
ÆÝÒÔ, 2014, òîì 146, âûï. 6 (12), ñòð. 1282�1294  2014
QUANTUM TRANSPORT EQUATION FOR SYSTEMS WITHROUGH SURFACES AND ITS APPLICATION TO ULTRACOLDNEUTRONS IN A QUANTIZING GRAVITY FIELDM. Esobar, A. E. Meyerovih *Department of Physis, University of Rhode Island, KingstonRI 02881-0817, USAReeived May 7, 2014We disuss transport of partiles along random rough surfaes in quantum size e�et onditions. As an intrigu-ing appliation, we analyze gravitationally quantized ultraold neutrons in rough waveguides in onjuntion withGRANIT experiments (ILL, Grenoble). We present a theoretial desription of these experiments in the biaseddi�usion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. Allsystem parameters ollapse into a single onstant whih determines the depletion times for the gravitationalquantum states and the exit neutron ount. This onstant is determined by a ompliated integral of the orrela-tion funtion (CF) of surfae roughness. The reliable identi�ation of this CF is always hindered by the preseneof long �utuation-driven orrelation tails in �nite-size samples. We report numerial experiments relevant forthe identi�ation of roughness of a new GRANIT waveguide and make preditions for ongoing experiments. Wealso propose a radially new design for the rough waveguide.Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201411. INTRODUCTIONThe role of surfae sattering inreases dramatiallywith advanes in miro- and nanofabriation, multi-layer systems, pure materials, vauum tehnology, et.Below, we address some universal features of trans-port of partiles or waves along random rough wallsin quantum size e�et onditions. As an appliation,we look at the gravitationally quantized ultraold neu-trons in rough waveguides in onjuntion with ongoingGRANIT experiments (ILL, Grenoble). This is one ofthe leanest model-free testing grounds for our theory.Intuitively, sattering by surfae inhomogeneitiesshould not be very di�erent from sattering by otherstati defets suh as bulk impurities. However, whilethe basi e�ets of impurity sattering are desribed inelementary textbooks, a similar simple general aountfor surfae roughness has been missing. This is not en-tirely surprising. The underlying issue is an unusualstruture of the perturbation theory. Randomly vary-ing spae inside orrugated systems makes it di�ult*E-mail: Alexander�Meyerovih�uri.edu

to introdue a proper set of basis wave funtions whihare neessary for perturbative expansions. It is not al-ways lear when this issue is important and what to dowhen it is.Reently, we developed a onsistent perturbativeapproah within whih this issue disappears, lear-ing the way to a rigorous impurity-like desriptionof quantum transport of partiles in systems withrough boundaries. What is more, the struture of theorrugation-driven sattering probabilities is largelyuniversal, irrespetive of partile spetra, types of sur-faes, and bulk �elds between them.The next setion ontains a simpli�ed outline ofour general transport results for systems with slightroughness, whih are relevant for further disussion. InSe. 3, we apply these results to beams of the gravita-tionally quantized neutrons in rough waveguides. InSe. 4, we disuss orrelation properties of randomrough surfaes. We show that the identi�ation of theroughness orrelation funtion (CF) is not trivial andshould not be based solely on a statistial quality ofthe �t to some �tting funtion. Setion 5 ontains ouronlusions, experimental preditions, and reommen-dations.1282



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :2. QUANTUM SIZE EFFECT ANDTRANSPORT OF PARTICLES ALONGRANDOMLY CORRUGATED WALLSTheoretial approahes to partile transport insystems with random rough boundaries (see, e. g.,books [1�4℄; a brief review an be found in Ref. [5℄) anbe split into two main groups. The �rst one deals withboundary sattering by means of an e�etive boundaryondition. We prefer alternative approahes that inor-porate the boundary sattering diretly into the bulkequations and allow using powerful bulk methods to de-sribe the surfae e�ets in transport and interferenephenomena, loalization, et.If we ignore potential ompliations, the simplestbulk-like approah [6℄ is a straightforward perturbationexpansion in small orrugation � (y; z) of the wall. Wesuppose that the wall is loated at x = x� + �� (y; z)and orresponds to an abrupt hange of the potentialby [U ℄, U = [U ℄ � (x� x� + �� (y; z)) :The small orrugation �� looks like a good perturbationparameter,U = [U ℄ � (x� x�) + [U ℄ ��Æ (x� x�) + :::The alulation of the matrix element is trivial:V (�)ik = Z exp (is� (q� q0)) �� (s)	i	k [U ℄�� Æ (x� x�) = � (q� q0) [U ℄ 	i (x�)	k (x�) ; (1)where 	i (x) are the wave funtions in the abseneof orrugation. This simple expression an be ex-tended [5℄ to systems with rough external walls forwhih [U ℄!1:V (�)ik = � 12m�� (q� q0) 	0i (x�)	0k (x�) : (2)If we need a more rigorous perturbative approah orwant to study interferene e�ets, a better option is tomap the problem with the orrugated boundaries ontoa mathematially equivalent problem with �at bound-aries and distorted bulk [7�10℄. Suh mapping for asystem with two rough walls,x = �L2 � �1;2 (y; z) ; (3)an be ahieved [9℄ by the oordinate transformationr! R,X = x+ �1=2� �2=21� �1=L� �2=L; Y = y; Z = z; (4)

