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Spontaneous decay rates of atoms into guided modes of an optical nanofiber are found for atomic transitions
between the hyperfine structure sublevels. The decay rates are evaluated for the hyperfine structure transitions
in Rb atoms. The efficiency of the guided mode excitation by spontaneous decay of the specific hyperfine
atomic states is examined for both the fundamental fiber mode HE;; and the higher-order modes TEy;, TMo1,

and HE21.
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1. INTRODUCTION

Recently, there has been an increasing interest
in the interactions between optically excited atoms
and dielectric nanobodies, such as optical nanofibers,
nanospheres, and nanodisks. This is mostly due to the
potential such systems offer for controlling and ma-
nipulating single atoms, and also due to the poten-
tial of the systems as regards controlling light prop-
agation inside optical nanostructures. From a more
general standpoint, optical nanostructures can be re-
garded as interfaces that allow connecting the atoms
located near nanostructures with the electromagnetic
fields propagating inside the nanostructures and ac-
cordingly control the states of both the atoms and
photons guided inside the nanostructures. Known ex-
amples of such interface phenomena are the enhanced
spontaneous emission of optically excited atoms into
the nanofiber fundamental guided mode [1-4], the red
shift of light spontaneously emitted by atoms located
near nanofibers or nanospheres [5-10], and excitation
of atoms trapped around optical nanofibers by light
propagating along the nanofibers [11-14]. New inter-
face phenomena may arise in experiments devoted to
entanglement between distant trapped atoms via the
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guided modes of the nanofiber [15, 16]. In particular,
efficient excitation of the higher-order guided modes
can be achieved by spontaneous emission of atoms lo-
cated near the nanofiber interfaces [17].

One of the most efficient techniques that allow cou-
pling the atoms and the electromagnetic field of a
nanofiber is the pumping of the guided modes of a
nanofiber by spontaneous emission of optically excited
atoms. This technique has been experimentally verified
for Cs atoms and proved to have very high efficiency
[6]. In the research on pumping the guided modes of
optical nanofibers by spontaneous emission of atoms,
a two-level atomic scheme has so far been considered
as a basic model. The only extension of this model
was given in paper [15], which considered the transi-
tion between atomic states degenerate over magnetic
sublevels with the example of a Cs atom. The present-
day experiments basically use the atoms, such as Rb
and Cs, that emit spontaneous radiation into the opti-
cal modes of nanofibers performing transitions between
the hyperfine structure states. Accordingly, evaluating
the spontaneous decay rates for atomic transitions be-
tween hyperfine structure states is of importance for
the comparison between theoretical pumping rates and
experimentally observed ones.

In this paper, we present an analysis of the spon-
taneous decay rates of atoms into the guided modes of
optical nanofibers for a rather general scheme of hy-
perfine structure sublevels related to an allowed dipole
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transition. The rates of spontaneous decays into guided
nanofiber modes are given both for arbitrary hyper-
fine structure transitions and for the scheme relevant
for 8Rb atoms. The decays of an 3Rb atom into the
guided modes of a nanofiber are considered for both the
fundamental mode HEq; and three higher-order modes
TEOl, TMOl, and HE21.

2. DECAY RATES AT TRANSITIONS
BETWEEN THE HYPERFINE STRUCTURE
STATES

We outline a derivation procedure for the rates of
spontaneous decay of an atom into nanofiber guided
modes for atomic transitions between the hyperfine
structure states. We assume that the atom located near
the nanofiber surface is excited by laser light and spon-
taneously decays, pumping the nanofiber guided modes
as shown in Fig. 1. We consider spontaneous decays of
the atom at the dipole transitions occuring between
the hyperfine structure states |a,F,) and |a.F,) that
are defined by the total angular momenta F, and F,
and degenerate over the magnetic sublevels M, and
M, as shown in Fig. 2. In such a scheme, the dipole
interaction terms are to be defined with respect to the
nondegenerate states |ag FyMy) and |oe Fe M.).

