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INVARIANT FORM OF COULOMB CORRECTIONSIN THE THEORY OF NONLINEAR IONIZATIONOF ATOMS BY INTENSE LASER RADIATIONS. V. Popruzhenko *National Researh Nulear University MEPhI115409, Mosow, RussiaReeived November 24, 2013Using the imaginary time method, a new formulation of Coulomb orretions to the amplitude of nonlinear ion-ization of atoms is given. The Coulomb orretions to the photoeletron ation and trajetory are presented inthe form independent of the integration path in the imaginary time plane. The obtained representation orretsthe previously known results and shows that the subdivision of photoeletron motion into the sub-barrier andafter-barrier parts is onditional and does not in�uene observables. The new orretion is partiularly relevantin the multiphoton regime of ionization.DOI: 10.7868/S00444510140400891. INTRODUCTIONThe theory of nonlinear ionization of atoms by in-tense laser radiation originates in the seminal workof Keldysh [1℄, where an e�ient nonperturbative ap-proximation for the amplitude of ionization by an in-tense low-frequeny eletromagneti �eld was formu-lated. The term �low-frequeny �eld� means in thisontent that the ionization potential Ip of an atom ismuh greater than the photon energy ~!, i. e., the mul-tiquantum parameter is large,K0 = Ip=! � 1: (1)Under this ondition, ionization an only proeed via anonlinear mehanism. The Keldysh ionization ansatzan be summarized as follows. In a strong laser �eld,the eletron ontinuum states an be with reasonableauray approximated by Gordon�Volkov waves [2, 3℄,solutions of the Shrödinger equation (Klein�Gordon orDira equation in the relativisti ase) for an eletronin the �eld of a plane eletromagneti wave. If thelaser �eld is strong enough, the interation of a liber-ated eletron with its parent ion an be disregarded inthe zeroth approximation. On the other hand, in orderto fully ionize a bound atomi level, the eletri �eldstrength E0 well below the harateristi eletri �eld*E-mail: sergey.popruzhenko�gmail.om

Eh of this level is usually su�ient, and therefore theondition F = E0=Eh � 1 (2)is satis�ed for most of the ases. Here, the harateris-ti �eld is de�ned asEh = m2e~ �2Ipm �3=2 (3)with m and e being the eletron mass and the elemen-tary harge. Under onditions (1) and (2), the in�ueneof the laser �eld on the bound state an be disregarded,and the ionization amplitude an be presented in theform A0(p) = � i~ Z d4x	�(V )p (x)Vint(x)	b(x); (4)where 	b is the bound �eld-free atomi state, 	(V )pis the Volkov funtion orresponding to the asymp-toti eletron momentum equal to p, and Vint is theeletron��eld interation operator. Equation (4) givesthe probability amplitude of nonlinear ionization at ar-bitrary values of the Keldysh parameter = p2mIp !eE0 ; (5)where ! is the laser-�eld frequeny.The theoretial approah based on the above ideais known in the literature as the Keldysh theory or664



ÆÝÒÔ, òîì 145, âûï. 4, 2014 Invariant form of Coulomb orretions : : :strong �eld approximation (SFA) [4, 5℄. Over the timeafter publiation of Keldysh's work [1℄, it was essen-tially developed and applied for desription of a varietyof strong-�eld phenomena. The present status of theKeldysh theory and SFA was reviewed in Refs. [6�8℄.Amplitude (4) does not aount for the eletron�ioninteration in the ontinuum. For systems bound byshort-range fores, e. g., negative ions, this interationis small, but still auses observable e�ets. For a re-view of theoretial approahes to desription of strong-�eld ionization of negative ions, we refer the readerto [9, 10℄ and the referenes therein. For atoms andmoleules, the Coulomb fore generates signi�ant ef-fets, whose desription requires an essential modi�a-tion of the theory. This was ahieved by the introdu-tion of Coulomb orretions into the phase of ampli-tude (4). Evaluation of these orretions is based onthe imaginary time method (ITM) [11℄, whih allowsexpressing amplitude (4) via the eletron ation in the�eld of a plane eletromagneti wave, alulated alonga lassial trajetory in omplex time. In the early pa-per by Perelomov and Popov [12℄, the ITM was appliedfor alulation of the total ionization rate of atoms inthe tunneling limit,  � 1. It was shown there thatthe Coulomb �eld enhanes the rate of ionization typi-ally by several orders of magnitude. Later, this resultwas generalized to the ase of arbitrary values of theKeldysh parameter [13℄ (assuming that inequality (1) issatis�ed, however). Besides enhaning the total ioniza-tion rate, the Coulomb interation was shown to gener-ate several e�ets aessible for experimental observa-tion, inluding the Coulomb asymmetry in elliptiallypolarized �elds [14�16℄, usps and double-hump stru-tures [17�19℄, low-energy strutures [20�23℄, and sidelobes [24℄ in momentum spetra of photoeletrons.Currently, the method of Coulomb orretions inthe theory of strong-�eld ionization is well developed.This inludes lassial trajetory simulations, a rela-tivisti version of the Keldysh theory, the trajetory-based SFA, and other approahes. For details, we re-fer to [6; 8; 25℄ and the referenes therein. The aimof this paper is to address one ontroversial issue in-herent to all the above-mentioned methods of evalua-tion of Coulomb orretions. Namely, the alulationproedure involves the photoeletron tunnel exit � aspatial point where the eletron appears in real timeand spae after ionization. In purely lassial simula-tions (e. g., in Refs.[15, 21, 23℄), the tunnel exit is astarting point for a alulation, and the in�uene ofthe eletron�ion interation on the eletron dynamisbefore the eletron appears at the exit is not onsid-ered. In quantum mehanial alulations, inluding