whih makes the boundaries straight, X = �L=2, with-out even speifying the single-valued random funtions�1;2. The rest is straightforward: we have to performa onjugate transformation of momenta p! P andrewrite the original Hamiltonian bH0 (p; r) in terms ofR and P:bH0 (p; r) = bH0 (P;R) + bV (P;R; f�1;2 (R)g) : (5)The result is the exatly equivalent problem in whihthe (random) bulk perturbation operator bV replaesthe surfae inhomogeneities. In simple situations, thematrix elements of bV are similar to (1) and (2). Thedrawbak of mapping transformation (4) is that its Ja-obian J 6= 1. When this is important, the transforma-tion an be modi�ed [10℄.The diagrammati derivation of the transport equa-tion for systems with random surfae inhomogeneitieshas been done in Ref. [10℄. The restrited motion per-pendiular to the walls is quantized, (px)j � j~=L,E (p) ! Ej (q), where q = (py; pz) is the two-dimensional momentum. This quantization is impor-tant for ultrathin systems, multilayer media, interon-nets, partiles absorbed on or bound to the surfaes,quantum wells, et. The transport equation is quantumin the diretion perpendiular to the walls and is qua-silassial along the walls. In ultrathin systems with alarge separation between the minibands Ej , as well asin thik quasilassial �lms, the transport equation hasa usual Boltzmann-like form,�tÆnj (q) + qm � �rÆnj (q) + F � �qÆnj (q) == Lj fnig : (6)In-between, there is an anomalous regime in whih thetransport equation aquires a highly unusual and om-pliated form [10℄; we do not deal with this situationhere. Sine the mapping transformation approah ismathematially rigorous, it an be extended to moreomplex situations, inluding the surfae-driven loal-ization [11℄, interferene between surfae and bulk sat-tering proesses [12℄, topologial phase transitions [13℄,et.The perturbative ollision integrals Lj are deter-mined by the transition probabilities Wjj0 (q;q0) == DjVjq;j0q0 j2E between the states (j;q)! (j0;q0):Lj = 2�Xj0 Z Wjj0 (q;q0) [nj0q0 � njq℄�� Æ (�jq � �j0q0) d2q0(2�~)2 : (7)1283 10*



M. Esobar, A. E. Meyerovih ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014Generally, the transition probabilities Wjj0 (q;q0) fa-tor into the produts of the CF of surfae roughness� (q� q0) and the boundary values of the wave fun-tions 	j in the absene of orrugation. These om-binations depend on the struture of the system, thenumber of interfaes, and the orrelation between in-homogeneities from di�erent walls.The CF of surfae inhomogeneities ��� (jsj) and itspower spetrum ��� (jqj) are de�ned as��� (jsj) = h��(s1)��(s1 + s)i �� A�1 Z ��(s1)��(s1 + s) ds1;��� (jqj) = Z d2s exp� iq � s~ � ��� (jsj) == 2� 1Z0 ��� (s) J0 (qs) s ds; (8)
where A is the area, and the indies �; � indiate thesurfaes that are the soures of inhomogeneities ��and �� .If the system has only one rough surfae atx = L+� (y; z) with the potential jump [U ℄ on it, then,aording to Eq. (1),Wjj0 = � (q� q0) [U ℄2 j	j (L)j2 j	j0 (L)j2 : (9)If, on the other hand, there are several interfaes atx� = L� + �� (y; z) with di�erent disontinuities [U ℄�,thenW��jj0 == Re h��� (q�q0) [U ℄� [U�℄� 	�j�	j0�	j�	�j0�i ; (10)where 	� = 	(L�). The full sattering probability Wis the sum of all these W�� . For a system with two ex-ternal walls with [U ℄1;2 !1, Eq. (2), the probabilitiesW areW��jj0 = 14m2 Re h���	�0j�	0j0�	0j�	�0j0�i ;�; � = 1; 2 (11)and the interferene between inhomogeneities on theexternal wall (�) and the internal interfae (�) yieldsW��jj0 = �12m Re ����U�	�0j�	0j0�	j�	�j0�� : (12)Equation (10) for internal interfaes is the same irre-spetive of the partile spetrum, while Eqs. (11) and(12) are given for � = p2=2m (equations for arbitrary� (p) are more umbersome [5℄).

The terms with � = � and � 6= � desribe the in-trawall and interwall orrelations of inhomogeneities.The interwall ontribution � 6= �, when it exists [14℄,is nontrivial. While W�� is always positive, thesign of the interwall term W�� with � 6= � is not�xed, and the interwall interferene an be onstru-tive or destrutive depending on a partiular realiza-tion of the system (overall, W is positive beause��� (q)+��� (q) > 2 j��� (q)j for any orrugation). Forillustration, here is the full roughness-driven transitionprobability for partiles with the quadrati spetrumin a homogeneous quantum well with in�nite potentialwalls:Wjj0 = 1m2L2 h�11 + �22 + 2 (�1)j+j0 �12i����jL �2��j0L �2 : (13)The interwall orrelation term with �12 has an osillat-ing struture and an sometimes lead to a large inreasein transport oe�ients [15℄.The ollision operator and transition probabilities(7)�(13) have a simple struture and, with the exep-tion of the interferene terms, resemble those for impu-rity sattering with the roughness CF � playing the roleof the impurity sattering ross setion �imp. There-fore, transport alulations ould be done essentially inthe same way as for bulk impurities. The quantizationof motion atually simpli�es the problem by replaingthe integral transport equation by a �nite set of oupledlinear equations. Under ertain onditions, these equa-tions deouple and we an obtain semi-analyti resultsfor the transport oe�ients via the zeroth and �rstharmonis of the roughness CF [5, 15, 16℄.3. APPLICATION TO GRAVITATIONALLYQUANTIZED ULTRACOLD NEUTRONS INROUGH WAVEGUIDESReent observation by the GRANIT group (ILL,Grenoble) [17℄ of quantization of motion of ultraoldneutrons by Earth's gravitational �eld predited inRef. [18℄ is an exiting breakthrough in neutron physis(see also reviews [19℄ and Refs. [20, 21℄; for generalproperties of ultraold neutrons, see Refs. [22℄). Al-though the quantization of motion by a linear �eldsuh as gravity is not new by itself [23℄ and has al-ready been observed in a low-temperature ontext [24℄,the experimental aess to well-de�ned neutron statesin the 1 peV range opens the way for using ultraoldneutrons as a very sensitive probe for extremely weakfundamental fores [19, 25, 26℄.1284



