МАГНИТНЫЕ БЛОХОВСКИЕ ЭЛЕКТРОННЫЕ СОСТОЯНИЯ И СПИНОВАЯ ПОЛЯРИЗАЦИЯ В ДВУМЕРНЫХ СВЕРХРЕШЕТКАХ БЕЗ ЦЕНТРА ИНВЕРСИИ СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ РАШБА В ЭЛЕКТРОННОМ ГАЗЕ

А. А. Перов^{*}, И. В. Пенягин

Нижегородский государственный университет им. Н. И. Лобачевского 603950, Нижний Новгород, Россия

Поступила в редакцию 24 сентября 2013 г.

В одноэлектронном приближении во внешнем магнитном поле рассчитаны квантовые состояния носителей в двумерных двоякопериодических полупроводниковых сверхрешетках *n*-типа, не обладающих пространственной инверсионной симметрией. Показано, что спин-орбитальное взаимодействие и спиновое расщепление в магнитном поле могут приводить к возникновению фотогальванического эффекта в двумерном электронном газе без центра инверсии, а также к ненулевой спиновой намагниченности электронного газа в плоскости, перпендикулярной магнитному полю.

DOI: 10.7868/S004445101403015X

1. ВВЕДЕНИЕ

Задача о квантовомеханическом движении носителей заряда в полупроводниковых структурах, помещенных во внешнее магнитное поле, имеет более чем полувековую историю [1–9]. Дело в том, что действия периодического поля кристалла и магнитного поля на электрон или дырку в полупроводнике существенно различны по своей природе. Так, магнитное поле квантует поперечное движение заряженной частицы [1], а поле кристаллической решетки приводит к образованию энергетических зон. В результате в зонах проводимости и в валентной зоне в магнитном поле формируются «лестницы» уровней Ландау. В действительности, как показывают результаты первых теоретических работ, выполненных в середине прошлого столетия (см., например, [2,8]), уровни Ландау в кристаллах уширяются в зоны экспоненциально малой ширины. Причиной тому является снятие вырождения состояний в магнитном поле по центру орбиты вследствие взаимодействия заряженной частицы с электростатическим периодическим полем кристалла. Суть эффекта снятия

вырождения состояний электрона в магнитном поле по центру орбиты может быть выражена следующим образом (даже в рамках модели одномерного периодического потенциала). При изменении положения точки подвеса осциллятора в пределах периода электростатического потенциала каждый из уровней Ландау в параболе смещается по шкале энергий и, тем самым, формируются минизоны, энергия носителя в которых становится зависящей от квазиимпульса.

Экспериментальное наблюдение расщепленной зонной структуры в реальных кристаллах, помещенных в магнитное поле, затруднено тем, что для этого необходимо генерировать мегагауссные магнитные поля. В то же время, искусственные полупроводниковые кристаллы — сверхрешетки — с периодом в несколько десятков нанометров являются перспективными объектами для теоретического и экспериментального исследований магнитных блоховских состояний носителей [3]. Квантовые состояния электронов в них обладают богатой топологией [10]. Так, если сверхрешетка, расположенная в области гетероперехода, не обладает центром инверсии, то становится возможным управлять холловским кондактансом полностью заполненных магнитных подзон [11].

^{*}E-mail: wkb@inbox.ru

Учет в теории электронного спина и спин-орбитального взаимодействия в электронном газе позволяет предсказать и рассчитать новые транспортные [12], магнитооптические [13, 14] и фотогальванические эффекты в изучаемых низкоразмерных полупроводниковых решеточных структурах, в том числе и не обладающих пространственной инверсионной симметрией. Изучению квантовых состояний носителей в двоякопериодических сверхрешетках *п*-типа без центра инверсии во вешнем магнитном поле посвящена данная статья. Создаваемый внешним магнитным полем магнитный поток через элементарную ячейку сверхрешетки, измеренный в квантах магнитного потока, полагается рациональным числом p/q (*p* и *q* — взаимно простые числа). Модельные расчеты проведены в отсутствие вихревых токов [15] и в той области значений экспериментально реализуемых параметров системы [16], когда характерная энергия Ландау значительно превышает величины сопоставимых между собой, что важно, спинового и спин-орбитального расщеплений в спектре, а также расщепления, обусловленного действием на электрон периодического поля сверхрешетки.

