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ANDREEV�MAJORANA BOUND STATES IN SUPERFLUIDSM. A. Silaev a;b*, G. E. Volovik a;**aLow Temperature Laboratory, Aalto University,P. O. Box 15100, FI-00076 Aalto, FinlandbInstitute for Physis of Mirostrutures, Russian Aademy of Sienes603950, Nizhny Novgorod, RussiaLandau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaReeived May 5, 2014We onsider Andreev�Majorana (AM) bound states with zero energy on surfaes, interfaes, and vorties indi�erent phases of the p-wave super�uids. We disuss the hiral super�uid 3He-A and time reversal invariantphases: super�uid 3He-B, planar and polar phases. The AM zero modes are determined by topology in thebulk and disappear at the quantum phase transition from the topologial to nontopologial state of the super-�uid. The topology demonstrates the interplay of dimensions. In partiular, the zero-dimensional Weyl pointsin hiral super�uids (the Berry phase monopoles in momentum spae) give rise to the one-dimensional Fermiar of AM bound states on the surfae and to the one-dimensional �at band of AM modes in the vortex ore.The one-dimensional nodal line in the polar phase produes a two-dimensional �at band of AM modes on thesurfae. The interplay of dimensions also onnets the AM states in super�uids with di�erent dimensions. Forexample, the topologial properties of the spetrum of bound states in three-dimensional 3He-B are onnetedto the properties of the spetrum in the two-dimensional planar phase (thin �lm).Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200501. INTRODUCTIONMajorana fermions are ubiquitous in superon-dutors and fermioni super�uids. The Bogoliubov�de Gennes equation for fermioni Bogoliubov�Nambuquasipartiles an be brought to a real form by a uni-tary transformation. This implies a linear relationbetween the partile and antipartile �eld operators,whih is the hallmark of a Majorana fermion. Thefermioni statistis and Cooper pair orrelations giverise to Majorana fermions, irrespetive of geometry, di-mensionality, symmetry, and topology [1�3℄. The roleof topology is to protet gapless Majorana fermions,whih play a major role at low temperatures, when thegapped degrees of freedom are frozen out. For someombinations of geometry, dimensionality, and symme-try, these Majorana fermions behave as emergent mass-less relativisti partiles. This suggests that Majorana*E-mail: msilaev�ipm.si-nnov.ru**E-mail: volovik�boojum.hut.�

fermions may serve as building bloks for onstrutingthe Weyl partiles of the Standard Model [4℄.Here, we onsider gapless Majorana fermions, whihappear as Andreev bound states on the surfaes ofsuper�uids and on topologial objets in super�uids:quantized vorties, solitons, and domain walls. In allases, the bound states are formed due to the subse-quent Andreev re�etions of partiles and holes. Thekey fator for the formation of Andreev bound states ona small defet with the size of the order of the oherenelength is a nontrivial phase di�erene of the order pa-rameter at the opposite ends of the partile trajetory.In general, it depends on the struture of the order pa-rameter in real and momentum spae, whih an berather ompliated. The possibilities for the formationof Andreev bound states are rather diverse, several ofthem are shown in Fig. 1. Partiularly interesting isthe ase where Andreev bound states are topologiallystable, whih means that they have stable zero-energyMajorana modes that annot be eliminated by a smallperturbation of the system parameters.1192
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Fig. 1. Shemati piture of the formation of Andreev bound states loalized (a) on domain wall, (b ) on the edge, and ()inside the vortex ore. In all ases, the mehanism is the subsequent partile�hole onversions via Andreev re�etions at theopposite ends of the trajetory s. The re�eted partile (hole) piks up the phase of the order parameter 'R (�'L) and�ips the group veloity diretion vp (vh) as shown in panel a. In general, the wave vetors of the partile and the hole inthe bulk are slightly di�erent, kp;h = kF �E=vF , where kF and vF are Fermi momentum and veloity, and E is the energy.If the order parameter phase di�erene is �R � �L = �, a losed loop an be formed even for ke = kh, that is, for the zeroenergy E = 0. In ases (b, ), the phase di�erene ours due to the momentum dependene of the gap funtion and thephase winding around the vortex ore orrespondinglyGeneral properties of the fermioni spetrum inondensed-matter and partile physis are determinedby topology of the ground state (vauum). The lassi-�ation shemes based on topology [5�11℄ suggest thelasses of topologial insulators, fully gapped topolog-ial super�uids/superondutors, and gapless topolog-ial media. In Refs. [9�11℄, the lassi�ation is basedon topologial properties of the matrix Green's fun-tion, while other shemes explore the properties of asingle-partile Hamiltonian and are therefore applia-ble only to systems of free (noninterating) fermions.Among the fully gapped topologial super�uids, thereis time-reversal invariant super�uid 3He-B, thin �lmsof hiral super�uid 3He-A, and thin �lms of the time-

reversal invariant planar phase of super�uid 3He. Themain signature of topologially nontrivial vaua withthe energy gap in the bulk is the existene of zero-energy edge states on the boundary, at the interfaebetween topologially distint domains [12, 13℄ andin the vortex ores [14℄. For super�uids and super-ondutors, these are Andreev�Majorana (AM) boundstates. These are mainly propagating fermioni quasi-partiles, whih have a relativisti spetrum at low en-ergy [15�20℄. However, for speial geometries and di-mensions, the AM bound state represents an isolatednonpropagating midgap state, alled the Majorana zeromode (or Majorino [21℄). It is not a fermion, beauseit obeys a non-Abelian exhange statistis [22℄. This in1193