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :The experiment is based on sending a beam of ul-traold neutrons between two horizontal mirrors. Thetop mirror is intentionally made rough, while the �atbottom one an ensure thousands of onseutive speu-lar re�etions [27℄ if the vertial veloity of neutrons isbelow a ertain threshold (about 4 m/s in GRANIT ex-periments). If the vertial veloity exeeds this thresh-old, the neutrons penetrate the mirrors and disappear.The ultraold neutrons entering the waveguide have alarge horizontal veloity omparable to the penetra-tion threshold, and, as a result of ollimation, a muhsmaller residual vertial veloity. The sattering ofneutrons by the rough upper mirror turns the velo-ity vetor and inreases its vertial omponent, lead-ing to an eventual esape of neutrons through the mir-rors. The quantization of the vertial motion of neu-trons by Earth's gravity �eld disretizes the amplitudesof bounes of neutrons from the bottom mirror. Theroughness-driven turning of the veloity orresponds tothe sattering-driven transitions of neutrons into higherquantum states j. Only the neutrons in the lowestgravitational states, whih have the lowest amplitudesof bounes, annot reah the rough upper mirror andontinue bouning along the bottom mirror until theyreah the exit neutron ounter. In priniple, dereas-ing the separation between the mirrors should result ina stepwise disappearane of neutrons from lower andlower states. So far, this stepwise depletion of the grav-itational quantum states has not been observed. Thequestion is, why?Earlier [28, 29℄, we developed a theoretial frame-work for desribing experiments with ollimated beamsof ultraold neutrons in rough waveguides and demon-strated that the neutron ount depends on the orrela-tion properties of the rough mirror [30℄. The agreementbetween our theory and experiment was atually bet-ter than one would expet with the unertainty in theinput parameters existing at the time. An alternativedesription of the same experiment [31℄ used a large setof independent �tting parameters that were unrelatedto the properties of the waveguide.Below, we �nalize our theory with an eye on theongoing experiments with a new waveguide. Amongother things, we inlude sattering in all, and not onlyvertial, diretions, derive saling equations for the de-pletion times and the exit neutron ount, and developmethods for identi�ation of the roughness CF in ap-pliation to the experimental data for the new roughmirror. We also demonstrate that the �tting param-eters used in Ref. [31℄ as independent have universalratios.We use dimensionless variables, whih are ommon

to the �eld (for details, see Ref. [29℄). All distanesz are measured in units of l0, s = z=l0, where l0 == ~2=3 �2m2g��1=3 � 5:871 �m is the size of the lowestquantum state in the in�nite gravitational trap (opengeometry without the upper mirror). The dimension-less distane between the mirrors h = H=l0 in experi-ment typially does not go below 2: The main param-eters of the roughness CF, namely, the average ampli-tude and the orrelation radius of surfae roughness� = `=l0 and r = R=l0, are usually within the 0.1�1range. The energies are measured in units of e0, wheree0 = mgl0 � 0:602 peV� 9:6366 � 10�32 J is the energyof a neutron in the lowest quantum state. The lowestquantized levels in the gravity �eld �j = �j=e0 are be-low 10 while the typial overall kineti energy of parti-les in the beam " = E=e0 and the absorption thresholdu = U=e0 are of the order of 105. Thus, the details ofthe potential near the absorption threshold are irrele-vant for the lowest gravitational states �j � u; ". Theenergy spetrum �j (h) and the wave funtions 	j anbe found in Refs. [28, 29℄. In the original GRANIT ell,� � u=" � 0:16, and in a new one, � � 1. The hori-zontal veloities vj (momenta qj) in the beam diretionare measured in units ofv0 =p2gl0 = ~ml0 � 1:073 � 10�2 m=s;�j = vjv0 =p"� �j � qj l0~ :The sale for harateristi times is provided by theosillation frequeny of neutrons in the gravitationalwell, 1�0 = p2�4m ~l20 � 1148:7 s�1: (14)The time of �ight of neutrons through the old ell [17℄is tL=�0 � 23: In the new ell [32℄, tL=�0 � 26.Time evolution of the oupany of the gravita-tional states nj (q) is governed by transport equation(6), (7):�tnj (q) = 2�Xj0 Z d2q0(2�~)2 [Wjj0 (jq� q0j)nj0q0 �� Wjj0 (jq� q0j)njq℄ Æ��j � �j0 + q2 � q022m � ; (15)with transition probabilitiesWjj0 (jq� q0j) given eitherby Eq. (9) with [U ℄ = U or Eq. (11). The ontribu-tion from the diret transitions to the states above theabsorption threshold U is negligible [29℄. Integration1285