2. ПОСТАНОВКА ЗАДАЧИ И ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ

Гамильтониан, описывающий квантовомеханическое движение электрона в двумерной двоякопериодической квадратной сверхрешетке, в постоянном однородном магнитном поле с учетом эффекта Зеемана и спин-орбитального взаимодействия Рашба в газе носителей имеет вид

$$\hat{H} = \hat{H}_0 + V(x, y) = \left(\hat{\mathbf{p}} - \frac{e}{c}\mathbf{A}\right)^2 \hat{E}/2m^* + \frac{\alpha}{\hbar} \left[\mathbf{z} \times \hat{\sigma}\right] \cdot \left(\hat{\mathbf{p}} - \frac{e}{c}\mathbf{A}\right) - g\mu_B H \hat{\sigma}_z + V(x, y), \quad (1)$$

где μ_B — магнетон Бора, \hat{E} — единичная матрица размерности 2 × 2, m^* — эффективная масса, c скорость света, $\hat{\mathbf{p}}$ — оператор импульса, $\hat{\sigma}$ — вектор, составленный из матриц Паули, α — константа спин-орбитального взаимодействия Рашба, g — фактор Ландэ, \hbar — постоянная Планка. Для векторного потенциала магнитного поля $\mathbf{H} \parallel z$ выбрана в дальнейшем калибровка Ландау $\mathbf{A} = (0, H \cdot x, 0)$. Функция

$$V(x,y) = V_1 \cos^2\left(\frac{\pi x}{a}\right) \cos^2\left(\frac{\pi y}{a}\right) + V_2\left(\sin\left(\frac{2\pi x}{a}\right) + \sin\left(\frac{2\pi y}{a}\right)\right)$$
(2)

ЖЭТФ, том 145, вып. 3, 2014

моделирует периодический электростатический потенциал поля двумерной сверхрешетки с периодом *а* в плоскости гетероперехода, перпендикулярной внешнему магнитному полю. Амплитуды потенциала V_1 и V_2 ответственны за его центросимметричную и нецентросимметричную составляющие.

В работе [12] была аналитически решена задача о квантовых состояниях электрона, описываемого гамильтонианом \hat{H}_0 . Так, электронный спектр представлял собой дискретные уровни, объединенные в пары:

$$E_{S}^{\pm} = \hbar\omega_{c}S \pm \frac{1}{2}\sqrt{(\hbar\omega_{c} + 2g\mu_{B}H)^{2} + \frac{8\alpha^{2}}{l_{H}^{2}}S}, \quad (3)$$
$$S = 1, 2, 3, 4, \dots,$$
$$E_{0}^{+} = \hbar\omega_{c}/2 + g\mu_{B}H.$$

Волновые функции при этом имели вид

$$\Psi_{k_y}(\mathbf{r}) = \frac{e^{ik_y y}}{\sqrt{2}} \Phi_0\left(\frac{x - x_0}{l_H}\right) \begin{pmatrix} 0\\1 \end{pmatrix}$$
(4)

-для ветви E_0^+ ,

$$\Psi_{S,ky}^{+}(\mathbf{r}) = \frac{e^{ik_y y}}{\sqrt{1+D_S^2}} \begin{pmatrix} D_S \Phi_{S-1}\left(\frac{x-x_0}{l_H}\right) \\ \Phi_S\left(\frac{x-x_0}{l_H}\right) \end{pmatrix}$$
(5)

— для ветвей E_S^+ ,

$$\Psi_{S,ky}^{-}(\mathbf{r}) = \frac{e^{ik_y y}}{\sqrt{1+D_S^2}} \begin{pmatrix} \Phi_{S-1}\left(\frac{x-x_0}{l_H}\right) \\ -D_S \Phi_S\left(\frac{x-x_0}{l_H}\right) \end{pmatrix}$$
(6)

— для ветвей E_S^- . В выражениях (4)–(6)

$$D_{S} = \alpha \sqrt{2S} \left(l_{H} \left(E_{0}^{+} + \sqrt{E_{0}^{+2} + 2s \frac{\alpha^{2}}{l_{H}^{2}}} \right) \right)^{-1}, \quad (7)$$

 $\Phi_n(z)$ — осцилляторная функция, $l_H = \sqrt{c\hbar/|e|H}$ — магнитная длина.

