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EDGE STATES AND TOPOLOGICAL PROPERTIESOF ELECTRONS ON THE BISMUTH ON SILICON SURFACEWITH GIANT SPIN�ORBIT COUPLINGD. V. Khomitsky *, A. A. ChubanovUniversity of Nizhny Novgorod603950, Nizhny Novgorod, RussiaReeived August 22, 2013We derive a model of loalized edge states in a �nite-width strip for the two-dimensional eletron gas formedin the hybrid system of a bismuth monolayer deposited on the silion interfae and desribed by the nearly freeeletron model with giant spin-orbit splitting. The edge states have the energy dispersion in the bulk energy gapwith a Dira-like linear dependene on the quasimomentum and the spin polarization oupled to the diretion ofpropagation, demonstrating the properties of a topologial insulator. The topologial stability of edge states ison�rmed by the alulations of the Z2 invariant taken from the struture of the Pfa�an for the time reversaloperator for the �lled bulk bands in the surfae Brillouin zone, whih is shown to have a stable number of zeroswith the variations of material parameters. The proposed properties of the edge states may support futureadvanes in experimental and tehnologial appliations of this new material in nanoeletronis and spintronis.DOI: 10.7868/S00444510140301481. INTRODUCTIONDuring the last deade, an inreasing attention isgiven to a new lass of strutures alled topologial in-sulators (TIs) with promising harateristis as regardsboth fundamental aspets of their physis and possibleappliations in nanoeletronis, spintronis, and fabri-ation of new magneti, optial, and information pro-essing devies [1�5℄. The prinipal features of TIs in-lude the presene of time-reversal invariane in thesystem where the propagating edge states may exist,being loalized near the boundary of the host materialand having the dispersion relation that is linear nearthe origin of their quasimomentum (Dira-like stru-ture), orresponding to energies belonging to the insu-lating gap of the bulk material. The spin of suh statesis �rmly attahed to the diretion of propagation alongthe edge, making them proteted against baksatter-ing due to the time-reversal invariane, whih leads toe�etive anelation of two sattered states with oppo-site possible diretions of the spin �ip that aompa-nies suh baksattering. The existene of suh edgestates has been shown in numerous theoretial models*E-mail: khomitsky�phys.unn.ru

of TIs, and also in the experiments. The materials in-luded graphene [6℄, HgTe/CdTe quantum wells [7�10℄,bismuth thin �lms [11℄, quantum wires [12℄, nanoon-tats or bilayers [13℄, the LiAuSe and KHgSb om-pounds [14℄, and general two-dimensional (2D) modelsof paramagneti semiondutors [15℄, siliene [16; 17℄,and topologial nodal semimetals [18℄. Another 2DTI has been predited in the inverted type-II semion-dutor InAs/GaSb quantum well [19℄ and observed ex-perimentally in the ontribution of edge modes to theeletron transport [20℄. Many studies have also beendevoted to the general properties of 2D and 3D mod-els of TIs with ertain symmetries [17; 21�27℄, wherefour topologial invariants have been found in 3D TIsinstead of a single Z2 invariant in 2D TIs [1; 2; 22℄.Reently a general group-theory analysis has beenmade for the links between the geometry of the Bravaislattie and the properties of TIs [28℄. We note thatthe symmetry arguments always played a signi�antrole in lassifying the systems as trivial or topologiallyproteted against external perturbations [6; 21; 28�31℄.The time-reversal property of spin-1/2 partiles in suhsystems an be desribed by the presene of time-rever-sal invariane (without magneti impurities or an exter-nal magneti �eld) and the absene of the spin rotationinvariane. Here, the time-reversal operator is given by525