The derivation of the spontaneous decay rates fol-
lows the Weisskopf—~Wigner approach based on the

Fig.1. Schematic of spontaneous emission of an atom

into an optical nanofiber. An atom A is optically ex-

cited by near-resonant laser light LL. Spontaneous

emission can excite four guided modes GM, two with

the o& polarization and the propagation direction +z,

and two with the o polarization and the propagation
direction —z

4 JKBT®, Beim. 5

______ i M |ae,, Fe,,)
_______ s MRy
_______ — i M., |te, Fey)
....... —_— Mg, |a9mFgm>
_______ - . Mo . |atgs Fgs)
....... —_— Moy |a91F91>

Fig.2. The atomic level scheme describing hyperfine
structure sublevels for the allowed dipole transition

Hamiltonian for a “multilevel atom+vacuum field” sys-
tem taken in the rotating wave approximation:

1
H = Zhwegblgbge + Zhw)\ (aia,\ + 5) _
g,e A

— Z (deg . g)\nga/\ + dge ' g:bgea;) ) (1)
A,g,e

where w,, is the frequency of the atomic transition be-
tween the ground-state sublevel |g) = |agFyM,) and
the excited-state sublevel |e) = |a.F,M,), wy are the
photon frequencies, a; and a) are the photon creation
and annihilation operators, blg and by are the atomic
excitation and de-excitation operators, and de, and dge
are matrix elements of the atomic dipole moment. The
vector &€, defines the “electric field amplitude of a sin-
gle photon” with a unit polarization vector ey and the
wave vector k,

Tiw ik-r

_ . 5
Ex=1 250ve>\6 ) (2)

where V is the quantization volume and g is the elec-
tric constant.

For Hamiltonian (1), equations for the probability
amplitudes in the simplest case of a vacuum field taken
initially in the vacuum state are
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Ce,0 = ﬁ Z deg . g)\ exp(_ZA/\’egt)c!]’l,\?
A (3)

) .
ﬁdge - €Y exp(iAy eqt)Ce,

Cg,1x =

where ¢, 1, are the probability amplitudes of the
states that include the ground atomic substate |g) =
= |agFyM,) and the vacuum field state with one pho-
ton in the mode A, and ¢, g is the probability amplitude
of the state that includes the excited atomic substate
le) = |a.FeM,.) and the vacuum field state with zero
photon numbers in all modes. In the above equation,
A\ eg = Wx — Wey is the detuning of the vacuum mode
frequency wy with respect to the atomic transition fre-
QUENCY Weg-

Taking a formal solution of the second equation in
the above set,

t

Ldye €5 / exp(ilnegt)coo(t') b, (4)

Cg,1n =
to

and substituting it in the first equation, we can obtain
an equation that describes the spontaneous decay of
the upper atomic substate |e) = |a. F. M.) to the lower
substates |g) = |agFyMg):

. 1 2
Ce0 = —§Z|deg €57 %
A

t

y / exp [{A e (' — )] coo(t) dt'.  (5)

to

This equation is used below to determine the rates of
spontaneous decays of an atom into guided modes of a
nanofiber for a rather general atomic hyperfine struc-
ture scheme shown in Fig. 2.

2.1. Decay into free space

Applying Eq. (5) to the vacuum modes of free space
regarded as periodic with the quantization lengths L;,

(6)

and standardly summing over all possible photon states
and accordingly over proper ground substates gives a
well-known decay equation for the upper atomic sub-
state |e) = |aeFeM,):

kjLj =2mnj, j=umx,y,%,

(7)

Here, vsp = Wsp(aeFe)/2 is half the total spontaneous
decay rate from the hyperfine structure state |a.F.) to

Ce,0 = —Vsp Ce,0-
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all the hyperfine structure states |agyFy) belonging to
the ground state,

WSZD(QGFE) = 270161;'6 =2 Z YaeFe,agFy-
agFy

(8)

The partial spontaneous decay rate from the excited
state |a.F.) to the ground state |agzFy) is

WsplaeFe = agFy) =274, F. ,a,F, =
2
1 afacFlldlag Bl <k,
dmeg 3 (2F. + 1)hc? ’

(9)

where (a.F, ||d|| agFy) is a reduced dipole matrix ele-
ment for a hyperfine structure transition.