M. A. Silaev, G. E. Volovik ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014partiular ours for the AM bound states in the vortexore of hiral p-wave super�uid-superondutor in 2+1dimensions [23℄.A gapless AM bound state also ours on the sur-faes, interfaes, and in the vortex ores of gapless topo-logial media. Among them, there are hiral super�uid3He-A with Weyl points, the time-reversal invariantplanar phase with Dira points, and the time-reversalinvariant polar phase with a line of zeroes. The spe-trum of AM bound states is nonrelativisti and exoti:the zeroes of the AM bound-state spetrum form Fermiars [24�27℄ and �at bands [28�35℄.2. ANDREEV�MAJORANA EDGE STATES IN2+1 GAPPED TOPOLOGICALSUPERFLUIDSThe p-wave super�uid 3He was disovered in 1972.But until now, there is little understanding of super-�uid 3He �lms. The information on reent experimentsin on�ned geometry an be found in review [36℄. Inthin �lms, a ompetition is expeted between the hiralsuper�uid 3He-A and the time-reversal invariant pla-nar phase, both aquiring a gap in the spetrum in thequasi-two-dimensional ase due to transverse quantiza-tion.The fermioni spetra in both the 2D A phase andthe planar phase have nontrivial topologial properties.These topologial states provide examples of systemsfeaturing generi topologial phenomena. In partiu-lar, an analog of the integer quantum Hall e�et existsin the 2D A phase, where the internal orbital momen-tum of Cooper pairs plays the role of the time reversalsymmetry breaking magneti �eld. In the time rever-sal invariant planar phase, the quantum spin Hall e�etan be realized. In a lose analogy with 2d eletronisystems, a topologial invariant is determined by thenumber of fermioni edge modes with zero energy. Inthe super�uid systems, the edge zero modes are the An-dreev bound states loalized at the super�uid/vauumboundary or at the interfaes and domain walls sepa-rating super�uid states with di�erent topologial prop-erties. Below, we disuss the topologial properties andAndreev bound states for the 2D A phase and the pla-nar phase in detail.2.1. Chiral 3He-A �lmThe order parameter in a spatially homogeneoustime reversal symmetry breaking 3He-A phase is givenby �̂ = �x(px � ipy);

where �x is the spin Pauli matrix and the px;y are mo-mentum projetions onto the anisotropy plane. Suhan order parameter desribes spin triplet Cooper pairswith zero spin Sz = 0 and a nonzero oribital momen-tum projetions Lz = �1 onto the anisotropy axis. Anonzero Lz plays the role of the internal magneti �eldbreaking the time-reversal symmetry of the systems.Con�ned in the xy plane, the 2D state of the A phaseis a fully gapped system. By the analogy with the 2Deletroni gas in a quantized magneti �eld, the gappedground states (vaua) in 2+1 or quasi 2+1 thin �lmsof 3He-A are haraterized by the topologial invari-ant [37�41℄N = eijk24�2 �� Tr�Z d3pG�piG�1G�pjG�1G�pkG�1� : (1)Here, G = G(px; py; ! = ip0) is the Green's funtionmatrix, whih depends on the Matsubara frequenyp0; the integration is over the whole (2+1)-dimensionalmomentum�frequeny spae pi = (px; py; p0), or overthe Brillouin zone and p0 in rystals. Expression (1)is an extension of the TKNN invariant invented byThouless, Kohomoto, Nightingale, and den Nijs todesribe topologial quantization of the Hall ondu-tane [42, 43℄.The advantage of the topologial approah is thatwe an hoose to work with the simplest form of theGreen's funtion, whih has the same topologial prop-erties and an be obtained from the ompliated oneby a ontinuous deformation. For a single layer of a3He-A �lm, we an hooseG�1 = ip0 + �3� p22m � ��+ �z (�1px + �2py) ; (2)where p2 = p2x+p2y. The Pauli matries �1;2;3 and �x;y;zrespetively orrespond to the Bogoliubov�Nambu spinand the ordinary spin of a 3He atom; the parameter haraterizes the amplitude of the superondutingorder parameter. The weak-oupling BCS limit orre-sponds to m2 � �. In this limit,  = �=pF , where� is the gap in the spetrum and pF is the Fermi mo-mentum, p2F =2m = �.It is also instrutive to onsider the simpli�ed asewhere there is only a single spin omponent, whih or-responds to the fully spin-polarized px+ ipy super�uid:G�1 = ip0 + �3� p22m � ��+  (�1px + �2py) : (3)We all this ase the spinless fermions. Topologial in-variant (1) for the state in Eq. (3) with � > 0 is N = 1,1194
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Fig. 2. Shemati piture of the interfae between two�lms of a hiral px + ipy super�uid with values N1and N2 of topologial invariant (1). The interfae on-tains hiral AMBSs with the spetrum E = E(py),whih move with the group veloity vg = dE(py)=dpy.In general, the algebrai sum of branhes (the num-ber of left-moving minus the number of right-movingfermions) is N2 � N1. On the lower panel, the hi-ral branh of spinless AMBSs is given by Eq. (3) withN2 = 1 and N1 = 0. For the spinful ase in Eq. (2),there are two anomalous branhes of the spetrum ofedge states E(py), whih are degenerate with respetto spin. The hiral branhes produe an equilibriummass urrent �owing along the interfaewhile for the state with � < 0, we have N = 0. Aord-ing to the bulk�surfae orrespondene, there must bea branh of the AM edge states at the interfae betweenthese two phases, whih rosses zero energy level [15; 44℄(Fig. 2).In the spin ase in Eq. (2), both spin omponentsontribute to the topologial invariant equally, and wehave N = 2 for � > 0 and N = 0 for � < 0. There-fore, there must be two branhes of AM edge states,whih ross zero energy level. In the general ase,the algebrai sum of anomalous branhes (the num-ber of left-moving minus the number of right-movingfermions) satis�es the index theorem, nL � nR == N(x > 0)�N(x < 0).2.2. Time-reversal invariant planar phaseIn addition to the 2D hiral A phase in thin �lmsof super�uid 3He, the time-reversal invariant planarphase [45℄ an beome stable. While this phase has notyet been identi�ed experimentally, a strong suppres-
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M. A. Silaev, G. E. Volovik ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014ondutors, whih provides an example of the bulk�boundary orrespondene in odd spatial dimensions.In the single-layer ase, the simplest expression forthe planar phase Green's funtion G(p0; px; py) isG�1 = ip0 + �3� p22m � ��+ �1(�xpx + �ypy): (4)This phase is symmetri under time reversal. Thetwo spin omponents have opposite hiralities, as anbe seen from the identity�xpx + �ypy = 12(�x + i�y)(px � ipy) ++ 12(�x � i�y)(px + ipy): (5)That is why the ontributions of the two spin om-ponents to topologial invariant (1) anel eah other,N = 0. But the planar phase is still topologially non-trivial beause of the disrete Z2 symmetry between thetwo spin omponents in Eq. (5). Due to this symmetry,the matrix K = �3�z ommutes with the Green's fun-tion, whih allows introduing the symmetry-protetedtopologial invariant [41, 50℄NK = eijk24�2 �� Tr �K Z d3pG�piG�1G�pjG�1G�pkG�1� : (6)This invariant is robust to deformations, if the defor-mations are K-symmetri. For state (4) with � > 0,we have NK = 2. For the general ase of a quasi 2D�lm with multiple layers of the planar phase, the invari-ant NK belongs to the group Z. The magneti solid-state analog of the planar phase is the 2D time reversalinvariant topologial insulator, whih experienes thequantum spin Hall e�et without an external magneti�eld [12℄.Figure 3 demonstrates AM edge states on twoboundaries of the stripe of a single layer of a planarphase �lm. As distint from 3He-A in Fig. 2, theanomalous branhes with di�erent spin projetions arenot degenerate: they have opposite slopes, whih or-responds to the zero value of the invariant N = 0 inEq. (1). In the ase of a superondutor with planarphase symmetry, the invariant NK determines quanti-zation of the spin Hall e�et. In an applied voltage V ,the spetra on two boundaries shift in opposite dire-tions, hanging the population of branhes. This pro-dues an imbalane in the spin urrents arried by edgestates on two boundaries, giving rise to a nonzero totalspin urrent Jzx (the urrent of the z-projetion of spin