D. V. Khomitsky, A. A. Chubanov ÆÝÒÔ, òîì 145, âûï. 3, 2014� = i�yK, where K is the omplex onjugation opera-tor and �y is the seond Pauli matrix. Aording to thegeneral symmetry onsiderations [30, 31℄, this meansthe lass-AII symmetry for the Hamiltonian for whihthe so-alled Z2 topologial order is possible for 2D and3D systems, forming the basis for the TI properties.The studies of 3D materials were mostly foused onBi2Se3, Bi2Te3, or Bi2Te2Se [1; 2; 32�34℄, where also theedge states were onstruted expliitly in several mod-els of �nite-size geometry [35; 36℄. Another importantissue is the e�et of impurities and disorder on the bandstruture and topologial stability in TIs. It is knownthat TIs are robust against weak disorder or the po-tentials produed by nonmagneti impurities [6; 21; 37℄,while the presene of magneti impurities may lead tohybridization of the insulator atomi orbitals and mag-neti material orbitals, produing a strong modi�a-tion to the metalli or nonmetalli nature of the statesand their spin polarization [38℄. Even for nonmagnetiimpurities, it has been shown reently that the forma-tion of impurity bands within the energy gap at strongdoping of the bulk material may lead to their mixingwith the edge states of a TI, modifying their struture,although preserving the Z2 order and topologial sta-bility [39℄.It an be seen that although the features of TIs arevery general and desribe a truly novel state of mat-ter, the number of di�erent materials demonstratingthese features is urrently quite limited. It is there-fore of interest to �nd new materials and ompoundswhere possible manifestations of TIs may be present,for both fundamental aspets and applied purposes. Itis also neessary to understand whih properties of edgestates are ommon for di�erent systems, and whih arespeial, and how all of them are related to the bulkquantum states in a spei� model.Here, we onsider a model of edge states and re-late their properties to topologial harateristis ofthe host material for a new andidate to the lass ofTIs: the 2D eletron gas in a material with strongspin�orbit oupling (SOC) formed at the interfae of amonolayer of bismuth deposited on silion. This mate-rial is haraterized by a giant SOC splitting whih, wasalso predited or observed experimentally in a numberof metal �lms or the ombined materials of the �metalon semiondutor� type [40�46℄, and reently desribedtheoretially [46, 47℄. Its huge spin splitting togetherwith the hexagonal type of the lattie reates a ertainpotential of manifestation of TI properties, sine thespin-resolved bands may evolve into spin-resolved edgestates, and the hexagonal type of the lattie is favorablefor the TI to exist [28℄.

The properties of the 2D eletron gas at theBi/Si interfae have been studied experimentally withthe help of angle-resolved photoemission spetrosopy(ARPES) [40�44; 46; 48�50℄, applied also to other ma-terials. It was found that this material representsan example of the urrently widely studied lass ofmaterials with a large (up to 0.2�0.4 eV) SOC spinsplitting of their energy bands, whih an be formedin various ompound materials or heterostrutures ofthe �metal on semiondutor� type. It has beenknown for many years that SOC plays an importantrole in the formation of TI properties [51℄, inludingthe loalization e�ets of the Rashba SOC ombinedwith eletron�eletron interation [52℄, the Dira-onesurfae states in Bi2Se3 [53℄ and Bi2TexSe3�x [54℄,PbSb2Te4 or Pb2Bi2Te2S3 [55℄, and Bi1�xSbx [56℄,topologial phases [57, 58℄ and the quantum spin Hallphase in a honeyomb lattie [59℄, the ultraold Fermigases [60℄, the spin Hall e�et in graphene [61℄, and theKondo insulator e�ets [62, 63℄.Various materials with a strong SOC have been thesubjet of intensive reent studies, inluding the stru-tures of Bi deposited on Si�Ge substrates [64℄, the Pbon Si struture [43℄, the trilayer Bi�Ag�Si system [42℄,the strutures with a monolayer of Pb atoms overingthe Ge surfae [65℄ or the Pb on Ge strutures [66℄.We also mention new types of triple bulk ompoundswith strong SOC like GeBi2Te4 [67℄, BiTeI, or otherbismuth tellurohalides [68�70℄ or the reently disussedBi14Rh3I9 material [71℄.In this paper, we adopt the nearly free model of two-dimensional bulk states in Bi/Si, developed earlier [46℄and applied in the extended form in our previous paperfor the desription of spin polarization, harge ondu-tane, and optial properties of this promising mate-rial [47℄, for the alulation of 1D edge states of ele-trons on the Bi/Si interfae in a �nite strip geometry.We obtain both the expliit form of edge wavefun-tions and the edge energy spetrum, alulate theirspin polarization, and relate the possible topologialstability of their properties to the Z2 topologial in-variant studied by analyzing the behavior of the matrixelements of the time-reversal operator in the Brillouinzone [1; 2; 5; 6; 21; 23℄. The results of our paper are ofinterest for expanding the knowledge of new materi-als with the topologially proteted properties wherethe SOC plays a signi�ant role, making them suitablefor further appliations in spintronis as stable urrent-arrying and spin-arrying hannels.The paper is organized as following. In Se. 2, webrie�y desribe the nearly free eletron (NFE) modelof 2D bulk states at a Bi/Si interfae, and derive a526