the ITM, both sub-barrier and after-barrier motion ofthe eletron are taken into aount. The sub-barriermotion mostly yields the imaginary part of the ationand in�uenes the absolute value of the ionization prob-ability. Photoeletron motion after the barrier proeedsin real time and spae and in�uenes the real part of theation, and therefore the interferene struture of pho-toeletron spetra. As a result, the tunnel exit entersCoulomb orretions to the photoeletron ation. Onthe other hand, the position of the tunnel exit is not anobservable, and hene it must not in�uene momentumdistributions.The question therefore arises: is it possible to for-mulate the method of Coulomb orretions in a formthat does not involve the tunnel exit, but only dependson the observables of the problem? Suh a formulationis given in this paper. It is shown that the Coulomborretion to the photoeletron momentum an be pre-sented in the form of a onverging integral in the om-plex time plane, whih only depends on the momentumitself. The integration paths must be hosen taking theanalytiity properties of the Coulomb interation en-ergy in omplex spae into aount. It is then shownthat the obtained Coulomb orretion reprodues thepreviously known result in the tunneling regime  � 1,but this is not the ase for  � 1.This paper is organized as follows. In Se. 2, we in-trodue basi equations and brie�y desribe the stan-dard approah to the alulation of Coulomb orre-tions. In Se. 3, we derive an invariant form of theCoulomb orretion to the photoeletron momentum,whih does not involve the tunnel exit position. Thehoie of the integration path in the omplex time planeis then disussed. The last setion ontains onlusions.2. BASIC EQUATIONSUsing the ITM, ionization amplitude (4) an be rep-resented in the form (here and hereafter, atomi units~ = m = e are used) [11; 12℄A0(p) / exp(iW0(p; ts; T )); (6)where W0 is the redued eletron ation in the laser�eld E(t),W0(p; ts(p); T ) == TZts �12v20 � E(t) � r0 � Ip�dt� r0 � v0����Tts ; (7)665