В области магнитных полей, когда энергии зеемановского расщепления в спектре, спин-орбитального взаимодействия E_{SO} и расщепления в спектре, обусловленного действием электростатического поля сверхрешетки на электрон, сопоставимы между собой, выполняется условие $\hbar\omega_c \gg V_1, V_2; V_{1,2} \approx E_{SO}$. При этом становится оправданным расчет квантовых состояний электрона с гамильтонианом (1) в так называемом двухуровневом приближении [11], когда можно пренебречь примесью состояний невозмущенных пар уровней в состояниях магнитных блоховских подзон рассматриваемой пары с заданным значением номера *S*. При этом ширина расщепленной зонной структуры оказывается много меньше характерной энергии Ландау $\hbar \omega_c$.

Проведем далее расчет электронных спинорных состояний магнитных блоховских подзон, образованных из энергетических уровней основной пары, а именно, E_0^+ и E_1^- . Волновая функция электрона, удовлетворяющая обобщенным граничным условиям Блоха в магнитном поле [2], представляется в виде симметризованной линейной комбинации базисных состояний указанной пары уровней [11]:

$$\Psi_{\mathbf{k}}(x,y) = \begin{pmatrix} \Psi_{1\mathbf{k}}(x,y) \\ \Psi_{2\mathbf{k}}(x,y) \end{pmatrix} =$$

$$= \sum_{n=1}^{p} \sum_{l=-\infty}^{\infty} \exp\left(ik_{x}a\left(qa + \frac{nq}{p}\right)\right) \times$$

$$\times \exp\left(2\pi iy\frac{lp+n}{a}\right) \left(A_{n}(\mathbf{k})\psi_{0nl\mathbf{k}}^{+}(x,y) + B_{n}(\mathbf{k})\psi_{1nl\mathbf{k}}^{-}(x,y)\right), \quad (8)$$

где

l

$$\psi_{0nl\mathbf{k}}^{+}(x,y) = e^{ik_{y}a} \begin{pmatrix} 0\\ \Phi_{0}(\xi_{nl}) \end{pmatrix},$$
$$\psi_{1nl\mathbf{k}}^{-}(x,y) = \frac{e^{ik_{y}a}}{\sqrt{1+D_{1}^{2}}} \begin{pmatrix} \Phi_{0}(\xi_{nl})\\ -D_{1}\Phi_{1}(\xi_{nl}) \end{pmatrix}$$

— спинорные волновые функции электрона с энергиями соответственно $E_0^+ = \hbar \omega_c/2 + g \mu_B H$, $E_1^- = = \hbar \omega_c - \sqrt{(E_0^+)^2 + 2\alpha^2/l_H^2}$,

$$x_0 = \frac{c\hbar k_y}{|e|H}, \quad \xi_{nl} = \frac{x - x_0 - lqa - naq/p}{l_H},$$

 $\omega_c = |e|H/m^*c$ — циклотронная частота.

В представлении оператора \hat{H}_0 гамильтониан (1) есть матрица размерности $2p \times 2p$, имеющая блочный вид. Каждый из четырех блоков представляет собой трехдиагональную матрицу размерности $p \times p$. Решение задачи на собственные значения и собственные векторы для рассчитанной аналитически матрицы гамильтониана (1) проводилось нами численно методом Хаусхолдера в совокупности с QL–QR-алгоритмами.

Рис. 1. Зависимость положения магнитных подзон от числа квантов магнитного потока через элементарную ячейку сверхрешетки при $V_2 = 0.1V_1$

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Обсудим далее наиболее важные результаты расчетов. Расчетные параметры были максимально приближены к известным из экспериментов [16] для решеточных структур $In_{0.23}Ga_{0.77}As/GaAs: m^* = 0.05m_e, \alpha = 2.5 \cdot 10^{-11}$ эВ·м, a = 80 нм, g = -4.