ÆÝÒÔ, òîì 145, âûï. 3, 2014 Edge states and topologial properties : : :model for 1D edge states for the eletrons in a �nitestrip geometry. We alulate their spetrum, wavefun-tions, and spin polarization. In Se. 3, we reinfore our�ndings on the edge state stability by onsidering thetopologial band properties of 2D bulk states in Bi/Si,and �nd the results supporting the presene of the TIphase. Our onlusions are given is Se. 4.2. MODEL FOR BULK STATES AND EDGESTATES2.1. Bulk statesOur model for 1D edge states is based on the 2DNFE model for bulk states of the 2D eletron gasformed at the interfae of the trimer Bi/Si(111) stru-ture [46℄ developed for the desription of the spetrumnear the M point of the Brillouin zone (BZ), and laterextended to modeling the eletron states in the entireBZ [47℄. This model was ompared with its expan-sion ontaining anisotropi terms in the NFE modelas well as with an empirial tight-binding model [46℄.While the details of band struture and the quality ofreproduing the experimental ARPES data on energybands in Bi/Si vary from model to model, the simpleNFE model allows reonstruting the main propertiesof spin-split bands inluding the magnitude of splitting,the energy gap, and the spin polarization. It also hasa major advantage of a straightforward derivation ofedge states in a �nite-strip geometry, as we see below.In this model, the Hamiltonian of the 2D eletrongas in the BZ of the (kx; ky) plane, H = H0 + V (x; y),is written as a sum of a free-eletron term with SOC,H0 = ~2k22m + �R(�xky � �ykx); (1)k2 = k2x + k2y, orresponding to the Rashba paraboloidentered at the � point of the hexagonal BZ, and thelattie potential represented via the spatial Fourier ex-pansion with reiproal spae vetors Gi:V (x; y) =Xi Vi exp(iGi � r): (2)The parameters of both H0 and V are �tted soas to provide the best orrespondene between themodel and the struture of bands near the Fermi levelexperimentally known from ARPES measurements[42�44; 46℄. The typial values [46, 47℄ are m = 0:8m0,�R = 1:1 eV � Å, and Vi = V0 = 0:3 eV, althoughthey should be treated as �tting parameters ratherthan measured material onstants, and we here on-sider their variations in the range 0.3�0.6 eV for V0 and
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D. V. Khomitsky, A. A. Chubanov ÆÝÒÔ, òîì 145, âûï. 3, 2014 bulkk = eik�rp2  1� exp [iArg(ky � ikx)℄ ! : (4)The ��� sign orresponds to two eigenvalues for theRashba energy spetrum E(k) = ~2k2=2m� �Rk.In Fig. 1b, we plot a fragment of the energy spe-trum of the 2D eletron gas at the Bi/Si(111) surfaein the NFE model orresponding to the bulk bandgap (marked by EF at the left part of the �gure) ofaround 0:2 eV between the bands where the Fermi levelis loated, reported to be above the seond spin-splitband [46℄. The Fermi level position in the bulk gap,where the gapped struture of the eletron spetrum isprodued by the hexagonal lattie with potential (2),reates the possibility of edge state formation with en-ergies in this gap, and, as we see below, makes the sys-tem a possible new andidate to the topologial insula-tor lass. The large metalli-like values of the eletronenergy and SOC amplitude present for the 2D eletrongas in this system make it promising for the onsidera-tion in transport and optial experiments where the dis-order, ollision, and thermal broadening prevents theappliation of onventional semiondutors. We notethat the disussed properties of the band struture forthe Bi/Si 2D eletron gas are obtained in the frameworkof one spei� model with a set of parameters hosenfor the best �t to experimental data. Hene, it maybe modi�ed in the future when more insight is gainedinto the properties of Bi/Si or other similar ompounds.Still, we see below that the qualitative and topologi-ally desribed features of the eletron states studiedwithin this model are robust against signi�ant varia-tions of the model parameters, whih is an indiationof ertain intrinsi and stable properties of the system.2.2. Edge statesWe now turn our attention to the onstrutionof the model for edge states loalized at the oppo-site edges of a �nite strip formed in the 2D eletrongas. We an start with the strip geometry wherethe eletrons are on�ned along the y diretion inthe strip �L=2 � y � L=2 and with the onven-tional assumption of the hard-wall boundary onditions	(x; y = �L=2) = 0 [8�10; 35; 36℄.First, the spetrum of edge states an be found bysolving the eigenstate problem with the requirement ofan exponential dependene aross the strip diretion y.This an be done by starting from the bulk Hamilto-nian and replaing the quasimomentum omponent inthe diretion of on�nement by the purely imaginaryvariable desribing the inverse loalization depth or-