M. Esobar, A. E. Meyerovih ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014with the energy Æ-funtion in the relaxation time ap-proximation nj (q) = Æ (q � qj)Nj redues Eqs. (15)to�tNj = m2�Xj0 Z d� �Wjj0 ���qj�qj0 ���Nj0 �� Wjj0 ���qj�qj0 ���Nj� ; (16)where q2j =2m = E � �j and � is the angle between qjand qj0 .The di�usion of neutrons between the quantumstates j has a strong diretional bias upward, towardshigher j [29℄. The bias is explained by the rapidgrowth of the produt of wave funtions in Eqs. (9)and (11) with inreasing j and j0 (roughly, as j2j02, seeEqs. (13)). This inrease in the rate of jumps j ! j0is reversed by the rapid deay of the CF � ���qj�qj0 ���at large ��qj�qj0 �� & 1=R. As a result, as a funtionof j0, the transition rates j ! j0 represent a relativelynarrow peak around some j1 � j. This upward biasis so strong that almost all the time �j neessary fora neutron from a low gravitational state j to go up instates and disappear over the absorption barrier U, isspent on the �rst transition upwards.This strong upward bias allows negleting the tran-sitions from the higher states down in transport equa-tion (16) for the lowest states:�tNj = �Nj�j ;1�j = mXj0 Z d�2�Wjj0 ���qj�qj0 ��� ; (17)while the depletion times �j for the lowest gravitationalstates j di�er from eah other, aording to Eq. (9),only by the values of the wave funtions on the roughmirror 	2j (H),1�j = bjb1 1�1 ; bj = 105l0	2j (H)2 ; (18)where �1 is the depletion time for neutrons in the lo-west gravitational state (these depletion times are usedas independent �tting parameters in Ref. [31℄). Theratios �j (h) =�1 (h), Eq. (18), are plotted in Fig. 1 forj = 2; 3; 4; 5 as a funtion of the slit width h. Theseratios, whih measure the relative widths of the eigen-states in the biased di�usion approximation, are thesame for one-dimensional (1D) and two-dimensional(2D) roughness and do not depend on the roughnessparameters at all (the 1D roughness is a random grat-ing perpendiular to the beam diretion). The stepwisedependene of the exit neutron ount Ne on h an be
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Fig. 1. The ratios �j (h) =�1 (h), Eq. (18), for the low-est quantum levels j = 2; 3; 4; 5 as funtions of theslit width h. The urves are marked by the values of j.These funtions are the same for 1D and 2D roughnessand do not depend on the roughness parametersobserved only if the values of tL=�j = (tL=�1) (bj=b1)are not too lose to eah other.The values of �j (h) determine the depletion of eahquantum state j and the overall exit neutron ount Ne,Ne =XNj =XNj (0) exp (�L=vj�j) ; (19)where Nj (0) is the number of neutrons in a state j en-tering the waveguide of the length L. Equation (18)shows that for the lowest levels with vj � p"v0, allrelevant parameters ollapse into a single onstant �,Ne =XNj (0) exp (��bj (h)) ; (20)� (h) = L=v0�1b1 (h) ; (21)and the only remaining task is to alulate �1 (or �).The time �1 strongly depends on roughness, making �di�erent for 1D and 2D roughness, �1 6= �2.In the biased di�usion approximation, transportequations (15) deouple and�0�1 = 2 � 10�5b1u22F2 (r; h) ; (22)F2 (r; h) = 10�5r 2� r4 X�j<u=� bj (h) 2 (y1; yj) ; (23)y1 = rru� ; yj = qjr = rru� � �j ; (24)where  2 (yj ; yj0) is the dimensionless zeroth harmoniof the CF � (jqj � qj0 j) over the angle between the ve-tors qj and qj0 , 2 (yj ; yj0) = �(0) (qj ; qj0) =`2R2:1286