along the x axis). This underlies the quantized spinHall e�et in the absene of a magneti �eld [41; 50; 51℄:Jzx = �spinxy Ey; �spinxy = NK4� : (7)In this time reversal invariant system, the eletri ur-rent quantum Hall e�et is absent. The topologialharge N in Eq. (1), whih determines quantizationof the Hall ondutane in the absene of a magneti�eld [40℄, is N = 0, and the urrents of di�erent spinpopulations anel eah other.The mass and spin urrents arried by an AM edgestate in p-wave super�uids have been onsidered inRefs. [52, 53℄.3. AM BOUND STATES ON THE SURFACE OFA 3+1 GAPPED TOPOLOGICALSUPERFLUIDFully gapped 3+1 fermioni systems � topologialinsulators and topologial superondutors � are nowunder extensive investigation. The interest in suh sys-tems was revived after the identi�ation of topologialinsulators in several ompounds [12℄.These systems are haraterized by gaplessfermioni states on the boundary of the bulk insulatoror at the interfae between di�erent states of theinsulator. Historially, the topologial insulators withfermioni zero modes at the interfae were introduedin [54℄. An example of fully gapped topologial super-�uids is the B phase of super�uid 3He. Muh attentionhas been devoted to the investigation of bound fermionstates on the surfae of 3He-B. The presene ofAM surfae states in 3He-B an be probed throughanomalous transverse sound attenuation [55�58℄ andsurfae spei� heat measurements [59, 60℄. TheseAM bound states are supported by the nonzerovalue of the topologial invariant in 3He-B [20℄ andhave a two-dimensional relativisti massless Diraspetrum [16�19; 24℄.3.1. 3He-B edge states from bulk topologyA topologial super�uid/superondutor of the3He-B type is desribed by the topologial invariantNK , whih is proteted by symmetry:NK = eijk24�2 �� Tr�K Z d3pH�1�piHH�1�pjHH�1�pkH� : (8)1196