responding to the loalized states exp(��y), whih inour ase means the substitution ky ! �i�. We notethat � an be omplex in general, with the imaginarypart orresponding to osillations of the edge wavefun-tions on top of the exponential deay [8; 35℄, while inother models [9℄, � is taken purely real, as in our sys-tem. The reason for a purely real � in our model of edgestates is the narrow bulk gap formed in the bulk spe-trum originating from Hamiltonian (1) with the strongRashba SOC. If we add more real nonzero wavevetoromponents by adding the imaginary part to �, thenthe resulting energy inrease pushes the edge states outof the bulk gap, making them unsuitable for the TIphase.The eigenfuntions of this Hamiltonian an be on-struted in the same nearly free-eletron approximationas bulk states (3), and have the form�kx�(x; y) = e�yFkx�(x); (5)Fkx�(x) =Xn an(kx;�)�nkx�(x): (6)The spinors �nkx�(x) an be obtained from (4) by thesubstitution ky ! �i�, whih results in a purely imag-inary number under the Arg funtion, giving�nkx�(x) = exp [i(kx + nG)x℄p2 �� 1�i sign(kx + nG+�) ! : (7)The summation in (6) is over the 1D lattie in the reip-roal spae, orresponding not to the 2D hexagonal butthe 1D simple lattie along the x diretion formed bythe vetors G1 and G4 in Fig. 1a, with the real spaeperiod a = 2�=G, where G = 1:08Å�1 is the lengthof the Gi vetor. State (6) remains a Bloh funtionalong x with the onventional translation property�kx�(x+ a; y) = exp(ikxa)�kx�(x; y);while along the on�nement diretion, the wavefun-tions are exponentials exp(��y). If we solve theShrödinger equation for our model of the 2D ele-tron gas at the Bi/Si interfae with the substitutionky ! �i� (without onsidering the spei� bound-ary onditions at this stage), then the spetrum ofedge states is obtained as a funtion of two parameters(kx;�). If there are eigenstates with energies orre-sponding to the gap in the bulk spetrum, they an beinteresting as potential andidates for the edge stateswith topologial protetion.528
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Fig. 2The wavefuntion satisfying the boundary ondi-tions 	kx(x; y = �L=2) = 0 on a single edge and hav-ing the spei� energy E = E(kx;�) in the bulk gaphas the form of a linear ombination of (6) with di�er-ent loalization lengths �1;2 orresponding to the givenenergy E = E(kx;�1;2):	kx(x; y) =X� ��kx�(x; y): (8)If the edge is represented by another and moresmoothly inreasing potential di�ering from the hardwall, or a more sophistiated boundary ondition is ho-