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :The subsript �2� in F2,  2 points at 2D roughness.The main ontribution to the sum in Eq. (23) omesfrom the terms with large j, and we an replae it bythe integral,F2 (r; h) = r4r 2u�3�3 1Z0 z2 2 (y1; ey) dz; (25)where y1 = rpu=� and yj ! ey = rp1� z2pu=�. Ifall initial oupanies are the same, Nj (0) = N0, thenNe in Eq. (20) beomesNe = N0f (r; h) = N0X exp (��2bj (h)) ; (26)�2 (�; r) = A2�2r2 1Z0 z2 2 (y1; ey) dz; (27)A2 = � 2��3=2 � 10�5 tL�0 u5=2�3=2 : (28)The equation for the exit neutron ount Ne for thewaveguide with 1D roughness (grating) is the same asEq. (26), but with �1 instead of �2 [30℄:�1 (�; r) = A1�2r 1Z0 z2 1 (y) dz;y =pu=�r �1�p1� z2 � ;A1 = 4 � 10�5tLu2=�0��: (29)The alulation of the exit neutron ount (26) re-dues to the integration of the CF for the rough mirror.The result strongly depends on the shape of the CF.There are no experimental data on the roughness CFof the original mirror. The only information is that thetypial lateral and vertial sizes of inhomogeneities areabout 1:19`0 and 0:119`0. In the absene of the data,it was assumed in Ref. [30℄ that the roughness is 1DGaussian with r = 1:19 and � = 0:119. At the endof next setion, we analyze the roughness of the newmirror. Our predition for the neutron ount (26) forthis new mirror is given in Se. 5.It is possible to perform analyti integrations inEq. (29) for most ommon types of 1D CFs. For exam-ple, the exponential CF � (x) = �2 exp (�x=r) yields�1 � 13A1�2r 2F1 �34 ; 32 ; 74 ;�r2u4� � �� 1:38A1�2r1=2 (4�)3=43u3=4 : (30)In the 2D ase, the expressions for the zeroth angularharmonis for the power spetrum �(0) (jq� q0j) are
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Fig. 2. The energies of the gravitational quantumstates �j (h) for j = 1; 3; 5 as funtions of the waveg-uide width h (solid lines). The dashed lines show theline broadening �j � 1=2�j in kHz. The roughness isexponential in one (blak dashed lines) or two (greydashed lines) dimensions with � = r = 1. Saling(31) allows realulating the broadening for di�erent �and rtoo ompliated even for the simplest CFs [16℄ and theintegration in Eq. (27) is done numerially.For moderate values of r > 0:3, the depletion times�j and the parameter � sale as1=�j ;� = C�;��2r ; (31)where the oe�ients C�;� depend on the dimension-ality and the shape of the CF, Eqs. (27) and (29). Atu ! 1, the saling index  = �1=2 in both 1D and2D. If u � 105, as in experiment, the saling indexfor exponential roughness is  � �0:465 in 2D and � �0:494 in 1D (f. Eq. (30)).The times �j (h) desribe the depletion and broad-ening of the quantum gravitational states, �j (h) !! �j (h) + i~=�j (h). In Fig. 2, we plot �j (h) forj = 1; 3; 5 as a funtion of the waveguide width h (solidblak lines) together with the line broadening �j�~=2�j(dashed lines) in kHz. The roughness is exponential in1D (blak dashed lines) or 2D (grey dashed lines) with� = r = 1. Equation (31) allows resaling of the linebroadening for other values of � and r. The individ-ual quantum states beome meaningless when the linebroadening beomes omparable to the separation be-tween the lines. The simplest way to preserve the statesis to derease the roughness amplitude � in omparisonto its value � = 1 in Fig. 2.These values of the line broadening/depletion times,in ombination with our preditions for the exit neutron1287



M. Esobar, A. E. Meyerovih ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014ount Ne (h), Eq. (26), provide the full desription ofthe problem (see Se. 5). The quantum steps in Ne (h)beome pronouned with an inrease in �2=r1=2 and thetime of �ight tL. The only remaining issue is the valueof the orrelation parameters.4. CORRELATION PROPERTIES OF ROUGHSURFACESPratial appliations of the transport theory re-quire the CF of surfae inhomogeneities as an input.Often, various Gaussian, exponential, and power-lawfuntions are hosen at will in lieu of an unknownCF without giving it a seond thought. It is rou-tinely assumed that if one needs the aurate CF, oneould always extrat it from STM, AFM, and otherpreise measurements of surfae pro�les (some require-ments for pro�le measurements are disussed, e. g., inRefs. [33, 34℄).The pro�le measurement provides one with a bigdata set of disrete orrelation parameters. The nextsteps look straightforward: one ould either identify theCF using reasonable �tting funtions or input these raworrelation parameters diretly into the equations. Buthow reliable are these hoies?The best way to test this is to study rough sur-faes with the known roughness orrelators. This ishardly feasible: the roughness orrelators depend onthe surfae preparation and are not known beforehand.The best alternative is to omputationally generate sur-faes with predetermined orrelators, �measure� theirpro�les, extrat the orrelators, and ompare themto the �true� CF used to generate the surfae. Be-low, we report the results of suh numerial experi-ments (for tehnial details and broader appliations,see Ref. [35℄).The CFs extrated from our numerial experimentshave been �tted to Gaussian, exponential, and power-law funtions or used diretly in transport omputa-tions inluding �1;2 for our neutron problem. The pur-pose is to see how sensitive the results for �1;2 (thedepletion times and the exit neutron ount) are to ahoie of the �tting funtion and, by extension, howwe should use the orrelation data sets extrated fromthe real experimental data. We apply these onlusionsat the end of this setion to the experimental data forthe new neutron mirror.We start from a disretized random rough pro�leg = g (xi) generated using a Gaussian distributionfuntion P (g) embedded in many generators of ran-dom numbers. This pro�le orresponds to an unorre-