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev�Majorana bound states in super�uidsHere, H(p) is the Hamiltonian, or in the ase of an in-terating system, the inverse Green's funtion at zerofrequeny H(p) = G�1(! = 0;p), and K is a matrixthat ommutes or antiommutes with H(p).The proper model Hamiltonian that has the sametopologial properties as super�uids/superondutorsof the 3He-B lass is the following:H = � p22m � �� �3 � �1� � p; (9)where �i and �i are again the respetive Pauli matriesof the Bogolyubov�Nambu spin and the nulear spin.The symmetry K, whih enters the topologial invari-ant NK in Eq. (8), is represented by the �2 matrix,whih antiommutes with the Hamiltonian: it is theombination of time reversal and partile�hole symme-tries of 3He-B. In the limit 1=m = 0, Eq. (9) trans-forms to the Dira Hamiltonian, where the parameter serves as the speed of light, while 3He-B lives in the op-posite limit m2 � �. The topologial phase diagramin the plane (�; 1=m) is shown in Fig. 4.The mehanism of the Andreev�Majorana boundstate formation at the edge of 3He-B is lear fromHamiltonian (9). We onsider the boundary plane atx = 0 as shown shematially in Fig. 5. Then undernormal re�etion of partiles and holes from the bound-ary, some omponents of the gap funtion in Hamilto-nian (9) hange sign. Therefore, we obtain a nonzerophase of the gap along the e�etive trajetory, as shownin Fig. 1. In partiular, for the trajetories normal tothe boundary pz;y = 0, the overall gap funtion hangessign, leading to the formation of a zero-energy state lo-alized at the boundary.However, this is not the whole story. Indeed, if weformally assume that the Hamiltonian may have eithernegative e�etive mass m < 0 or a negative hemialpotential � < 0, the exat solution of the spetral prob-lem yields no zero-energy states, as is disussed below.The hint to the topologial origin of the AM boundstates in 3He-B an be obtained from the topologialphase diagram in Fig. 4, whih demonstrates that thesystem undergoes a topologial quantum phase tran-sitions (QPTs) as we hange the sign of the hemialpotential � or the e�etive mass m.The domain wall that separates the states with dif-ferent values of NK should ontain the zero-energystates � the AM zero modes.
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ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev�Majorana bound states in super�uidsThe same happens at the topologial QPT ourringwhen � rosses zero (see the phase diagram in Fig. 4).We now onsider what happens with bound states inthe ase where the topologial QPT ours in the oppo-site limit, when m hanges sign via in�nity, i. e., when1=m rosses zero. This topologial transition ourswithout losing the gap. In this ase, the bound statesformally exist for all px even in the limit 1=m ! 0.But in this limit, the ultraviolet divergene ours: theharateristi length sale of the wave funtion of thebound state L / ~=m ! 0. Hene, if the topologi-al QPT from a topologially nontrivial to the trivialinsulator (or superondutor) ours without losingthe gap, the gapless spetrum of surfae states disap-pears by esaping via the ultraviolet. This limit orre-sponds to the formation of a zero of the Green's fun-tion, G = 1=(i!�H)! 0. Suh a senario is impossi-ble in the models with a bounded Hamiltonian [63, 64℄,as in the approximation of a �nite number of rystalbands.On the other hand, the Green's funtion zeroes anour due to partile interations. As was found inRef. [65℄, lassi�ations of interating and noninterat-ing fermioni systems do not neessarily oinide. Thisis related to zeroes of the Green's funtion, whih a-ording to Ref. [10℄ ontribute to topology alongsidewith the poles. Due to zeroes, the integer topologi-al harge of an interating system an hange withoutlosing the energy gap, and it is suggested that this maylead to the ourrene of topologial insulators with nofermion zero modes on the interfae [63, 64℄.That is why we expet that the same senario withan esape to the ultraviolet ours for interating sys-tems: if due to zeros in the Green's funtion, the topo-logial QPT in the bulk ours without losing the gap,the spetrum of edge states does nevertheless hange atthe topologial QPT, and this hange ours via the ul-traviolet.We �nally mention that the magneti �eld violatestime reversal symmetry, whih generially leads to a�nite gap (mass) in the spetrum of AM fermions onthe surfae. At a partiular orientation of the magneti�eld, there is still the Z2 dsirete symmetry, whih sup-ports gapless AM bound states [66, 67℄. This symme-try is spontaneously broken at some ritial value ofthe magneti feild, above whih the AM fermions be-ome massive. The surfae of 3He-B with massive AMbound states represents a 2+ 1 topologial �insulator�:it is desribed by the topologial invariant in Eq. (1).The line on the surfae that separates the surfae do-mains with di�erent values of this topologial invariantontains 1 + 1 gapless AM fermions [68℄.

4. ANDREEV�MAJORANA BOUND STATESON THE SURFACE OF A 3+1 WEYLSUPERFLUID. FERMI ARCWe now move to the AM bound states that ap-pear as edge and vortex states in gapless topologialsystems. Here, the zeroes in the bulk lead to extendedzeroes on the surfaes, interfaes, and vortex ores. Westart with point zeroes � Weyl points � in hiral su-per�uids, whih produe the lines of zeroes (Fermi ars)on the surfae, and the �at band in the vortex ore.4.1. Andreev�Majorana Fermi ar on theboundary of a Weyl super�uidThe topologial origin of AM bound states in 3+ 1hiral super�uids an be viewed by extending the topol-ogy of the 2+1 hiral system in Se. 2 to the 3+1 ase.For simpliity, we onsider spinless fermions, or, whihis the same, the fermions with a given spin polariza-tion. Then the Green's funtion in Eq. (2) extended tothe 3 + 1 ase isG�1(p; p0) = ip0 + �3� p22m � ��++  (�1px + �2py) ; (13)where p = (px; py; pz). We regard pz as a parameter ofthe 2 + 1 system. Then for eah pz, exept pz = �pF ,this Green's funtion desribes the fully gapped 2 + 1system � an �insulator� haraterized by the topolog-ial invariant in Eq. (1):N(pz) = 14�2 Tr�Z dpxdpydp0 �� G�pxG�1G�pyG�1G�p0G�1� : (14)This insulator is topologial for jpzj < pF , whereN(jpzj < pF ) = 1, and is topologially trivial for jpzj >> pF , where N(jpzj > pF ) = 0.At pz = �pF , invariant (14) is not determined, sinethe orresponding 2 + 1 system is gapless. The bulk3 + 1 super�uid 3He-A has two points in the spetrump� = (0; 0;�pF ) where the energy is zero, see Fig. 7.These nodes in the spetrum are topologially pro-teted, beause they represent monopoles in the Berryphase in the momentum spae and are haraterizedby the topologial invariant in Eq. (1), where the in-tegration is now over the 3D sphere around the Weylpoint in the 3+1 spae (p0; px; py; pz) [9℄. In the viin-ity of these points, the fermioni quasipartiles behaveas hiral (left-handed and right-handed) Weyl fermions1199
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Fig. 7. Line of AM bound states on the surfae of ahiral super�uid with Weyl points. This line representsa 1D Fermi surfae that separates the edge states withpositive and negative energies (see also Fig. 9). How-ever, as distint from onventional Fermi surfaes, thisFermi surfae has end points. The end points of theFermi ar are determined by projetions of the bulkWeyl points to the surfaein partile physis. That is why suh nodes are alledthe Weyl points. Arrows in Fig. 7 show the diretionof the e�etive spin of the Weyl fermion. This spin isparallel to p � p+ in the viinity of p+, whih meansthat the fermions living there are right-handed. Forthe left-handed fermions near p�, their e�etive spin isantiparallel to p� p�.Aording to the bulk�surfae orrespondene, ateah pz for whih N(pz) = 1, there should be onebranh of AM edge states that rosses the zero energylevel (see Fig. 2). As a result, we have a line of ze-ro-energy states in the range �pF < pz < pF . This linerepresents the Fermi surfae (Fermi line) in the two-di-mensional momentum spae of bound states. As theonventional Fermi surfae, it separates the positive-and negative-energy levels, but in ontrast to the on-ventional Fermi surfae, this Fermi surfae is not losed.It has two end points, and this is why this line is alledthe Fermi ar.The end points of the Fermi ar oinide with theprojetion of the Weyl points to the surfae. This isa onsequene of the bulk�surfae orrespondene inWeyl systems [25℄. For an arbitrary diretion of thesurfae with an angle � between the normal to the sur-fae and the z axis, the Fermi ar is onentrated in the