sen, the edge wavefuntion is expeted to be modi�edmainly in a small viinity of the edge where a deayingtail an be formed. Beause this modi�ation wouldnot strongly a�et the global shape of the edge stateand the main loalization parameter, as well as the pri-mary property of their possible topologial stability in-dued by the presene of the topologial invariant forthe bulk states, we proeed with the simple hard-wallondition introdued above. We have found that inour model, the edge states indeed exist in the gap ofthe bulk spetrum. Their dependene on the kx param-eter is shown in Fig. 2a as two linear dispersion urves1 and 2 rossing the bulk gap for a typial value of theinverse loalization length � = 0:6Å�1, together withthe bulk spetrum plotted as a funtion of kx for allvalues of ky in the 2D BZ shown in Fig. 1a. The jointdependene of the energy of edge states on both kx and� is shown as a 3D plot in the inset to Fig. 2b. Thetwo spin-resolved energy branhes E = E(kx;�) areshaded di�erently (branh 1 is dark gray and branh2 is light gray) depending on their spin projetion Sy.In Fig. 2a, we also plot the mean values of the onlynonvanishing spin omponent Sy = h	j�yj	i for theedge states that are oupled to their diretion of mo-Fig. 2. (a) Bulk (graysale dots on the bakground)and edge (blak and gray linear dispersions marked as1 and 2 ) energy bands in a Bi/Si strip shown as a fun-tion of kx for all ky (bulk states) and for the typialvalue of the inverse loalization length � = 0:6Å�1(for edge states). The edge states are formed in thebulk energy gap where the Fermi level position is shown,and have the opposite spin polarization oupled to theirgroup veloity for left-moving eletrons (band 2 ) andright-moving eletrons (band 1 ). (b ) The edge-stateenergy dependene on the inverse loalization lengthparameter � taken for kx = 0:05Å�1. For a given po-sition of the Fermi level in the bulk gap, there are tworoots ��1;2 for eah edge of the strip yielding two edgewavefuntions belonging to the orresponding branhesof the energy spetrum. The inset shows the side viewof the edge state spetrum as a funtion of both kx and�, demonstrating the 3D struture of two branhes 1and 2 of spin split states interseting along the linekx = 0. () Edge states loalized on the opposite bor-ders of the strip for the edge-state energy equal to theFermi level inside the bulk gap, EF = 1:5 eV, and forthe strip width L = 10 nm. The edge states are well lo-alized at the orresponding edge of the strip. For eahedge, there are two states propagating to the positiveand negative diretions of the x axis and having oppo-site spin polarizations Sy10 ÆÝÒÔ, âûï. 3 529