lated roughness, hgigki / Æik (white noise). What wewant is to produe a surfae y = y (xi) with a prede-termined desirable binary orrelations � (x) (or, rather,its disrete analog �ik),hyiyki � �ik = Z yiykP [y℄ dy: (32)To ahieve this, we rotate the unorrelated vetor gusing the matrix bA [30℄,bA = b�1=2; y = bAg: (33)This proedure allowed us to generate and analyze 1Dand 2D random rough surfaes with any predeterminedorrelation funtion �, Eq. (32).The omputational resoures required by operation(33) for large matries b� provide the only limitationon the surfae size as measured in terms of step sizes�x = xi+1 � xi. This limitation is more importantfor 2D surfaes than for 1D ones: in addition to a sizeexplosion in the 2D ase, the matries b� for the 2Dsurfaes lose their almost diagonal struture even forvery steep orrelation funtions.The above approah annot emulate the atomi-sale roughness with disrete amplitudes in terms ofatomi sizes. In suh situations, we use Monte Carlosimulations based on exatly solvable spin lattie mod-els for whih the CFs are known. The universe of theknown CFs that are aessible in this way is limitedby the small number of exatly solvable lattie models,mostly in 1D. It is even unlear whether there are re-stritions on the form of the CF generated in this way.What is more, in 2D, even the simplest models, suhas the Ising model, lead to the CFs for whih we do nothave expliit analyti expressions, making them virtu-ally useless for our purpose. The omputational limi-tations here are assoiated with long relaxation timesand with the presene of large domains. We note thatthe experimental di�ulties of extrating an auratesurfae orrelator also multiply when we deal with theatomi-sale roughness, even if we disregard the issueof the auray of pro�le measurements related, for ex-ample, to the tip pro�le [36℄ or the step size [37℄.The simplest example of the latter approah is theferromagneti Ising model yi = �1, for whih the CFis determined by the attrative oupling onstant J inthe Hamiltonian (or, what is the same, by the Boltz-mann fators exp (�2J=kT )). In the 1D ase, the CFis exponential,�E (x) = �2 exp��xr � ; r = 12 exp� 2JkT � : (34)Towards the end of this paper, we use this approahfor designing a new rough neutron mirror for GRANIT1288



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :experiments. The CF for the 2D Ising model, thoughknown in priniple [38℄, is desribed by a set of ompli-ated equations involving ellipti integrals.We have generated numerous 1D and 2D rough sur-faes using both methods: rotation of the unorrelatedsurfaes with the rotation operator bA in Eq. (33) forvarious predetermined orrelators b� and Monte Carlosimulations using the Ising model. In rotations, weroutinely use matries up to 5000� 5000 and in MonteCarlo simulations, up to 104 points xi and 106 MonteCarlo yles.The main hallenges for identifying the orrelatorfrom the data on the surfae pro�le arise from �u-tuations related to the �nite size of the samples. AllCFs onsist of a peak at short distanes and a longtail. For �nite samples, the extrated orrelators �ikdo not go to zero at large distanes ji� kj � 1 buthave long �utuation-driven, often osillating tails ofalmost onstant amplitude. As a result, the standarddeviation � between the measured orrelation funtionand the �tting funtion is determined by the tail areaand is more or less the same for all reasonable �ttingfuntions, whih all go to zero at large distanes. Mean-while, many observables, inluding our �1;2, are deter-mined by the behavior of the orrelation funtion atsmall q, i. e., at large distanes, and are very sensitiveto the shape of the orrelators. Our onlusion (see be-low) is that the value of � taken by itself annot be usedfor justifying the hoie of the funtional form of theorrelation funtion and annot be onsidered a goodpreditor for physial results.Suppressing the �utuations requires inreasing thesize of a sample, whih, unfortunately, makes the�utuation-driven tails longer. Another option for sup-pressing the �utuation-driven tails is to average theCF over several samples, as is sometimes done in ex-periment [39℄. This assumes that the CFs for di�erentsamples are the same and that the �true� CF does nothave a long alternating tail. These assumptions anmake the averaging over the samples inherently dan-gerous. Still, we have performed suh averaging overseveral generated surfaes with the same true CF. Re-sults of our numerial experiments show that if we knowthat there are no long-range orrelations, this averagingover several samples an be helpful for 2D roughness,but is not neessary in 1D. The same di�ulty persistsif we simply ut o� the long-range tails assuming thatthey are driven only by the �utuations.Generating or measuring the CF with a large orre-lation radius R is virtually impossible. The importantfator is not the overall number of the data points Nbut the number of inhomogeneities N=Ni, where Ni is

the number of points in a typial inhomogeneity, whihin the 2D ase grows proportionally to R2. The shapeof the CF with not very large N=Ni is often misleadingand points, rather onviningly, at �titious long-rangeorrelations. One should be very autious when identi-fying an additional, larger orrelation length from theexperimental data with fat orrelation tails [40℄.We have also tried an alternative to the use of the�tting funtions by using the spetral deomposition ofthe raw orrelation data for diret omputation of ob-servables. In 1D examples, this approah has workedsomewhat, but not muh, better than using a �ttingfuntion of a wrong shape, although still notieablyworse than using the �tting funtion of the right shape.In 2D, this approah has led to unstable results beauseof the �utuation-driven anisotropy of the extratedorrelators and smaller linear sizes of the samples thanin 1D.The tables illustrate some of our results for gener-ated rough surfaes with parameters lose to those inexperiments with ultraold neutrons from Se. 3.Table 1 shows the results of our analysis of threenumerially generated 1D rough surfaes with the CFemulating the Gaussian orrelations with r = 1:19 and� = 0:119. As we an see, the quality of the �ts �G;E;PLfor all three types of the �tting funtions is more or lessthe same, about 5 � 10�4, but the results for the phys-ially important parameters �1G;E;PL di�er onsider-ably, by about 25%. In our experiment, the �true�shape of the CF is known to be Gaussian and, not sur-prisingly, the �tting by the Gaussian funtion produesthe values of �1 very lose to the �true� value 23:48.The inevitable onlusion is that the quality of the �t� does not tell muh about the quality of physial re-sults obtained using this �tting funtion. The resultsfor �tting by the power-law and exponential CFs wererelatively lose to eah other and very di�erent fromthose for the Gaussian �t. The explanation is simple:the Gaussian funtion has a muh shorter tail. Theuse of the raw orrelation data in the equations (�n)works better than the use of a wrong �tting funtionbut worse than using the right one.The quality of the �ts (the values of �) for 2Droughness is worse than in the 1D ase beause of the�utuation-driven anisotropy and smaller linear sizes ofour samples, although the overall number of the datapoints in our numerial experiments is larger. The onlynotieable di�erene in onlusions is that the use ofraw orrelation data without �tting leads to unstableresults. Here, averaging over several runs leads to amarked improvement in the results for �2.1289