S. V. Popruzhenko ÆÝÒÔ, òîì 145, âûï. 4, 2014and the trajetory r0(t) satis�es the Newton equation�r0 = �E(t); (8)with the initial and �nal onditionsv20(ts) = �2Ip; r0(ts) = 0; v0(T ) = p: (9)Here, T ! 1 is the time instant when the eletron,having the veloity v0 and momentum p is observedat the detetor. A preexponential fator not importantfor our purposes is omitted in (6). Its partiular form isdetermined by the initial-state wave funtion [6, 7, 26℄.The �rst equation in (9) shows that the initial timets of eletron motion is always omplex, while the se-ond equation assumes that before the ionization event,the eletron was on�ned in the atom. Introduing thelaser �eld vetor potential suh that E(t) = � _A(t), wean represent the �rst equation in (9) in the form[p+A(ts)℄2 = �2Ip; (10)whih determines a omplex saddle point ts(p). TheITM equations provide us with a physially appealingpiture of ionization: the eletron starts from the originat a omplex time instant ts = t0+i�0, having an imag-inary initial veloity v0(ts) = �ip2Ip. As time arrivesto the real axis, t = t0, the veloity also beomes real.The eletron oordinate b � r0(t0) is also real for themost probable trajetory that minimizes the imaginarypart of ation (7). This point b is interpreted as thetunnel exit. For a linearly polarized monohromati�eld E(t) = E0 os'; ' = !t; (11)we obtain v0(') = p� E0! sin';r0(') = p! ('� 's) + E0!2 (os'� os's): (12)For the most probable trajetory p = 0, 's = iArsh ,and the tunnel exit point is given byb = E0!2 �p1 + 2 � 1� : (13)In the tunneling limit  � 1, this gives the standardpotential barrier width in a stati �eld b = Ip=E0; inthe opposite multiphoton regime, b =p2Ip=!.The proedure introduing Coulomb orretions toamplitude (6) is as follows [13, 25℄.1. The Coulomb-free trajetory is replaed by aorreted one:v0(t) = p+A(t)! v0(t)+v1(t); _v1 = �Zr0r30 ; (14)

where Z is the atomi residual harge (Z = 1 for ion-ization of neutral atoms and Z = 0 for negative ions).2. The photoeletron momentum is no longer on-served, and therefore its value p0 at the tunnel exit isdi�erent from the one measured by a detetor. Thus,the initial drift momentum is to be found fromv(T ) = p0 + v1(T ) = p: (15)3. The orresponding saddle point t0s = ts(p0) is al-ulated from the same saddle-point equation (10) withp0 instead of p. The momentum p0 is de�ned suh thatv1(t0) = 0.4. The Coulomb interation UC = �Z=r is addedto the ation.The Coulomb-orreted ionization amplitude isA(p) � exp(iW (p; t0s; T ));W = TZt0s �12v2 � E(t) � r+ Zr � Ip�dt� r � v����Tt0s : (16)Taking into aount that the orretion v1 in (14) isfound perturbatively and assuming that the Coulombperturbation is small ompared to the value of the �eld-indued ation W0, we an keep only ontributionslinear in the harge Z in (16). We note that beingsmall ompared to the ationW0, Coulomb orretionsare usually muh greater than unity in absolute value;this determines their signi�ant e�et on the ionizationprobability and momentum distributions.The �rst-order expansion of ation (16) yieldsW (p; t0s; T ) �W0(p0; t0s; T ) ++ TZts Zr0(�)d� � r0 � v1����Tts : (17)The �rst term is the Coulomb-free ation alulatedalong the new trajetory, and the seond is theCoulomb ation alulated along the Coulomb-free tra-jetory. The last term originates from the orretion tothe photoeletron trajetory and has a �nite nonzerovalue at the lower limit.The Coulomb integralWC = TZts Zr0(�)d� (18)is logarithmially divergent at the lower limit and re-quires regularization. It is performed by replaingts ! t� (Fig. 1) and mathing the result of integra-tion to the asymptoti form of the atomi bound-state666
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Fig. 1. Complex time plane with the saddle point ts == t0 + i�0: (a) the standard integration path onne-ting the saddle point with the real time of observationT is shown by a solid line. Other possible paths gi-ving the same result for W0 are shown by dashed lines;(b ) the irle of the radius jt� � tsj haraterizing themathing region. In the tunneling regime, the radius ofthis urve is greater than �0, and hene the real part ofthe stationary point an be hosen as a starting pointfor integration in Eq. (21)wave funtion [11�13℄. The mathing point satis�es theondition 1=K0 � !jt� � tsj � 1: (19)The regularized result has the form [12℄WC = �in� ln(2iK0T ) ++ TZts ( Zpr20(t) + in�t� ts) dt; (20)where the e�etive prinipal quantum number n� == Z=p2Ip is introdued. The integration path in (20)is usually hosen as shown in Fig. 1a by a solid line:

from the stationary point ts to its projetion t0 on thereal axis and then along the real axis. The respetiveontributions an be interpreted as the sub-barrier andafter-barrier orretions. For the most probable photo-eletron momentum, the �rst integral is imaginary andgives the Coulomb orretion to the rate of ionization[12, 13℄, while the seond is real and orrets the phaseof the probability amplitude and thus the interferenestruture of momentum distributions [25℄. For other�nal momenta, both sub-barrier and after-barrier or-retions respetively aquire a real and an imaginarypart. The sub-barrier orretion for arbitrary �nal mo-menta was �rst alulated in Ref. [27℄. It was shownthat taking it into aount essentially orrets the in-terferene struture of momentum distributions, impro-ving their agreement with results of ab-initio numerialsolutions of the time-dependent Shrödinger equation.For irularly polarized �elds, this phase orretion wasanalyzed in Refs. [28�31℄.To alulate the �rst term in (17), we must �nd therenormalized momentum p0(p). This alulation meetsa prinipal di�ulty. In the �rst order with respet tothe Coulomb fore,v1 = �Z TZts r0r30 dt: (21)This integral is divergent at the lower integration limit,and a similar problem appears with di�erential equa-tion (14), beause the partile starts at the origin wherethe Coulomb fore is divergent. A ommonly aeptedway of avoiding this di�ulty is to start integrationfrom the real time instant t0 when the eletron is atthe tunnel exit b = r0(t0). In other words, the in�u-ene of the Coulomb fore on the photoeletron mo-mentum is taken into aount only after the barrier.To the best of our knowledge, this ansatz was used inall the works with alulations of Coulomb orretionsto photoeletron trajetories. This approah yields thehigh-frequeny orretion to the rate of ionization [13℄and allows reproduing the Coulomb asymmetry in el-liptially polarized �elds [15, 16℄, the low-energy stru-ture [21, 22℄, and other e�ets in photoionization spe-tra. In the reent series of works [32�34℄, this methodfor alulating the Coulomb-indued orretion to thephotoeletron �nal momentum was used for quantita-tive desription of experiments on attoseond streaking.Despite good agreement with experimental dataand exat numerial solutions, the above-desribed ap-proah to the alulation of the �nal momentum is obvi-ously ontroversial. The tunnel exit is not a physiallydistinguished spatial point and nothing speial happens667



S. V. Popruzhenko ÆÝÒÔ, òîì 145, âûï. 4, 2014to the eletron there. Moreover, beause laser-induedation (7) is an analyti funtion of the omplex time,any integration path onneting the points ts and T ,an be hosen, suh that the time instant when theeletron veloity beomes real is arbitrary (see the il-lustration in Fig. 1a). Hene, the starting point for in-tegration in real time annot be de�ned in the theory.As a result, any proper expression for the Coulomb-orreted ation must involve not t0 but only the sad-dle point ts(p). The questions then our: (i) how tomake integral (21) meaningful and path-independent,and (ii) why do the previously obtained results basedon an inorret regularization of (21) yield good agree-ment with the data? These questions are answered inthe next setion, where an invariant expression for theCoulomb orretion to the �nal photoeletron momen-tum is derived.3. INVARIANT FORM OF THE COULOMBCORRECTIONCoulomb orretion (20) is already presented in theform independent of the integration path, if this pathdoes not interset uts of the funtion 1=r0(t). Posi-tions of the branh points and the orresponding utsare disussed at the end of this setion.To obtain a �nite expression for the Coulomb-or-reted momentum, we onsider Eq. (14) at a time t�that satis�es (19). Under this ondition, the eletronis far from the atom, and hene the Coulomb fore issmall ompared with the laser one, but its exursionis still small ompare to the eletron quiver amplitudein the laser �eld, E0=!2. Then r0 from (12) an beexpanded in a series in t� ts:r0(t) � [p+A(ts)℄(t� ts)� 12E(ts)(t� ts)2:Omitting the terms that are small under ondition (19),after a simple algebra, we obtainv1 = TZts ��Zr0(t)r30(t) + f(t� ts)� dt++ iZFg(p; ) ln(T ); (22)where f = iZF!� q+ a(' � 's)2 � g(q; 's)'� 's � (23)and g = 12 �e+ 32 (q+ a)(e � (q+ a))� os's: (24)