The reduced dipole matrix element (ae Fe ||d|| ag Fy)
can be expressed through the reduced dipole matrix el-
ement (o, ||d|| ag) for the fine structure transition de-
fined by the quantum numbers o = nLSJI [18]. This
gives an expression for the spontaneous decay rate be-
tween two hyperfine structure states in terms of the
6j-symbols:

Wsp(OéeFe — OégFg) = 2'}’aeFe7agFg =

Jo Fo I

2
Wip(ag = ae),
F, 1} playg )

= (2J.4+1)(2F,+1) {

_ 1 4 [ lldll ag)” w2,
dreg 3 (2Je + 1)he?

where Wy,(ag — a.) is the spontaneous decay rate
at the fine structure transition |a.) — |ag) and J, is
the quantum number of the atomic momentum for the
excited fine structure state |a.).

Weplag = ae)

2.2. Decay into nanofiber guided modes

We represent the electric field operator of the guided
modes of a nanofiber in the standard form

E=> &\ +He, (10)

where £ is the electric field of a single vacuum guided
mode and the index A describes the direction of pro-
pagation and polarization of a single vacuum guided
mode. The electric field of a single guided mode is rep-
resented similarly to Eq. (2) as

s -
£, :i,/ﬁ&b\ exp(ifrz + imyp),

where wy is the mode frequency, ) is the propaga-
tion constant, m is the quantum number of the mode
angular momentum, &) E,(r) is the normalized

(11)
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amplitude of the electric field, which depends on the
transverse coordinate r, and L is the length of a one-
dimensional “quantization box” introduced for counting
the allowed values of the propagation constant 3 [19].
The normalized electric field amplitude of a single
guided mode is assumed to satisfy the condition

r L2
271'/712(7')‘8)\‘ rdr =1, (12)

0

where n(r) is the value of the refractive index, equal
to ny = 4/ inside the fiber and n, = 1 outside the
fiber. The above representation of the vacuum field
corresponds to the standard form of the vacuum field
Hamiltonian represented by the second term in Eq. (1):

1
Hyae = QaOEZ/dV|£>\|2 (ai\ax + 5) =
A
¥ 1
:thw\ a)\aA-l-i . (13)
A

For any guided mode of an optical nanofiber, the nor-
malized electric field can be determined from Eq. (12)
with the use of the eigenvalue equation for the propa-
gation constant 3 = 3.

We now apply basic equation (5) to the vacuum
guided mode of an optical nanofiber. Taking into ac-
count that the vacuum field of a single guided mode can
be considered periodic in the direction of propagation
with a period L,

BnL =2mn, n=1,23 ..., (14)
we can replace the sum over discrete numbers in Eq. (5)
with an integral such that

;—>%/dﬂ.

After that, using the one-to-one correspondence be-
tween values of the propagation constant and frequen-
cies of the vacuum modes, f = (w), and regarding
as a continuous quantity, we can replace df with df =
= B'dw, where ' = df/dw. This gives

Z—) %/B'dw.

Next, integrating Eq. (5) over the frequency and time,
we can reduce it to the decay equation

C'670 = —YguidCe,0 (15)

describing spontaneous decay of the atom between the
substates |aeFe M) and |agFy M) followed by excita-
tion of the guided mode with the specific propagation
direction +z or —z and specific circular polarization
o0 = +1 or 0 = —1. Accordingly, the total sponta-
neous decay rate into the guided mode with a specific
propagation direction and specific circular polarization
is

Wguid = 279uid =

_ WegBI<aeFeMe|dU|agFgM9>2 ‘é

2
16
Seoh , (16)

where (a.F,M.|ds|agFyMy) is the projection of the
atomic dipole moment on the field direction [4], o =
= +1, and Wey = Wa,F.;a,F,- Lhe last equation can be
rewritten in a convenient form by introducing the di-
mensionless derivative ' = df/dk = ¢’ and using an
expression for the dipole matrix element through the
3j-symbols,

(aeFeMe|dy|og FyMg) =

:(—1)Fe_M€ Fe 1 X
-M., o M,

X (aeFe||d||agFy), (17)

and an equation for the spontaneous decay rate from
the excited state | Fe) to the ground state |agFy):