M. Esobar, A. E. Meyerovih ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014Table 1. Three numerial runs for 1D surfaes that emulate the Gaussian orrelation of inhomogeneities�2 exp ��x2=2r2� with r = 1:19 and � = 0:119 (see Se. 3)� rG, �G � 104 rE , �E � 104 rPL, �PL � 104 �n � 1017 �1G, �1E , �1PL, �1n1 1.19, 5.24 1.59, 5.81 1.44, 5.81 1.92 23.86, 18.19, 18.81, 21.962 1.15, 4.49 1.53, 4.56 1.36, 4.64 1.83 23.33, 17.84, 18.65, 21.143 1.25, 4.37 1.69, 4.40 1.54, 4.47 1.69 23.56, 17.26, 17.85, 20.96Note. The �true� value of �1, Eq. (26), for suh surfae is �1 = 23:48. The extrated orrelators were �ttedwith Gaussian (�2G exp ��s2=2rG�), exponential (�2E exp (�s=rE)), and power-law (�2PL= �1 + (s=rPL)2�3=2) �ttingfuntions. The table ontains the best �tting values of rG;E;PL together with �G;E;PL, and the realulated valuesof �1G;E;PL. The values of �G;E;PL are very lose to eah other. The olumns with �n and �n give the values of �1and the standard deviation when the spetral deomposition of the raw data is put diretly into equations withoutany �tting. Table 2. Five Monte Carlo runs for the 1D Ising model� rE ; �E � 104 rG; �G � 104 rPL; �PL � 104 �n � 1017 �1E , �1G, �1PL, �1n1 1.27, 6.69 0.85, 6.93 1.26, 6.72 3.79 18.6, 27.4, 19.6, 25.82 1.23, 6.83 0.88, 6.94 1.25, 6.84 1.49 19.1, 26.8, 19.7, 26.23 1.04, 6.51 0.73, 6.74 1.07, 6.54 2.82 20.7, 30.2, 21.4, 27.34 1.18, 6.65 0.87, 6.71 1.23, 6.62 3.01 19.7, 27.1, 20.0, 26.15 0.94, 6.44 0.74, 6.42 1.03, 6.38 1.91 22.2, 29.8, 21.9, 27.7Note. The �true� orrelation funtion is exponential with r = 1:19, � = 0:119, and �1 = 19:5. The CFs extratedfrom the generated rough surfaes are �tted with the exponential, Gaussian, and power-law funtions. The tableontains the best �tting values of rE;G;PL and the orresponding values of �E;G;PL and �1E;G;PL. The values of�1n are obtained by diret spetral analysis of the raw orrelation data.Table 2 presents the results of �ve Monte Carlo runsfor the 1D Ising model in appliation to the neutronmirror. The data in the olumns are arranged similarlyto Table 1. The parameters of the �true� CF are thesame, r = 1:19 and � = 0:119. However, sine the Isingmodel orresponds to the exponential CF, Eq. (34), andnot to the Gaussian orrelator as in Table 1, the truevalue of parameter �1 in Eq. (30) is now �1 = 19:5.Sine the simulation is based on the Ising model withspins �1, the extrated average amplitudes of rough-ness �E;G;PL di�er from � = 0:119 by less than 1% forall �tting funtions. The size of the sample isN = 1000and we perform 106 Metropolis yles. Of ourse, the�t using the exponential orrelator provides the bestvalues for �1. Of the other two �ts, it is not lear whythe power-law �t works muh better than the Gaus-sian one. The last olumn in the Table 2 gives thevalues of �1n obtained by diret spetral analysis withN=2 harmonis of the raw orrelation data without any

�tting. These data display the worst agreement with�1 = 19:5 while the value of �n is by 13 orders of mag-nitude better than � for any of our �tting funtions.The explanation is the same as before: the full set ofraw data is dominated by the long orrelation tails thatome from the �utuations.The results for rough surfaes generated using the2D Ising model above the phase transition do not pro-vide any new information.Our main onlusion is that the reliable identi�a-tion of the roughness CF requires having at least someinformation about its shape. Without this information,the best strategy is to rely on � only in ombinationwith an averaging over several samples and a graphialand numerial analysis of the shape of the orrelationfuntion in the peak area.As an appliation, we have analyzed the orrelationproperties of a rough mirror prepared for new GRANITexperiments with ultraold neutrons [41℄. The rough-1290