D. V. Khomitsky, A. A. Chubanov ÆÝÒÔ, òîì 145, âûï. 3, 2014tion along the strip. The spin-up states move to theright with the group veloityvx = ~�1�"=�kx > 0;while the spin-down states move to the left (vx < 0),shown in the same gray-sale level with the orrespond-ing branhes of the edge spetrum.An important feature of the edge state spetrum isthe presene of two roots �1;2 for eah energy valuefor a given kx; the equation E(kx;�) = E0 has twopairs of solutions ��1;2 for the left and right edge ofthe strip, as is shown in Fig. 2b for the dependene ofthe energy on � at kx = 0:05Å�1. Suh a struture ofenergy eigenvalues is a diret onsequene of the rela-tive proximity of two branhes of the Rashba spetrumpresent in the basis for the Hamiltonian, whih an bealso seen for the bulk spetrum in Fig. 1b. This fea-ture allows onstruting the edge states satisfying theboundary onditions for a band of energies loated inthe bulk energy gap, as is done in various models ofedge states in TIs [8; 9; 35; 36℄.The spei� boundary onditions are applied to thegeneral form of the edge state in Eq. (8). The two wave-funtions for a given energy E = E(kx;�1;2) satisfyingthe boundary ondition 	L(x; y = L=2) = 0 on the leftedge of the strip y = L=2 (in the forward diretion ofthe x axis) and deaying into the strip have form (8)and an be onstruted expliitly by the following su-perposition of states (6):	(1)L (x; y) = Fkx�1(x)���exp(�1y)� exp �(�1 � �2)L2 + �2y�� ; (9)	(2)L (x; y) = Fkx�2(x)���exp(�2y)� exp�(�2 � �1)L2 + �1y�� ; (10)where the normalization ondition is implied inFkx�(x). Aordingly, the loalized wavefuntions forthe right edge y = �L=2 an be written as	(1)R (x; y) = Fkx��1(x)���exp(��1y)� exp�(�1 � �2)L2 � �2y�� ; (11)	(2)R (x; y) = Fkx��2(x)���exp(��2y)� exp �(�2 � �1)L2 � �1y�� : (12)

All the edge states in (9), (10) and (11), (12) havedi�erent spinor parts Fkx��1;2 due to the di�erent valueof parameter ��1;2, and in general may desribe di�er-ent spin polarization. We note that their spin proper-ties are desribed by the mean value of spin alulatedfor the edge state that is not itself labeled by the spinquantum number, whih is typial in the systems withSOC where the spin operator does not ommute withthe Hamiltonian. Still, beause the diretion of propa-gation of 1D edge states is strongly oupled to the signof the mean spin polarization and the edge subbandindex, we an link these two properties together anddesribe the edge states as having a de�nite mean spinvalue.An example of edge wavefuntions is shown inFig. 2 for the energy of the edge state equal to theFermi level inside the bulk gap, E = EF = 1:5 eV, andfor the strip width L = 10 nm. We an see that theedge states are well loalized at the orresponding edgeof the strip on the length of about 1 nm, whih may leadto the formation of topologially proteted edge modesif the orresponding bulk topologial invariant is non-trivial, as is disussed in the next setion. The arrowsindiate the diretion of propagation and the spin Syof eah state in pair (9), (10) and (11), (12). The dire-tion of the propagation of two hiral states on one edgey = �L=2 in our model is the same as on the other edgey = L=2, whih an be explained by the strong RashbaSOC in our system, leading, among other things, to thedominant polarization Sy of the states moving in thex diretion. Here, the nonompensated total spin Syan be aumulated if the population of right-movingand left-moving eletrons is unbalaned, for example,by an external eletri �eld E k Ox, as is the ase invarious models with urrent-indued spin polarizationboth in onventional materials with strong SOC and inTIs [72℄, whih an also be expeted for the edge statesshown in Fig. 2.The form of spin polarization shown in Figs. 2a and2 reates a positive expetation about their topolog-ial stability for harge transport against the satter-ing on nonmagneti impurities that do not violate thetime-reversal symmetry, if supported by the analysis ofthe topologial properties of bulk states indiating thepresene of a nontrivial topologial invariant. If we on-sider baksattering, then it is lear from Fig. 2 thatthe hange of the propagation diretion would lead tospin �ip, and this anels the re�eted waves and extin-guishes the baksattering [1, 2℄. This is onsistent withthe arguments of the topologial stability of suh edgestates as the partiipants of harge transport, whihis the required property of a system to beome a TI.530