Here, the dimensionless quantities are q = p=pFand a = A(ts)=pF , with the �eld-indued momentumpF = E0=! and the unit vetor e along the polarizationdiretion. The integral in (22) onverges and its valueis independent of the integration path if it does not in-terset the uts of the funtion r0=r30. The obtainedvalue of v1 orrets the initial omplex photoeletronveloity, suh thatv(ts) = p+A(t0s)� v1 � p0 +A(t0s): (25)Equations (22)�(25) de�ne the ation in (17) and thusthe ionization amplitude and present the main resultin the paper. They improve the previously aeptedequation (21) for the Coulomb orreted photoeletronmomentum.Unlike laser-indued ation (7), Coulomb integral(18) is not an analyti funtion in the whole omplexplane. The analyti funtion r20 from (12) in general hasan in�nite number of �rst-order zeros, whih generateorresponding branh points and uts of the funtions1=r0 and r0=r30. A proper integration path in Eqs. (20)and (22) should onnet ts and T without intersetingthe uts. A map of uts is shown on Fig. 2 for sometypial set of parameters. The roots of the equationr20(tn) = 0 (26)ome in pairs, whih merge for the eletron momentaparallel to the polarization axis. In this speial ase,the tn are seond-order zeros, like the saddle point tsalways is. Then the Coulomb potential energy has nobranh points but �rst-order poles only. The preseneof even a small lateral momentum omponent onvertsthese poles into pairs of branh points, whih reedefrom another with as p? inreases. Cuts are de�ned asthe lines in the omplex time plane where r20 < 0. Fortrajetory (12), their asymptoti forms are given by'n = �2 + �n; n = 0; 1; 2; : : : (27)As is seen from Fig. 2, it is possible to onnet thetime instants ts and T by a urve avoiding the uts. Amore detailed study shows that this is always the ase.This urve may even oinide with the standard path(solid urve in Fig. 1) assoiated with the tunnel exit,but not for all �nal momenta: for small longitudinaland large perpendiular momenta, a branh point ap-proahes this line (see Fig. 2b ); for px = 0, it is learlyseen that it lies exatly between ts and t0. Indeed, theequation p?!E0 ( �  0) = h � h 0always has a solution 0 <  b <  0 if p? is su�ientlylarge or if  � 1.668
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Fig. 2. Branh points (solid dots) and uts (lines) ofthe funtion 1=r0(t) in the dimensionless omplex timeplane for emission at 0.1 rad (a) to the polarization axisand (b ) in the perpendiular diretion. The parametersare E0 = ! = 0:05, p = 1:0. Branh points ome inpairs. The stationary point ts is a �rst-order pole4. CONCLUSIONSTo onlude, we have derived a new expression forthe Coulomb-orreted photoeletron momentum for astrong �eld ionization of atoms. The main advantage ofEqs. (22)�(24) ompared to the previously known resultis that their form is invariant with respet to the hoieof the integration path, i. e., the Coulomb-orreted a-

tion remains a funtion of a omplex variable as it wasin the Coulomb-free theory. In the new formulation,the tunnel exit does not play the role of a physiallysigni�ant spatial point.For their appliability, Eqs. (22)�(24) require theondition 4K20F � 1; (28)whih follows from (19). It is equivalent to 2K0 � and imposes an upper bound on the Keldysh parame-ter.The question may arise: why do the alulationsbased on the meaningless regularized form of expres-sion (21) with ts ! t0 in many ases yield goodagreement with experimental data and numerialresults? The reason beomes lear if we ompare thebarrier width with the distane between the eletronand the ion at the mathing time instant t�. In thetunneling regime, the two length parameters r0(t�)and b are of the same order, and therefore the tunnelexit an be taken as a starting point for eletronmotion, as an be any other spatial point from themathing irle shown in Fig. 1b. In the opposite limit � 1, we have r0(t�) � b beause b � E0=!2. Thenthe integral in (22) ontains an essential �sub-barrier�ontribution, omitted in the standard expression forthe Coulomb-orreted momentum. Thus, our resultsare virtually idential to the previously known ones inthe regime of tunneling and provide new expressionsfor the Coulomb-orreted momentum and ation inthe multiphoton limit.The author is grateful to W. Beker, D. Bauer,A. Di Piazza, C. F. Faria, A. M. Fedotov, andM. V. Frolov for valuable disussions. This paperwas supported by the President program for sup-port of young Russian sientists and leading researhshools (grant �MD-5838.2013.2) and the RFBR(grant � 13-02-00372).REFERENCES1. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964).2. D. M. Volkov, Z. Phys. 94, 250 (1935).3. V. B. Berestetsky, E. M. Lifshits, and L. P. Pitaevsky,Quantum Eletrodynamis, Oxford, Butterworth-Heinemann (1971).4. F. H. M. Faisal, J. Phys. B 6, L89 (1973).5. H. R. Reiss, Phys. Rev. A 22, 1786 (1980).669
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