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BIANCHI TYPE-I COSMOLOGY IN f(R;T ) GRAVITYM. F. Shamir *Department of Sienes and Humanities,National University of Computer and Emerging Sienes,Lahore Campus, PakistanReeived Marh 11, 2014We investigate the exat solutions of a Bianhi type-I spae-time in the ontext of f(R; T ) gravity [1℄, wheref(R; T ) is an arbitrary funtion of the Rii salar R and the trae of the energy�momentum tensor T . For thispurpose, we �nd two exat solutions using the assumption of a onstant deeleration parameter and the variationlaw of the Hubble parameter. The obtained solutions orrespond to two di�erent models of the Universe. Thephysial behavior of these models is also disussed.DOI: 10.7868/S00444510140800691. INTRODUCTIONThe most popular issue in the modern-day osmol-ogy is the urrent expansion of the Universe. It is nowevident from observational and theoretial fats thatour universe is in the phase of aelerated expansion[2�10℄. The phenomenon of dark energy and dark mat-ter is another topi of disussion [11�18℄. It was Ein-stein who �rst proposed the onept of dark energy andintrodued a small positive osmologial onstant. Butafter some time, he referred to it as the biggest mistakein his life. However, it is now believed that the osmo-logial onstant may be a suitable andidate for darkenergy. Another proposal to justify the urrent expan-sion of the Universe omes from modi�ed or alternativetheories of gravity. The f(T ) theory of gravity is onesuh example that has been reently developed. Thistheory is a generalized version of teleparallel gravityin whih the Weitzenbök onnetion is used insteadof the Levi-Civita onnetion. The interesting featureof the theory is that it may explain the urrent a-eleration without involving dark energy. A onsid-erable amount of work has been done in this theoryso far [19℄. Another interesting modi�ed theory is thef(R) theory of gravity involving a general funtion ofthe Rii salar in the standard Einstein�Hilbert La-grangian. Some review artiles [20℄ an be helpful inunderstanding the theory.Many authors have investigated f(R) gravity in dif-*E-mail: farasat.shamir�nu.edu.pk

ferent ontexts [21�34℄. Spherially symmetri solu-tions are most ommonly studied solutions due to theirloseness to Nature. Vauum and perfet �uid solu-tions of a spherially symmetri spaetime in the met-ri version of this theory were explored in [35℄. Theyused the assumption of a onstant salar urvature andfound that the solutions orresponded to the alreadyexisting solutions in general relativity (GR). Noethersymmetries have been used in [36℄ to study spheriallysymmetri solutions in f(R) gravity. Similarly, manyinteresting results have been found using spherial sym-metry in f(R) gravity [37℄. Cylindrially symmetrivauum and nonvauum solutions have also been ex-plored in this theory [38℄. Plane symmetri solutionswere found in [39℄. The same authors [40℄ disussedthe solutions of Bianhi type-I and V osmologies forvauum and nonvauum ases. Conserved quantities inf(R) gravity via the Noether symmetry approah werereently alulated in [41℄.In a reent paper [1℄, a new generalized theoryknown as f(R; T ) gravity was proposed. In this theory,gravitational Lagrangian involves an arbitrary fun-tion of the salar urvature R and the trae of theenergy�momentum tensor T . In [42℄, f(R; T ) gravitywas disussed with expliitly presented point-like La-grangians. The laws of thermodynamis in this theorywere studied in [43℄. The same authors [44℄ investigatedholographi and agegraphi f(R; T ) models. In [45℄,f(R; T ) gravity was reonstruted by takingf(R; T ) = f1(R) + f2(T );and it was proved that f(R; T ) gravity allows transi-281