range of momenta �pF sin� < pz < pF sin�. We notethat in 3He-A, the boundary onditions require � = 0.In rystals, the Weyl points an be moved to theboundaries of the Brillouin zone, where they annihi-late eah other. As a result, we obtain a hiral 3 + 1topologial insulator or a fully gapped hiral topolog-ial superondutor. Sine N(pz) = 1 for all pz, thetopologial Fermi ar on the boundaries transforms toa losed topologial Fermi surfae.4.2. Andreev�Majorana Fermi ars on solitonsand domain wallsSimilar Fermi ars appear on the domain walls orsolitons separating the hiral phases with opposite hi-ralities. We have N(jpzj < pF ) = +1 on one side of thesoliton/wall and N(jpzj < pF ) = �1 on the other side.Aording to the index theorem [9; 44℄, the di�erenebetween these two values determines the number of zeromodes at the interfae between the 2+1 topologial in-sulators for eah jpzj < pF . As a result, the domainwall and the soliton ontain two Fermi ars instead ofa single Fermi ar on the boundary (Fig. 8).A Fermi ar on domain walls in 3He-A [70℄ has beenonsidered in Refs. [27; 71℄.Figure 9 also inludes bound states with a nonzeroenergy and demonstrates that the Fermi ar does rep-resent a piee of the Fermi surfae that separates thepositive- and negative-energy levels.5. TOPOLOGICAL SUPERFLUIDS WITHLINES OF ZEROES. THEANDREEV�MAJORANA SURFACE FLATBANDThe zero-dimensional point nodes in the bulk (Weylpoints) give rise to one-dimensional nodes (lines) in thespetrum of AM bound states. In the same manner,the 1D nodal lines in the bulk give rise to 2D mani-folds of AM bound states with zero energy (Fig. 10).We onsider the topologial origin of suh dispersion-less spetrum � a �at band � with the example of thepolar phase of a triplet super�uid/superondutor [32℄.5.1. Flat band of Andreev�Majorana modes onthe surfae of the polar phaseThe Hamiltonian for the polar phase isH = � p22m � �� �3 � �1�zpz: (15)1200
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Fig. 8. Topology of Andreev bound states on a l̂ soliton [69℄. The momentum spae topology of Weyl points in bulk3He-A on two sides of the soliton presribes the existene of Fermi ars in the spetrum of Andreev bound states in thesoliton or at the interfae between the bulk states with di�erent positions of Weyl points. In the onsidered ase, theWeyl points on two sides of the interfae have the same positions in momentum spae, but the opposite hiralities. As aresult, the 2 + 1 topologial insulators have opposite topologial invariants, N(pz = 0) = �1. This leads to two Fermiars terminating on the projetions of the Weyl points on the soliton/interfae plane in aordane with the index theoremn(right)� n(left) = 2This superondutor obeys the time reversal and spaeinversion symmetry, and it has a line of zeroes in theform of a ring.For simpliity, we onsider spinless fermions, or,whih is the same, the fully spin-polarized fermions,whose Hamiltonain isH = � p22m � �� �3 � �1pz: (16)The spetrum of suh fermions has a nodal line �the ring p2x + p2y = p2F , pz = 0. The stability of thisnodal line is determined by the topologial invariantproteted by symmetry,NK = 14�i Tr24K IC dlH�1rlH35 : (17)Here, the integral is along a loop C around the nodalline in the momentum spae (Fig. 11), and the ma-trix K = �2 antiommutes with the Hamiltonian. Thewinding number around the element of the nodal lineis NK = 1.We now onsider the momentum p? as a parameterof the 1+1 system; then for jp?j 6= pF , the system rep-resents the fully gapped state, a 1 + 1 insulator. Thisinsulator an be desribed by the same invariant as in

