hermitian one bythe proedure adopted for kineti and Fokker�Plankequations [40℄. In our ase, this proedure is formallyequivalent to de�ning the salar produt of two distri-butions um and vm as(u; v) � u0v0f (0)0 + 2 1Xm=1 umvmf (0)m : (A.9)In terms of salar produt (A.9), the operator orre-sponding to the right-hand side of Eqs. (A.1), denotedby a dot in what follows, turns out to be self-adjoint,(u; _v) = ( _u; v) for any distributions um and vm. Thisallows analyzing kineti equations (A.1) by the stan-dard approahes of quantum mehanis. For instane,normalization ondition (A.4) takes the ompat form(f (0); f (0)) = 1.246



ÆÝÒÔ, òîì 145, âûï. 2, 2014 Time-dependent photon orrelations : : :From the onsidered distribution �(d)m , it is on-venient to single out the stationary ontribution(f (0); �(d)) f (0)m that orresponds to the zero eigenvalue.This yields �(d)m (t) = NCf (0)m + Æ�(d)m (t): (A.10)Initial onditions for the new variables Æ�(d)m (t) aregiven byÆ�(d)0 (0) = 2Ewf (0)02E + 1 ; Æ�(d)m (0) = � wf (0)m2E + 1 : (A.11)Sine the projetion of Æ�(d) onto the stationarysolution (Æ�(d); f (0)) is zero, Æ�(d)(t) vanishes atlarge times, whih allows verifying that g(2)(t) ! 1as t ! 1. Approximating the time deay asÆ�(d)(t) = Æ�(d)(0) e��1t and substituting Eqs. (A.10)and (A.11) in Eq. (A.7), we obtain the �rst two termsin the right-hand side of Eq. (19). Here, �1 is the de-sired eigenvalue governing the time deay of Æ�(d). Itan be estimated using the following variational ansatzfor the orresponding eigenvetor:f (1)m = f (0)m (1 + �m); m � 0: (A.12)The onstant � is found by imposing the orthogonalityondition (f (1); f (0)) = 0. One � is found, the valueof �1 is given by �1 = (f (1); _f (1))(f (1); f (1)) : (A.13)The result of alulations redues to Eq. (18).We now turn to the evolution of the nondiagonalmatrix elements �(nd)m . In the strong-oupling regime,this proedure is quite simple. We an assume thateah matrix element �(nd)m (t) osillates in time with itsown frequeny (Em;+ � Em;�)=~ = 2pmg and deaysexponentially. The intermixing of di�erent rungs anbe negleted if the frequeny di�erene between theadjaent rungs Em+1;+ � Em;+ � g(pm+ 1 � pm )is smaller than the oupling term, whih is of the or-der of the pumping strength W . This is realized forW � g2=3�1=3C , i. e., below the transition to the las-ing regime [34℄. We note that in the polariton lasingregime, g(2)(0) = 1 (see Eq. (17)) and the photon or-relator dynamis is trivial, g(2)(t) � 1. Therefore, thisase does not need any speial onsideration. Hene,the desired time dependene of �(nd)m is desribed as�(nd)m (t) = �(nd)m (0) e�2ipmgt �� exp�� ��C �m� 12�+W=2� t� : (A.14)

Substituting the nondiagonal omponent dynamis de-�ned by Eq. (A.14) in Eq. (A.7), we reover the lastterm in Eq. (19). APPENDIX BDynami equations in the self-quenhingregimeHere, we present the details of the g(2)(t) orrelatordynamis for the system in the strong-oupling regimeand under high pumping. We fous on the transitionfrom lasing to the self-quenhing regime (W � 4g2=�C)when the orrelation lifetime turns out to be extremelylong.Despite the strong oupling, su�iently high pump-ing leads to the intermixing of eigenstates of Hamilto-nian (1). Therefore, the density matrix is no longerdiagonal in the polariton basis. Inside the mth rung ofthe Jaynes�Cummings ladder, it an be written as�m =  fm xmx�m fm ! (B.1)in the basis of eigenstates in Eq. (9). Liouvillian (2)does not mix the intra-rung and inter-rung density ma-trix omponents. Hene, the stationary density matrix,as well as the operator �(t) that desribes the g(2)(t)dynamis, do not ontain inter-rung omponents.In the onsidered regime of high pumping, the den-sity matrix equations for the rung m are given bydfmdt = W2 [fm�1 � fm +Re(xm�1 � xm)℄ ++ �C ��m+ 12� fm+1 ��m� 12� fm� ;dxmdt = �2ipmgxm �W �fm + 3xm4 + x�m4 � : (B.2)The diagonal omponents fm hange with the rate ofthe order of �C , as is proved later. The nondiago-nal omponent xm relaxes to its quasistationary valuewith a muh larger rate, of the order of W . Hene,we assume that xm adiabatially follows the diagonalomponents fm, i. e.,xm = 2ipmgW �W 2=24mg2 +W 2=2 fm: (B.3)After substituting expression (B.3) for the nondiagonalomponents in Eq. (B.2), we obtaindfmdt = W2 (�m�1fm�1 � �mfm) ++ �C ��m+ 12� fm+1 ��m� 12� fm� ; (B.4)247