ÆÝÒÔ, òîì 145, âûï. 3, 2014 Edge states and topologial properties : : :
ky, Å

−1

kx, Å−1

−0.6

0.6

1

0

−0.6

0

0.6

|P1, 2(kx, ky)|

а

|P1, 2(kx, ky)|

0.6

ky, Å
−1

Γ

M

Γ

M
1

−0.6

−0.6

0

0.6
kx, Å−1

0.6

ky, Å
−1

1

|P1, 2(kx, ky)|
Γ

M

−0.6

0

0

−0.6

0

0.6
kx, Å−1

b

c

Fig. 3We see in Se. 3 below that our assumption about the2D eletron gas on the Bi/Si interfae as a possible TIis supported further by the analysis of the topologialproperties of 2D bulk states.

3. TOPOLOGICAL PROPERTIES OF BULKSTATESIt is known from the general theory that the stabi-lity of edge states is guaranteed by ertain topologialproperties of bulk states. In partiular, the system anbe a TI if an integer alled the Z2 invariant is di�erentfrom zero [1; 2; 6; 21℄. There are several ways to alu-late this invariant, and here we use the method pro-posed by Kane and Mele [6℄, whih links the Z2 indexto the zeros of the Pfa�an for the interband matrix el-ements of the time-reversal operator between the ou-pied bands, whih has the form � = i�yK for spin-1/2partiles, where K is the omplex onjugation opera-tor. If we have only two lowest bands oupied, whihis the ase of the 2D eletron gas in Bi/Si 2DEG, thenthe Pfa�an P1;2(k) is equal to the single o�-diagonalmatrix element between the Bloh funtions u1;2(k) inthe oupied bands 1 and 2,P1;2(k) = hu1(k)j�ju2(k)i: (13)The topologial onsiderations provide a onvenientform of using de�nition (13) for the �nding new mate-rials demonstrating TI properties. If, for a hexagonalBZ, the k-dependent funtion P (k) has pairs of zerosin the orners of the BZ (or, depending on the overallsymmetry, on the lines inside the BZ), then the systemdemonstrates the properties of a TI [6; 11; 21℄. Thereis an extensive disussion of the Z2 invariant proper-ties related to TIs inluding another de�nition of thisinvariant, where the matrix elements of the TR opera-tor � are alulated between the states with oppositewavevetors k and �k and the TI is determined by itsproperties not in the entire BZ but at a disrete set of�time reversal invariant points� like the � or M points.The detailed disussion and all relevant mathematialonnetions between di�erent approahes to the alu-lation of the Z2 invariant an be found in the litera-ture [1; 2; 21; 23; 30; 73�75℄.Fig. 3. The absolute value of Pfa�an (13) in thehexagonal BZ for the 2D eletron gas on the Bi/Siinterfae for di�erent values of bulk band parameters:(a) V0 = 0:3 eV, �R = 1:1 eV � Å; (b ) V0 = 0:6 eV,�R = 1:1 eV �Å; and () V0 = 0:3 eV, �R = 0:6 eV �Å.The Pfa�an has three pairs of zeros at the orners ofthe BZ, where the visible zeros are shown as blak ir-les while at TR-invariant � and M points shown asshaded and gray irles, the value is jP1;2j = 1. Theseproperties indiate that the Z2 invariant is odd, andthe topologial insulator phase is present for all threesets of material parameters531 10*