Eq. (17) with the integration ontour hosen parallel topz. Beause the Hamiltonian tends to the same limitas pz ! �1, the points pz = �1 are equivalent, andthe line �1 < pz < 1 forms a losed loop. That iswhy the integralNK(p?) = 14�i Tr�K Z 1�1 dpzH�1rpzH� (18)is integer valued.The topologial invariant N(p?) in (18) determinesthe properties of the surfae bound states of the 1 + 1system at eah p?. Due to the bulk�edge orrespon-dene, the topologial 1D insulator must have a surfaestate with exatly the zero energy. Beause suh statesexist for any parameter within the irle jp?j = pF , weobtain a �at band of AM modes in Fig. 11a � the on-tinuum of self-onjugate bound states with exatly thezero energy, E(jp?j < pF ) = 0, whih are protetedby topology. Suh modes do not exist for parametersjp?j > pF , for whih the 1 + 1 super�uid is nontopo-logial.In the spin polar phase with Hamiltonian (15), thenodal ring in the bulk gives rise to two surfae �atbands with opposite hiralities for two diretions ofspin. The tiny spin�orbit interation leads to a smallsplitting of the AM modes.5 ÆÝÒÔ, âûï. 6 (12) 1201
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ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev�Majorana bound states in super�uidsa is the distane between the layers, are equivalent andthe ontours of integration form a losed loop. As aresult, we obtain the integer-valued invariantNK(p?) = 14�i Tr Z �=a��=a dpz �2H�1rpzH: (19)For jp?j < t, the 1 + 1 insulator is topologial be-ause N(jp?j < t) = 1. This gives rise to a surfae�at band. Sine there are no Cooper-pair orrelations,the fermioni bound states within the �at band are notMajorana modes.6. ANDREEV�MAJORANA MODES ONVORTICES IN CHIRAL 2+ 1 SUPERFLUIDSThe low-energy fermions bound to the vortex oreplay the main role in the thermodynamis and dynam-is of the vortex state in superondutors and Fermisuper�uids. The spetrum of low-energy bound statesin the ore of an axisymmetri vortex with the windingnumber � = �1 was obtained by Caroli, de Gennes,and Matrion for the isotropi model of an s-wave su-perondutor in the weak-oupling limit �� � [72℄:En(pz) = ��!0(pz)�n+ 12� : (20)This spetrum is two-fold degenerate due to spin de-grees of freedom. The integer number n is a quan-tum number related to the angular momentum of thebound-state fermions. The minigap � the level spa-ing !0(pz)� orresponds to the angular veloity of thefermioni quasipartile orbiting the vortex axis. Thediretion of rotation is determined by the sign of thewinding number � of the vortex.The level spaing is typially small ompared tothe energy gap of the quasipartiles outside the ore,!0 � �2=� � �. Hene, in many physial ases, thedisreteness of n an be negleted. In suh ases, thespetrum rosses zero energy as a funtion of the on-tinuous angular momentum Lz, and we an onsiderthis as a spetrum of quasi zero modes. The fermionsin this 1D �Fermi liquid� are hiral: the positive-energyfermions have a de�nite sign of the angular momentumLz. The number of the branhes rossing zero energyas a funtion of ontinuous Lz obeys the index theo-rem [9℄.Here, we are interested in the �ne struture of thespetrum, when its disrete nature is important. Thistakes plae, for example, in ultraold fermioni gasesnear the Feshbah resonane, when � is not small.

We �rst onsider the 2+1 spae�time and start withthe weak-oupling limit. The Majorana nature of theBogoliubov partiles requires that the spetrum mustbe symmetri with respet to zero energy, i. e., for eahlevel with an energy E, there must be a level with theenergy �E. For fermions on vorties, suh onditionis satis�ed for two lasses of systems. In systems ofthe �rst lass, the spetrum of Andreev bound states isEn = !0(n+1=2). Vorties in s-wave superondutorsbelong to this lass. Vorties of the seond lass haveEn = !0n. They ontain an AM mode exatly with thezero energy level at n = 0. In a 2+1 system, this modeis not propagating and is self-onjugate. That is whyit is alled the Majorana mode instead of a Majoranapartile (see Ref. [21℄).For simpliity, we onsider the spinless (or fully spinpolarized) hiral px + ipy super�uid in a 2 + 1 spae�time, whih is desribed by Eq. (3). As was shown inRef. [23℄, the vorties with the winding number � = 1or � = �1 belong to the seond lass:En = ��!0n; (21)and hene ontain a single Majorana mode at n = 0.This mode is robust to perturbations, sine it isself-onjugate and must therefore obey the onditionE = �E (see also [73℄).For the spin fermions in Eq. (2), there are twoAM modes orresponding to the two spin projetions.The even number of Majorana modes is not robust toperturbations. For example, the spin-orbit interationsplits two modes with E1 = �E2. The splitting is ab-sent if there is some disrete symmetry between theAM modes, suh as the mirror symmetry in Ref. [74℄.In the spin px + ipy super�uids, there is a topolog-ial objet that arries a single Majorana mode. It isthe half-quantum vortex [75℄. In a simple model, thehalf-quantum vortex is the vortex with �" = 1 in onespin omponent, while the other spin omponent haszero vortiity �# = 0. As a result, suh vortex ontainsa single Majorana mode, whih is robust to perturba-tions.However, the perturbations should not be too large.In the limit when � is negative and large, the BCS istransformed to the BEC of moleules, where the Majo-rana mode is absent. The Majorana mode disappearswhen the hemial potential � rosses zero. At � = 0,there is a topologial QPT, at whih the topologialinvariant in Eq. (1) hanges from N = 1 to N = 0.The topologial transition annot our adiabatially,and in the intermediate state with � = 0, the spe-trum in the bulk beomes gapless. At � = 0, theMajorana mode merges with the ontinuous spetrum1203 5*