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :ness pro�le has been measured in �ve surfae areas with2500� 2500 data points in eah. Even with more than3 � 107 available data points, the extrated CF still hasa long �utuation-driven tail, whih hinders its unam-biguous identi�ation. These �utuation-driven tailsare indistinguishable from those in our numerial ex-periments. The attempts to �t the extrated orrelatorto various �tting funtions lead to notieably di�erentpreditions for the observable �2 while the statistialquality of the �ts � are more or less the same for all�tting funtions. Our preferred hoie, based on theaveraging over �ve samples and the shape of the orre-lation peak, is the 2D isotropi exponential orrelatorwith � � 1:02 and r � 0:65.5. CONCLUSIONSIn summary, we have applied our general theory oftransport of partiles along rough surfaes to the gravi-tationally quantized neutrons in a rough waveguide. Inthe end, all parameters of a system ollapse to a singleonstant �2;1 whih determines the exit neutron ount.The onstant � is losely related to the depletion time(the line broadening) for the gravitational states �j .The required input parameters are the roughness CFand the distribution of neutrons entering the waveg-uide over the gravitational states. The depletion times�j have simple saling properties, Eq. (31), and their ra-tios are the universal funtions of the waveguide width(see Eq. (18) and Fig. 1).Our numerial experiments show that the identi�-ation of the roughness CF should not be undertakenlightly. Our onlusion is that the CF must be iden-ti�ed by using the statistial quality of the �ts � todi�erent �tting funtions only in ombination with theaveraging over several experimental areas and a nu-merial and graphial analysis of the CF in the peakarea. We do not reommend avoiding the identi�ationof the roughness CF by inputting the raw orrelationparameters diretly into the equations.Our analysis of a new neutron mirror [41℄ identi�esthe CF as the isotropi 2D exponential funtion withthe orrelation radius r = R=l0 = 0:65 and the am-plitude � = `=l0 = 1:02. This �tting funtion yields�2 � 5:22 � 103. The predited neutron exit ount asa funtion of the spaing between the rough and �atmirrors h, Eq. (26), is plotted in Fig. 3. The steps inthe �gure are the long-sought demonstration of onse-utive depletion of the quantum gravitational states ofneutrons.
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Fig. 3. The exit neutron ount N (h) =N0, Eq. (26), asa funtion of the spaing between the mirrors. Calu-lations for the new sapphire mirror with isotropi expo-nential roughness r = 0:65, � = 1:02The auray of this predition is limited by a rel-atively large value of the roughness amplitude �. Anyperturbative theory assumes � to be the smallest lengthparameter, � � r; h, whih is learly not true for thismirror. The same fator limits the auray of measur-ing the spaing between the mirrors and makes mea-surements at small h virtually impossible. This largevalue of � also leads to the smearing of the gravita-tional quantum states. Another limitation is the lakof aurate information on the distribution of neutronsover the gravitational states in front of the waveguide.We assume this distribution to be uniform at very lowenergies; this assumption, although reasonable, an po-tentially break down during the beam preparation.In general, the sharpness of the quantum steps inthe exit neutron ount Ne (h) is determined by the dif-ferene in values between exp (�tL=�j) with di�erent j,whih is determined by the values of 1=�j in Fig. 2 ad-justed by the saling relation (31). Sine the distanebetween the starting points for the state depletion inFig. 2 is not large, the best way to see these quantumsteps is to inrease the time of �ight tL.Most of the unertainties disappear if a future roughmirror is designed di�erently. Our reommendation isto use 1D roughness based on the Monte Carlo simu-lations for the 1D Ising model (the grating of onstantamplitude but with random width and separation oftrenhes, Fig. 4). The preferred orrelation radius isr � 2 with the amplitude of roughness in the 0.2�0.4range. Sine all the lengths are in the units of 5.87 �m,the transfer of the generated pro�le onto a real surfae1291
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Fig. 4. A fragment of the rough upper mirror based onMonte Carlo simulations for the 1D Ising model (theIsing mirror). The thik blak line is the surfae pro�leand dark bars are �Ising spins�. Mirror material (sap-phire) is above the thik blak line (all dark and light�lled areas). The amplitude of roughness is � = 0:2,the orrelation radius is r = 2, and �1 � 43:5. Bothaxes are in units of l0 = ~2=3 �2m2g��1=3 � 5:871 �mand the vertial sale is about 100 times smaller thanthe horizontal one. Changing the value of � an bedone simply by resaling the vertial axisseems to be tehnologially feasible. The thik blakline in Fig. 4 shows the mirror pro�le and the greybars are the up and down �Ising spins�. We note thatthe vertial sale is about 100 time smaller than thehorizontal one and the roughness is very mild.The orrelation funtion � (x) for the ontinuous�Ising mirror� suh as in Fig. 4 is lose to the expo-nential one for the disrete 1D Ising model, Eq. (34),and oinides with it at the integer points of x,� (x) = �2 [exp (�bx =r) + (x� bx) �� (exp (�dxe =r)� exp (�bx =r))℄ : (35)The values of �1 for the true Ising orrelator � (x) == �2 exp (�x=r) are given by Eq. (30) and yield �1for r = 2 and � = 0:2�0.4 in the 42.5�170 range withtL=�0 � 23 (the old ell) and in the 30.3�121.5 rangefor tL=�0 � 26 (the new ell). Although we annot givea simple analyti expression for �1 for orrelation fun-tion (35), the numerial results for this orrelator di�erfrom the ones for the pure Ising exponent at r = 2 byabout (3�5)%. These values of �1 are su�ient for ex-hibiting the quantum steps in the exit neutron ount(Fig. 5) and for produing neutrons with well-de�nedenergies in the peV range.
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