На рис. 1 приведен график зависимости положения магнитных подзон от числа квантов потока через элементарную ячейку сверхрешетки. Поскольку потенциал V(x; y) при $V_{1,2} \neq 0$ не является знакопостоянным, магнитные подзоны группируются как над, так и под невозмущенными уровнями пары, отмеченными жирными точками на рис. 1. Для пяти квантов потока (стрелка на рис. 1) и амплитуды центросимметричной составляющей потенциала $V_1 = 1$ мэВ были рассчитаны спектр частицы и спиновая поляризация состояний в магнитной зоне Бриллюэна (МЗБ). При этом энергия Ландау составляла величину $\hbar\omega_c = 7.5$ мэВ и напряженность магнитного поля H = 32500 Э.

Проведенные нами модельные расчеты показывают, что в случае, когда потенциал сверхрешетки не обладает центром инверсии, экстремумы законов дисперсии в энергетических подзонах смещены относительно центра МЗБ вдоль линии $k_y = -k_x$ (см. рис. 2). Здесь необходимо отметить, что экстремумы зон расположены не в одной и той же точке магнитной зоны Бриллюэна. Поэтому становится принципиально возможным возникновение предсказанного ранее в работе [17] фотогальванического эффекта при прямых переходах между подзонами в пределах данной пары уровней.

Рис.2. Законы дисперсии в магнитных блоховских подзонах при $V_2 = 0.1V_1$ вдоль линии $k_y a = -k_x a$

Кроме того, непосредственными расчетами показано, что в рамках изучаемой модели (2) при соотношении между амплитудами потенциала $V_2/V_1 \approx \approx 0.13$ вторая и третья магнитные подзоны мгновенно касаются друг друга в некоторой точке магнитной зоны Бриллюэна. В момент касания подзон происходит смена доминирующих компонент волновых функций и, как следствие, первых чисел Черна коснувшихся подзон, определяющих, в частности, их холловский кондактанс [10, 11, 18].

В работе также был выполнен расчет средних значений проекций спина электрона в магнитных подзонах

$$\langle S_i^{\mu}(\mathbf{k}) \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{\mathbf{k}}^{\mu^*}(x, y) \hat{\sigma}_i \Psi_{\mathbf{k}}^{\mu}(x, y) \, dx \, dy, \qquad (9)$$

где $i = x, y, z; \mu$ — номер подзоны. На рис. 3 приведены результаты расчетов векторного поля средних значений проекций спинов в плоскости электронного газа в случаях центросимметричного ($V_1 = 1$ мэВ, $V_2 = 0$) и нецентросимметричного ($V_1 = 1$ мэВ,

Рис. 3. Векторное поле средних значений проекций спинов в плоскости электронного газа в следующих случаях: $a - V_1 = 1$ мэВ, $V_2 = 0$; $\delta - V_1 = 1$ мэВ, $V_2 = 0.1$ мэВ

 $V_2 = 0.1$ мэВ) периодического потенциала при p/q = 5/1 в низшей подзоне.

Векторное поле средних спинов в плоскости, перпендикулярной магнитному полю, имеет вихревую структуру, линии векторного поля являются касательными к изображенным изоэнергетическим линиям. Если потенциал сверхрешетки центросимметричен, то спиновая намагниченность в плоскости газа

$$\sum_{i}^{\mu} = \iint_{\text{M3B}} \langle S_{i}^{\mu}(\mathbf{k}) \rangle \ dk_{x} dk_{y} \quad (i = x, y)$$
(10)

равна нулю. В случае нецентросимметричного периодического потенциала $V_2 \neq 0$ в перпендикулярном магнитном поле появляется спиновая намагниченность в плоскости газа, а центр вихря векторного поля средних спинов (см. рис. 3) смещается в магнитной зоне Бриллюэна вдоль линии $k_y = -k_x$. Расчеты показывают, что данный управляемый посредством параметра асимметрии эффект возникает и в других моделях нецентросимметричного потенциала [19]. Отсутствие инверсионной симметрии периодического электростатического поля сверхрешетки является необходимым условием возникновения данного эффекта в электронном газе со спин-орбитальным взаимодействием в изучаемых структурах. Отметим также, что при варьировании параметра V_2/V_1 , когда определенные магнитные подзоны спектра касаются друг друга, изменение первых чисел Черна коснувшихся магнитных подзон не оказывает влияния на распределение в них средних спинов в магнитной зоне Бриллюэна, поскольку информация о точках ветвления фазы волновой функции [10] оказывается проинтегрированной по **k**-пространству.