M. A. Silaev, G. E. Volovik ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014of bulk quasipartiles and disappears at � < 0. Thisdemonstrates the topologial origin of the AM mode,whih exists inside the vortex only if the vauum in thebulk is topologially nontrivial.7. AN ANDREEV�MAJORANA FLAT BANDIN A VORTEX IN WEYL SUPERFLUIDSWe an easily extend the onsideration in Se. 6 tothe 3 + 1 ase in the weak-oupling limit. The levelsat pz 6= 0 remain equidistant aording to the Caroli�de Gennes�Matrion solution, and they must be sym-metri with respet to E = 0. This ditates the fol-lowing modi�ation of Eq. (20) for the most symmetrivorties in 3He-A and in the planar phase:En(pz) = ��!0(pz)n: (22)This equation suggests a �at band in the vortex orefor n = 0 (Fig. 12a). We now show how suh a �atband emerges purely from topologial onsiderations,whih do not use the weak-oupling approximation.Topology of bound states on vorties in 3+1 hiralsuper�uids an be obtained by dimensional extensionof the topology in the 2 + 1 ase. The AM mode in apoint vortex of a fully gapped 2 + 1 hiral super�uid
a b
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p-waveFig. 12. (a) Shemati illustration of the spetrumof fermioni bound states in the ore of a � = 1vortex in the s-wave superondutor. In the weak-oupling limit, the lowest branhes are equidistant:En(pz) = �!0(pz) (n+ 1=2). There are no zero-energy states. The spetrum is doubly degeneratewith respet to spin. (b ) The spetrum of boundstates in the most symmetri vorties in the p-wavesuper�uids: the hiral Weyl super�uid 3He-A and thetime reversal invariant planar phase. The spetrum isEn(pz) = �!0(pz)n. The branh with n = 0 forms a�at band of AM modes (solid line)

transforms into the �at band of AM modes inside thevortex line in 3+ 1 hiral super�uids with Weyl pointsin the bulk. We onsider the px + ipy state in Eq. (13)again, and temporarily hoose the diretion of the vor-tex line along the z axis. In this ase, pz is the quantumnumber of bound states in the vortex ore. For eah pzin the range �pF < pz < pF , the Green's funtion (13)desribes the 2 + 1 hiral super�uid with the topolog-ial invariant N(jpzj < pF ) = 1 in Eq. (14), and thissuper�uid ontains a point vortex. The point vortex inthe 2+ 1 topologially nontrivial hiral super�uid on-tains the AM mode with zero energy. The ontinuumof AM modes in the range �pF < pz < pF forms the�at band.This is demonstrated in Fig. 13, where the vortexaxis is rotated through an angle � with respet to thediretion to the Weyl points. In this ase, invariant(14) beomesN(pz) = 1; jpzj < pF j os�j; (23)N(pz) = 0; jpzj > pF j os�j: (24)Suh a �at band of AM modes has been preditedby Kopnin and Salomaa in Ref. [28℄ for the � = 1 vor-tex in 3He-A. This �at band is doubly degenerate withrespet to spin and an therefore split, for example, dueto spin�orbit interation (the nondegenerate �at bandof AM fermions ours in the ore of a half-quantumvortex). In super�uid 3He, the spin�orbit interation isvery small and an be negleted. However, there an beanother soure of splitting: the symmetry of the vortexore an be spontaneously broken [75℄.The same doubly degenerate �at band should existin the � = 1 vortex in the 3 + 1 planar phase, wherethe Green's funtion isG�1 = ip0 + �3 � p22m � ��+ �1(�xpx + �ypy): (25)Here, p2 = p2x + p2y + p2z. For the 3 + 1 planar phase,the topologial invariant NK in Eq. (6) is extended toNK(pz) = 14�2 Tr�K Z dpxdpydp0G�px �� G�1G�pyG�1G�p0G�1� ; (26)giving NK(jpzj < pF os�) = 2.Both �at bands, in the A-phase and in the planarphase, appear only for � > 0, when NK(pz = 0) = 2.For � < 0, the super�uids are topologially trivial,NK(pz = 0) = 0, and the �at band does not exist.1204
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Weyl
point

continuous spectrum

E(pz)

flat bandWeyl
point

bound states

pz

Fig. 14. Shemati illustration of the spetrum ofbound states E(pz) in the vortex ore of a Weyl su-per�uid. The branhes of bound states terminate atpoints where their spetrum merges with the ontinu-ous spetrum in the bulk. The �at band terminates atpoints where the spetrum has zeros in the bulk, i. e.,when it merges with Weyl points. This is a p-spaeanalog of a Dira string terminating on a monopole;another analog is given by the Fermi ar in Fig. 1and the ore symmetry is not spontaneously broken.For pz 6= 0, the zero-energy modes are not supportedby topology. Hene, the two branhes of AM modessplit, and we may expet the spetrum of AM boundstates in the most symmetri vortex to behave as illus-trated in Fig. 15.For 3He-B, whih lives in the range of parameterswhere NK 6= 0 in Fig. 15a, the gapless fermions in theore of the most symmetri vortex (the so-alled o-vor-tex [75℄) were found in Ref. [76℄. On the other hand, inthe Bose�Einstein ondensate (BEC) limit, when � isnegative and the Bose ondensate of moleules ours,there are no gapless fermions (see Fig. 15b ). Thus,in the BCS�BEC rossover region, the spetrum offermions loalized on vorties must be reonstruted.The topologial reonstrution of the fermioni spe-trum in the vortex ore annot our adiabatially. Itshould our only during a topologial QPT in the bulk,when the bulk gapless state is rossed. Suh a topolog-ial transition ours at � = 0 (see Fig. 4). At � < 0,the topologial harge NK vanishes and simultaneouslythe gap in the spetrum of ore fermions arises (seeFig. 15b ).This again demonstrates that the existene offermion zero modes is losely related to the topologialproperties of the vauum state. The reonstrution ofthe spetrum of fermion zero modes at the topologi-1205
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Topological 3He-B:

En(pz) E(pz)
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a b

Non-topological 3He-B:
NK = 0

Fig. 15. (a) Shemati illustration of the spetrum offermioni bound states in the ore of the most symmet-ri vortex (o-vortex) in 3He-B. Two AM states withzero energy exist at pz = 0. (b ) The same vortex butin the topologially trivial state of the liquid, NK = 0,does not have fermion zero modes. The spetrum ofbound states is fully gapped. Fermion zero modes dis-appear at the topologial QPT, whih ours in bulkliquid at � = 0. A similar situation may our forstrings in olor superondutors in quark matter [77℄al QPT in the bulk an be also seen for vorties inrelativisti superondutors [77℄.8.2. Andreev�Majorana bound states onB-phase vorties with broken symmetryThe spetrum in Fig. 15a is valid only for a vortexstate that respets all the possible symmetries of thevortex ore. These symmetries are the spatial parity Pand the disrete symmetry TU2. The latter is the sym-metry under the time reversal T when it is aompa-nied by the �-rotation U2 about the axis perpendiularto the vortex axis. In the ores of the experimentallyobserved vorties in 3He-B, both disrete symmetriesare spontaneously broken, while the ombined symme-try PTU2 is preserved [75℄. Suh a vortex is alled thev-vortex. The broken parity in the v-vortex leads tomixing between the two spin omponents in the ore,and as a result, the two AM modes at pz = 0 split.This leads to the spetrum in Fig. 16 [78℄.In the weak-oupling regimem2 � �, a large num-ber (of the order of p�=m2 ) of branhes appear thatross the zero energy. Eah rossing point orrespondsto a one-dimensional Fermi surfae. This demonstratesthat the topology in the bulk determines the spetrumof the fermion zero modes on the B-phase vorties only
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n > 0
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Fig. 16. Spetrum of AM bound states in an ax-isymmetri v-vortex with spontaneously broken disretesymmetry in 3He-B. The AM states with zero energyat pz = 0, whih were present in the most symmet-ri o-vortex in Fig. 15, do not exist any more. Theysplit due to the matrix element between the spin om-ponents, whih appears due to symmetry breaking,and move far away. There are many nontopologialbranhes of the spetrum, whih ross zero energy asfuntions of pz and form one-dimensional Fermi sur-faes. The number of suh branhes is of the orderof p�=m2if the symmetry of the vortex ore is not violated.This is a onsequene of the mod 2 rule for Majo-rana modes: a topologial zero-energy state survivessymmetry breaking only in the ase of an odd numberof Majorana modes. Hene, for realisti vorties, theAM mode an exist only in half-quantum vorties. Forother vorties, suh as those in 3He-B, a large num-ber of energy levels is involved. That is why it is moreappropriate to use the quasilassial approximation inthe analysis. It leads to other types of topologial in-variants desribing fermion zero modes on vorties (see,e. g., Refs. [9; 79℄).9. CONCLUSIONWe onsidered the AM bound states with zero en-ergy on surfaes, interfaes, and vorties in di�erentphases of p-wave super�uids: 3He-A, 3He-B, planarand polar phases.1206



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev�Majorana bound states in super�uidsThese states are determined by topology in thebulk, and they disappear at the QPT from the topo-logial to nontopologial state of the super�uid (see theexample in Fig. 15). This topology demonstrates theinterplay of dimensions. In partiular, the 0D Weylpoint (the Berry-phase monopole in momentum spae)gives rise to a 1D Fermi ar on the surfae (Se. 6.1).The 1D nodal line in the bulk produes the dispersional2D band of AM modes on the surfae (Se. 5).The interplay of dimensions also onnets the AMstates in super�uids in di�erent dimensions. For exam-ple, the properties of the spetrum of bound states inthe 3D 3He-B are onneted to the properties of thespetrum in the 2D planar phase (see Se. 3 for edgestates and Se. 7.1 for bound states on vorties). The0D AM mode on a point vortex in a 2D hiral super-�uid (Se. 6) gives rise to a 1D �at band of AM modeson a vortex in the 3D hiral super�uid (Se. 7).The most robust zero-energy edge states our onthe boundary of 3He-A, or in general on boundariesand interfaes of hiral super�uids with the topologialinvariantN in Eq. (1). In other phases, the existene ofzero-energy edge states is supported by symmetry, i. e.,by the symmetry-proteted topologial invariants NKin Eqs. (6) and (17). When the symmetry is violated inthe bulk or on the boundary/interfae, the AM boundstates aquire a gap.Conerning the AM states on vorties, only thestates on half-quantum vorties are fully robust to per-turbations. In singly quantized vorties, the fate ofzero-energy states depends on symmetry and its possi-ble violation in the bulk or spontaneous breaking insidethe vortex ore. This is a onsequene of the Z2 lassi-�ation of AM modes on vorties. On the other hand,the spontaneously broken symmetry inside the vortexore may give rise to many nontopologial branhes ofAM bound states, whih ross the zero energy as afuntion of pz. This is demonstrated in Se. 8.2.We also mention the appliation to relativisti theo-ries. The fermion zero modes obtained in the Dira sys-tems, suh as the modes loalized on strings in Ref. [80℄,are not properly supported by topology. The reasonfor that is that the Dira vauum is marginal, and thetopologial invariants depend on the regularization ofthe Green's funtion in the ultraviolet [81℄. For ex-ample, in Fig. 4, the Dira vauum is on the borderbetween the trivial vauum with NK = 0 and the topo-logial vauum with NK = 2. That is why the existeneof the modes with exatly zero energy depends on thebehavior of the Green's funtion at in�nity.
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