1 4 {aeFe|dl|og Fy) | w2,

Wsp = 27sp = 18
P T ey T 3(2F, + i3 (18)
This gives

3)\2 i

Wguid = 279uid = Wsp8—f(2Fe + 1) X
2
F, 1 F -
X g |£|2. (19)
-M, o M,

We note that the reduced dipole matrix element for
the hyperfine structure transition is expressed through
the reduced dipole matrix element (a. ||d|| ag) for the
fine structure transition as

(aeFe ||d]| agFy) =
= (-7 J9F, + 1)(2F. +1)

Jo Fo 1
X{ F, g1 }(aelldllag>~ (20)
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Fig.3. The atomic level scheme describing the hyper-
fine structure sublevels in the excited and ground states
of an *Rb atom

3. DECAY RATES FOR Rb ATOMS

We estimate spontaneous emission rates into the
first four guided modes for 8°Rb atoms (Fig. 3). We
assume that the atoms emit fluorescence light into an
optical nanofiber made of fused silica with the permit-
tivity e = n? = 2.1. The 3°Rb atoms are assumed
to be excited at the 55, ,,-5P3/, optical dipole tran-
sition, with the wavelength A = 780 nm. The spon-
taneous decay rate from the upper 5P state into free
space is Wy = 2w+ 6 MHz. We choose the fiber radius
a = 400 nm at which, under the chosen parameters,
the V-number has the value

2ma

V=%

2 _ 2
ny —nj; =

3.38.

At this value of the V-number, atomic fluorescence can
excite four fiber modes, HE{1, TEg1, TMy1, and HE,
with the respective propagation constants 5/k = 1.315,
1.150, 1.105, 1.095. Eigenvalue equations for the pro-
pagation constants and electric field distributions for
the chosen modes are given in Appendix. The depen-
dence of the propagation constants $ on the V-number
is shown in Fig. 4 for the region

2wa

820

Fig. 4. Normalized propagation constant 3/k as a func-

tion of the V-number for the guided modes HE; (solid

line), TEo: (dotted line), TMy: (dashed line), and
HE.; (dot-dashed line)

where the fundamental mode HE;; coexists with the
first three higher-order modes TEq;, TMy;, and EHo; .
For a fused silica fiber located in the vacuum, with
ni1 = 1.45 and ns = 1, the above condition defines the
region of the fiber radii as 0.365\ < a < 0.581\.

We evaluate spontaneous decay rates of > Rb atoms
into the nanofiber guided modes for different excited-
state magnetic sublevels. Evaluation for each guided
mode is based on the electric field distribution given in
Appendix.

The spontaneous decay rate into the fundamental
mode HE;; with a given propagation direction +z or
—z and a given circular polarization ¢ = +1 for the
specific initial atomic state |F,, M.) is

3/\26,
Wop g2

o L)/ K@) o gy

TL%Nl + TL%NZ
2
x ( > {Kf(qr) +

[(1 —5)2K2(qr) + (1 + s)%(%(qr)] } . (21)

Wguid(r) - 27guid =

Fe
—M,

1 F,
o M,
2
ny
2q

The spontaneous decay rate into the TEg; mode with
the specific propagation direction 4z or —z and specific
circular polarization ¢ = 41 for a given initial atomic
state |F., M.) is
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Fig.5. Normalized pumping rates for the fundamental guided modes (a) HE11, (b) TEo1, (¢) TMo1, and (d) HE2; as
functions of the distance between the 8>Rb atom prepared in the hyperfine structure state F. =4, M, = —2,—1,... ,4 and
the axis of the optical nanofiber with the radius a = 400 nm
3N23 1 3N23" J3(ha)/ K2 (qa)
Wouia(r) = ‘ s—(2F, +1) x Wouia(r) = 2 = 2F, +1) x
guid(r) PRr2q2at n2P; + n%Pg( e +1) guid(T) *P8n2a2 n2R; + niR, (2Fe +1)
2 2
F, 1 F F, 1 F
X ‘ g Ki(qr). (22) X ‘ g {Kg(qr) +
-M, o M, -M, o M,

The spontaneous decay rate into the TMg; mode with
the specific propagation direction +z or —z and polar-
ization o = +1 considered for the specific initial atomic
state |Fe, M) is