M. F. Shamir ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014tion from matter-dominated phase to an aelerationphase. Thus, it is hoped that f(R; T ) gravity may ex-plain the reent phase of osmi aeleration of our Uni-verse. This theory an be used to explore many issuesand may provide some satisfatory results.The isotropi models are onsidered to be most suit-able to study the large-sale struture of the Universe.However, it is believed that the early Universe may nothave been exatly uniform. This predition motivatesus to desribe the early stages of the Universe withthe models having an anisotropi bakground. Thus,the existene of anisotropy in early phases of the Uni-verse is an interesting phenomenon to investigate. ABianhi type-I osmologial model, being a generaliza-tion of the �at Friedmann�Robertson�Walker (FRW)model, is one of the simplest models of the anisotropiUniverse. Therefore, it seems interesting to exploreBianhi-type models in the ontext of f(R; T ) gravity.Exat solutions of the f(R; T ) �eld equations for a lo-ally rotationally symmetri Bianhi type-I spaetimewere investigated in [46℄. Solutions of a Bianhi type-III spaetime were explored in [47℄ using the law ofvariation of Hubble's parameter. Bianhi type-III darkenergy model in the presene of a perfet �uid sourehas been reported [48℄. Bianhi type-V osmology inthis theory was studied in [49℄ by involving the osmo-logial onstant in the �eld equations. Solutions of theBianhi type-V bulk visous string osmologial model,were given in [50℄.In this paper, we fouse on investigating the exatsolutions of a Bianhi type-I spaetime in the frame-work of f(R; T ) gravity. The plan of the paper is asfollows. In Se. 2, we give some basis of f(R; T ) grav-ity. Setion 3 provides the exat solutions for a Bianhitype-I spaetime. Conluding remarks are given in thelast setion.2. SOME BASICS OF f(R;T ) GRAVITYThe f(R; T ) theory of gravity is a generalization ormodi�ation of GR. The ation for this theory is givenby [1℄ S = Z p�g� 116�Gf(R; T ) + Lm� d4x; (1)where f(R; T ) is an arbitrary funtion of the Riisalar R and the trae T of the energy�momentum ten-sor T�� , and Lm is the usual matter Lagrangian. It isworth mentioning that if we replae f(R; T ) with f(R),we obtain the ation for f(R) gravity, and the replae-ment of f(R; T ) with R leads to the GR ation. Theenergy�momentum tensor T�� is de�ned as [51℄

T�� = � 2p�g Æ (p�gLm)Æg�� : (2)We assume that the dependene of the matter La-grangian is merely on the metri tensor g�� rather thanon its derivatives. In this ase, we obtainT�� = Lmg�� � 2 ÆLmÆg�� : (3)The f(R; T ) gravity �eld equations are obtained byvarying the ation S in Eq. (1) with respet to themetri tensor g�� :fR(R; T )R�� � 12f(R; T )g�� � (r�r� � g���)�� fR(R; T ) = �T�� � fT (R; T )(T�� +���); (4)where r� denotes the ovariant derivative and� � r�r�; fR(R; T ) = �fR(R; T )�R ;fT (R; T ) = �fR(R; T )�T ; ��� = g�� ÆT��Æg�� :Contration of (4) yieldsfR(R; T )R+ 3�fR(R; T )� 2f(R; T ) == �T � fT (R; T )(T +�); (5)where � = ���:This is an important equation beause it provides a re-lation between the Rii salar R and the trae T ofthe energy�momentum tensor. Using the matter La-grangian Lm, the standard matter energy�momentumtensor is derived asT�� = (�+ p)u�u� � pg�� ; (6)where u� = pg00(1; 0; 0; 0)is the four-veloity in omoving oordinates and � andp respetively denote the energy density and pressureof the �uid. Perfet-�uid problems involving energydensity and pressure are not easy tasks. Moreover,there does not exist any unique de�nition for the mat-ter Lagrangian. We an assume the matter LagrangianLm = �p, whih gives��� = �pg�� � 2T�� ; (7)and onsequently �eld equations (4) take the formfR(R; T )R�� � 12f(R; T )g�� � (r�r� � g���)�� fR(R; T ) = �T�� + fT (R; T )(T�� + pg��): (8)282