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014where �m = m=(m+q) and q = W 2=(8g2). In the mod-erate pumping ase, �m is lose to unity and Eq. (B.4)redues to Eq. (A.1).Sine we onsider high rungs, we an replae the dis-rete rung number m with a ontinuous variable, whihyields�f(m; t)�t + �j(m; t)�m = 0;j(m; t) = �Cm �w�q�mm+q f(m; t)��f(m; t)�m � ; (B.5)where j(m; t) is the probability urrent. The stationarysolution found from the ondition j(m) = 0 isf (0)(m) / (m+ q)we�m: (B.6)As the pumping inreases, the maximum of station-ary distribution funtion (B.6) behaves as w � q. Itinreases linearly at low pumping, reahes a maxi-mum at W = 2g2=�C , then dereases, reahes zeroat the ritial pumping value W � = 4g2=�C whenw = q = 2g2=�2C , and remains zero for higher pumping.We �rst onsider the subritial pumping, W << W �. Stationary distribution funtion (B.6) an thenbe approximated as a Gaussian,f (0)(m) = 1p8�w exp�� (m� w + q)22w � : (B.7)We use distribution funtion (B.7) for w� q � p2w toalulate NX , NC , and g(2)(0) aording to Eqs. (3)and (8) and taking both diagonal and nondiagonalomponents of stationary density matrix (B.1) into a-ount. This yields the results presented in the upperparts of Eqs. (20). Time-dependent equation (B.5) re-dues to�f(m; t)�t == �Cm ��m �m�mw f(m; t) + �f(m; t)�m � ; (B.8)where m = w � q is the mean rung number. The dy-namis of the orrelator g(2)(t) aording to Eq. (7) isgiven by g(2)(t) = 2N2C 1Z0 m�(m; t) dm; (B.9)where �(m; t) satis�es dynami equation (B.8) with theinitial ondition �(m; 0) = mf0(m). This initial on-dition an be represented as a sum of two ontribu-tions: mf (0)(m) and (m �m) f (0)(m). The �rst does

not evolve with time and provides the orret limitg(2)(t) ! 1 as t ! 1, while the seond turns out tobe the eigenfuntion of the right-hand side of Eq. (B.8)with the eigenvalue ��Cm=w. Hene, this eigenvaluedesribes the deay of the orrelator g(2)(t) to unity,given in Eq. (21) and the upper part of Eq. (22).In the opposite ase of the pumping rate larger thanthe ritial, w � q � p2w (W > W �), stationary dis-tribution funtion (B.6) redues to a thermal one,f (0)(m) = 12m e�m=m; (B.10)where the mean rung number is now given bym = q=(q � w). Using distribution funtion (B.10),we alulate the analyti expressions for NX and NCpresented in the lower parts of Eqs. (20). However,in order to obtain a orretion to g(2)(0) = 2, it isindispensable to take a deviation of the stati distri-bution from thermal into aount. This an be doneby introduing the fator 1 + (m2 � m2=2)w=q2 intoEq. (B.10). The dynami equation for the pumpinghigher than ritial then redues to�f(m; t)�t == ��m ��Cm�f(m; t)m + �f(m; t)�m �� : (B.11)It an be easily veri�ed that (m �m) f (0)(m) is againan eigenfuntion of the right-hand side of Eq. (B.11).Thus, the deay of the orrelator g(2)(t) is governed bythe orresponding rate �C=m, whih leads to Eq. (21)and the lower part of Eq. (22).REFERENCES1. A. Kavokin, J. Baumberg, G. Malpueh, and F. Laussy,Miroavities, Clarendon Press, Oxford (2006).2. A. Muller, W. Fang, J. Lawall, and G. S. Solomon,Phys. Rev. Lett. 103, 217402 (2009).3. A. Dousse, J. Su�zynski, A. Beveratos, O. Krebs,A. Lemaitre, I. Sagnes, J. Bloh, P. Voisin, andP. Senellart, Nature 466, 217 (2010).4. A. Kuhn and D. Ljunggren, Contemp. Phys. 51, 289(2010).5. H. Carmihael, An Open Systems Approah to Quan-tum Optis, Springer, New York (1993).6. E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Teje-dor, and M. J. Hartmann, Phys. Rev. Lett. 109,183601 (2012).248
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