38 1
871262 n2Q + n3Q-

><< ! Fg>2><
). (23)

o M,
x | K2(qr) + ﬂ—2K2( )
o\qr 2ot qr
The spontaneous decay rate into the HE5; mode with
the specific propagation direction +z or —z and polar-
ization 0 = +1 considered for the specific initial atomic
state |Fe., M.) is

Wuia(r)

(2F. +1) x

Fe
—M,

821

2
4
2q

[(1—u)’K7(qr) + (1 +u)*K3(gr)] } . (24)

We choose the practically important case of a cyclic
dipole transition F, = 4 — Fj 3 and consider
the o 1 polarized guided mode for definiteness.
The normalized spontaneous decay rates Wyyia/Wsp =
= Yguid/7Vsp for the initial atomic states F, = 4, M, =
= —2,-3,...,4 are shown in Fig. 5 as functions of the
distance between the atom and the optical nanofiber
axis.

As another example, we compare spontaneous emis-
sion rates into the fundamental guiding mode for two
different, hyperfine structure transitions F, = 3, M, =
=3=2F, =3, My=3and F, =3, M, =3 = F, =2,
M, = 2. The position dependence of the spontaneous
decay rates for these transitions is shown in Fig. 6.
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Fig.6. Spontaneous decay rates into the fundamental
guided mode HE;; for the hyperfine structure transi-
tions F, =3, M. =3 — F;, =3, My = 3 (curve 1)
and F. =3, M. =3 — F, =2, My =2 (curve 2)

4. CONCLUSION

We have examined the efficiency of coupling the flu-
orescence emitted by a multilevel atom possessing a hy-
perfine structure into an optical nanofiber and found
that the decay rates strongly depend on the initial
atomic state. Numerical evaluations for Rb atoms show
that the decay rates for different magnetic sublevels can
differ by an order of magnitude.

We also found that the decay rates into the
higher-order modes can be about 5 to 10 times higher
than that into the fundamental mode. This can be ex-
plained by the proportionality of the spontaneous de-
cay rate to the intensity of the vacuum guided mode
of a nanofiber. Because the evanescent “tail” of the
higher-order modes exceeds that of the fundamental
mode, the higher-order modes have a higher rate of the
excitation by fluorescent light of atoms located outside
the fiber.

A considerable increase in the spontaneous decay
rate for higher-order modes can be important in the
experiments on excitation of optical nanofibers by the
fluorescent emission of atom clouds confined around
the nanofiber. The high pumping rate of higher-order
modes in optical nanofibers may find important ap-
plications in quantum optics and metrology, including
the creation of new trapping geometries for atoms, new
types of coupling to microresonators, new schemes for
evanescent field sensing of atoms, and high-accuracy
position detection of atoms around nanofibers.

This work was supported by the RFBR (Grant
No. 12-02-00867-a).

APPENDIX

Propagation constants and electric fields of the
four lowest guided modes

For the fundamental guided mode HE;{, the prop-
agation constant is defined by the eigenvalue equation

Jo (ha) _ ni+n3 Kj(qa) 1 ni-n3
haJi (ha)  2n? qaKi(ga) h%a®  n?

( K{ (ga) >2+ < ik )2 . (A1)
2qa K (qa) a?h?q? ’ ’

For the TEg; mode, the propagation constant is defined
by the eigenvalue equation

Ji (ha) __K 1’(qa) 7 (A2)
haJy (ha) qaKo(qa)
for the TMp; mode, by the eigenvalue equation
h 2 K
']1 ( a’) _ _n_g 1y(qa) , (A3)
haJy (ha) n? qaKo(qa)
and for the mode HE5;, by the eigenvalue equation
Ji(ha) ni+n3 Kj(qa) 2 n3—n3
haJs(ha) — 2n} qaKs(ga)  h2a2  n?
- 2 2 1/2
K} (qa) N 2n1kf3 (A4)
2qaKs(qa) a2h?q? ' '

where .J,,, are Bessel functions of the first kind, K, are
modified Bessel functions of the second kind, k = w/e,
a is the fiber radius, and

h=1/n2k? — B2, q=/B%?—nik2.

The spatial distribution of the electric field for any
guided mode can be written using the cylindrical unit
vectors e, e,, and e.:

£ = e,,g'r + ewfw + eZENZ.