4. ЗАКЛЮЧЕНИЕ

В рамках предлагаемой модели впервые был рассчитан спектр электрона, совершающего квантовомеханическое движение в нецентросимметричном двоякопериодическом потенциале сверхрешетки и перпендикулярном магнитном поле при учете спин-орбитального взаимодействия Рашба в электронном газе. Показано, что для случая центросимметричного знакопостоянного периодического потенциала энергетические подзоны в достаточно сильном магнитном поле группируются по одну сторону от положения каждого из невозмущенных уровней энергии в парах. Исследована симметрия законов дисперсии в магнитных подзонах. На качественном уровне показано, что в изучаемых структурах возможно возникновение фотогальванического эффекта при прямых переходах между состояниями магнитных подзон как внутри одной пары уровней, так и при переходах между энергетическими подзонами различных пар уровней с энергией кванта порядка $\hbar\omega_c$. Данный эффект обусловлен наличием инверсионной асимметрии периодического потенциала сверхрешетки.

Расчеты средних значений проекций спинов электрона в состояниях магнитных подзон в случаях центросимметричного и нецентросимметричного модельных потенциалов сверхрешетки позволили установить вихревой характер распределения спинов в плоскости электронного газа. В случае центросимметричного потенциала спиновая намагниченность газа в полностью заполненной подзоне равна нулю. Управляемый эффект ненулевой спиновой намагниченности в плоскости, перпендикулярной магнитному полю, возникает вследствие отсутствия инверсионной симметрии периодического электростатического поля сверхрешетки при наличии спин-орбитального взаимодействия в газе носителей.

Работа выполнена при финансовой поддержке РФФИ (грант № 13-02-00784).

ЛИТЕРАТУРА

- 1. L. D. Landau, Z. Phys. 64, 629 (1930).
- 2. P. G. Harper, Proc. Phys. Soc. 68, 874 (1955).
- T. Schlösser, K. Ensslin, and J. P. Kotthaus, Semicond. Sci. Technol 11, 1582 (1996).
- 4. Г. Е. Зильберман, ЖЭТФ **30**, 1093 (1956).
- **5**. Г. Е. Зильберман, ЖЭТФ **32**, 296 (1952).
- 6. Г. Е. Зильберман, ЖЭТФ 23, 49 (1964).
- 7. D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
- F. A. Butler and E. Brown, Phys. Rev. B 166, 630 (1968); A. Rauh, Phys. Stat. Sol. (b) 69, K9 (1975).
- Y. Hasegawa, Y. Hatsugai, and M. Kohmoto, Phys. Rev. B 41, 9174 (1990).
- 10. N. A. Usov, Zh. Eksp. Teor. Fiz. 94, 305 (1988).
- V. Ya. Demikhovskii and A. A. Perov, Phys. Rev. B 75, 205307 (2007).
- 12. X. F. Wang and P. Vasilopoulos, Phys. Rev. B 67, 085313 (2003).
- **13**. А. А. Перов, Л. В. Солнышкова, ФТП **43**, 214 (2009).
- 14. A. A. Perov, L. V. Solnyshkova, and D. V. Khomitsky, Phys. Rev. B 82, 165328 (2010).
- 15. S. V. Iordanski, Pis'ma v ZhETF 89, 423 (2009).
- M. C. Geisel, J. H. Smet, V. Umansky et al., Phys. Rev. Lett. 92, 256801 (2004); C. Albrecht, J. H. Smet, K. von Klitzing et al., Phys. Rev. Lett. 86, 147 (2001).
- В. Я. Демиховский, А. А. Перов, Int. J. Nanoscience 2, 593 (2003).
- **18**. А. А. Перов, Л. В. Солнышкова, ЖЭТФ **88**, 717 (2008).
- **19**. В. Я. Демиховский, А. А. Перов, Physica E **27**, 439 (2005).