D. V. Khomitsky, A. A. Chubanov ÆÝÒÔ, òîì 145, âûï. 3, 2014In Fig. 3a, we plot the absolute value of Pfa�an(13) in the hexagonal BZ for the 2D eletron gas onthe Bi/Si interfae for the same basi set of modelparameters as were used for alulations of the bulkspetrum in Fig. 1b. To see the possible hanges inthe Z2 index with the variation of the system pa-rameters, we plot jP1;2j for two other sets of parame-ters: in Fig. 3b, the amplitude of the periodi poten-tial is inreased ompared to the basi ase shown inFig. 1b, V0 = 0:6 eV, and the Rashba SOC ampli-tude is the same, �R = 1:1 eV � Å; in Fig. 3, theperiodi potential amplitude is the same as in Fig. 3a,V0 = 0:3 eV, but the Rashba oupling amplitude is de-reased, �R = 0:6eV � Å. It is learly seen for all asesthat the Pfa�an has zeros in the orners of the BZ,where the visible zeros are shown as blak irles whoseborder is shown shematially, while jP1;2j = 1 at theTR-invariant � and M points, respetively shown asshaded and dark gray irles. There are three pairs ofzeros for jP1;2j, whih indiates that the Z2 invariant isodd, thus lassifying the 2D eletron gas on the Bi/Siinterfae as a TI with proteted edge states [1; 2; 6; 21℄.The presentation of the struture of the Pfa�an inFig. 3 in the whole BZ is useful in determining the areaswhere the states of di�erent bands belong to the �even�or �odd� subspae relative to the ation of the time re-versal operator �, in aordane with the lassi�ationproposed by Kane and Mele [6℄. In our ase shownin Fig. 3, we see that the major part of the BZ or-responds to the states belonging to the even subspaewith jP (k)j = 1; however, in approahing the bordersof the BZ, the value of jP (k)j is modi�ed signi�antly,and in the orners we obtain the odd subspae wherejP (k)j = 0, and therefore the TI property is present.We an also see in Fig. 3 that the variations of mate-rial parameters do not signi�antly hange the topolog-ial properties of the Pfa�ans, whih all have the samequalitative features with jP1;2j = 1 at the time-reversal-invariant � and M points and with three pairs of zerosfor jP1;2j in the orners of the BZ. The depth of theparameter variation present in three parts of Fig. 3 israther big and reahes 50%, whih overs a wide rangeof possible experimental and tehnologial fabriationof the 2D eletron gas on the Bi/Si interfae. Still, theabsolute values of the Pfa�ans shown in Fig. 3 lookvery similar to eah other, indiating their qualitativetopologial nature, whih is the key for disovering newexamples of TIs. The method of mutual analysis of hi-ral edge states and topologial bulk properties used inour alulations an be applied to other materials andstrutures.

4. CONCLUSIONSWe have derived a model for the one-dimensionaledge states for the eletrons on the bismuth on sili-on interfae in a �nite strip geometry. Based on thebulk nearly free-eletron model, their energy disper-sion was obtained inside the bulk gap, to be linear inthe quasimomentum. The spin polarization of edgestates is related to the diretion of propagation alongthe given edge, whih provides topologial stability ofthese hiral modes. The topologial stability of edgestates was on�rmed by the struture of the interbandmatrix element for the time reversal operator, whihwas shown to be stable against large variations of thematerial parameters. The results in this paper may beof interest both for the development of the topologialinsulator theory by providing a novel example of thematerial belonging to this lass, and for the develop-ment of new spintronis and nanoeletronis devieswith stable transport and operating at room tempera-ture.The authors are grateful to V. Ya. Demikhovskii,A. M. Satanin, A. P. Protogenov, G. M. Maximova,V. A. Burdov, and A. A. Konakov for the helpful dis-ussions. The work is supported by the RFBR (grantsNos. 13-02-00717a, 13-02-00784a).REFERENCES1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,3045 (2010).2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057(2011).3. J. E. Moore, Nature 464, 194 (2010).4. D. Culer, Physia E 44, 860 (2012).5. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev.B 78, 195424 (2008).6. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802(2005); 95, 226801 (2005).7. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Siene314, 1757 (2006).8. M. König, H. Buhmann, L. W. Molenkamp, T. L. Hug-hes, C.-X. Liu, X.-L. Qi, and S-C. Zhang, J. Phys. So.Jpn. 77, 031007 (2008).9. B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu,Phys. Rev. Lett. 101, 246807 (2008).532
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