For the chosen four lowest guided modes, the cylindri-
cal components of a normalized electric field amplitude
are given by the following equations. The cylindrical
components of a normalized electric field amplitude for
the HEq; mode in the core region are [20]

s _ . .4 Ki(gqa)

(‘:r = ZAE Jl (ha) [(]. — S)Jg(hr) —
— (L4 s)Ja(hr)],

g, =— % {;11((5;‘)) (1= s)Jo(hr) + (A.5)
+ (1 +s)Jz(hr)]

5 o494 Ki(ga)

SZ = QAB Jl(ha) Jl(h’l“),
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and those outside the core region are

& =iA[(1—5)Ko(qr) + (1 + s)Ka(qr)],
fj = —A[(l —8)Ko(qr) —

£, =2A(q/B) Kilqr).

In the above equations, s is a dimensionless parameter

such that

_1/h%a® +1/¢%a®
- s

where the denominator is
S = J{(ha)/haJ,(ha) + K1 (qa)/qaK;(qa).
The normalization constant defined from Eq. (12) is

_ B Ji(ha) /K (qa)
2q \/27a® (2N + n2N,)’

where

N, = Y { (1= 5)? [J3(ha) + J?(ha)] +
+ (1+5)? [J3(ha) — Jy(ha) J3(ha)] } +

%[J1 (ha) — Jo(ha)Js(ha)]
and
_ Ji(ha)
= 3 q0)
| 097 [R2a0) ~ K aa)] -

— (1+5)? [Kg(qa) — K (qa)Kg(qa)]] —

K (qa) + Ko(qa)K2(qa)} .

For the TEp; mode in the core region,

i Ko(gqa)/Jo(ha)

£, = Jy (hr), (A.7)

\/7_Tha2 \/ TL%Pl + n%Pg

o = = d I(l (qr)v (AS)

(1+s)Ka(qr)], (A.6)

where
_ 1 K3(qa) »
Pl - a2h? Jg(ha) [‘]1 (ha) JO(ha)J2(ha)] N

P2 = 3 [Folan)Ka(go) ~ K7 (qa)].

For the TMy; mode in the core region,

i Ko(qa)/Jo(ha)

= ha 2 v ras
£, =0, (A.9)
é 1 Ko(qa)/Jo(ha) Jo(hr),

z —
VTa \/niQ1 +13Q:
and outside the core region,

g = Jj_fq /n2Q1 + m3Qa K (ar),

£, =0, (A.10)

~ 1 / i
gz = ﬁ H%Ql —l—ngngx’o(qr),

where

K3(4a) ST
Q1 = ZEU | ha)+ "L 7 k) o) o)

ﬂ2 2k2
Q2 = 5 Kolaa) Ka(qa) = K5 (q0) = =5 K (ga).

For the HE2; mode in the core region,

~ zﬂ
Er = Aoy oo [(1=u)Jy (hr) = (L) Ty (hr)]

&y = —An ﬂh (=) 7y () (1) Ty ()]
5 = AQlJQ(hT)7

(A.11)

and outside the core region,

i3 Jz(ha)

2q K»(qa)

x [(1 —u)Kyi(gr) + (1 +u)K3(qr)],

B Ja(ha)

5 Fa(qa) X (A.12)
% [(1 = u)Ki (qr) -

5 JQ(ha)

&, = 21Ix2(q )Iﬁz( qr).

In the above equations, u is a dimensionless parameter
such that

gr = Ay

Ecp:_ 215

(1+u)Ks(qr)],

2(1/h%a® + 1/¢%a?)
J3(ha)/haJs(ha) + K} (qa)/qal>(qa)”

u =

823
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The normalization constant defined from Eq. (12) is

1
T e R
where
Ry = J3(ha) — Jy(ha)J3(ha) +
+ QB_}LZ [(1 = u)? (JF(ha) — Jo(ha)J2(ha)) +
+ (L4 u)? (J3 (ha) — Jo(ha)Js(ha))]
_ J3(ha) [ . . -
> = () {Bl(qa)f&s(qa) - Kj(qa) +
+ 25 (1= 02 (Rl Kalga) - K (0a) +

+ (14 u)? (Kg (qa)K4(qa) — K3 (qa))] } .
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