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Bianhi type-I osmology in f(R; T ) gravityWe note that these �eld equations depend on the phys-ial nature of the matter �eld. Many theoretial mod-els orresponding to di�erent matter ontributions forf(R; T ) gravity are possible. However, three lasses ofthese models were given in [1℄:f(R; T ) = 8><>: R+ 2f(T );f1(R) + f2(T );f1(R) + f2(R)f3(T ):In this paper, we fouse on the �rst lass, i. e.,f(R; T ) = R+ 2f(T ):For this model, the �eld equations beomeR�� � 12Rg�� = �T�� + 2f 0(T )T�� ++ [f(T ) + 2pf 0(T )℄ g�� ; (9)where the prime represents the derivative with respetto T .3. EXACT SOLUTIONS OF THE BIANCHITYPE-I UNIVERSEIn this setion, we �nd exat solutions of a Bianhi-Ispaetime in f(R; T ) gravity. For simpliity, we use thenatural system of units (G =  = 1) and f(T ) = �T ,where � is an arbitrary onstant. For a Bianhi type-Ispaetime, the line element is given byds2 = dt2 � A2(t) dx2 �B2(t) dy2 � C2(t) dz2; (10)where A, B, and C are de�ned as osmi sale fators.The Bianhi-I Rii salar turns out to beR = �2" �AA + �BB + �CC + _A _BAB + _B _CBC + _C _ACA# ; (11)where the dot denotes the derivative with respet to t.Using Eq. (9), we obtain four independent �eldequations,_A _BAB + _B _CBC + _C _ACA = (8� + 3�)�� �p; (12)�BB + �CC + _B _CBC = ��� (8� + 3�)p; (13)�CC + �AA + _C _AAC = ��� (8� + 3�)p; (14)�AA + �BB + _A _BAB = ��� (8� + 3�)p: (15)These are four nonlinear di�erential equations with �veunknowns A, B, C, �, and p. Subtrating Eq. (14)

from Eq. (13), Eq. (15) from Eq. (14), and Eq. (15)from Eq. (12) yields�AA � �BB + _CC  _AA � _BB! = 0; (16)�BB � �CC + _AA  _BB � _CC! = 0; (17)�AA � �CC + _BB  _AA � _CC! = 0: (18)These equations imply thatBA = d1 exp�1 Z dta3 � ; (19)CB = d2 exp�2 Z dta3 � ; (20)AC = d3 exp�3 Z dta3 � ; (21)where 1, 2, 3 and d1, d2, d3 are integration onstantsthat satisfy the relations1 + 2 + 3 = 0; d1d2d3 = 1: (22)Using Eqs. (19)�(21), we an write the unknown metrifuntions in the expliit formA = ap1 exp �q1 Z dta3 � ; (23)B = ap2 exp �q2 Z dta3 � ; (24)C = ap3 exp �q3 Z dta3 � ; (25)wherep1 = (d1�2d2�1)1=3; p2 = (d1d2�1)1=3;p3 = (d1d22)1=3 (26)andq1 = �21+23 ; q2 = 1�23 ; q3 = 1+223 : (27)We note that p1, p2, p3 and q1, q2, q3 also satisfy therelation p1p2p3 = 1; q1 + q2 + q3 = 0: (28)3.1. Some important physial parametersWe now present some important de�nitions of phys-ial parameters. The average sale fator a and thevolume sale fator V are de�ned asa = 3pABC; V = a3 = ABC: (29)283



M. F. Shamir ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014The generalized mean Hubble parameter H is given byH = 13(H1 +H2 +H3); (30)where H1 = _AA; H2 = _BB ; H3 = _CCare de�ned as the diretional Hubble parameters in thediretions of x, y, and z axes. The mean anisotropyparameter A isA = 13 3Xi=1 �Hi �HH �2 : (31)The expansion salar � and the shear salar �2 are de-�ned as � = u�;� = _AA + _BB + _CC ; (32)�2 = 12������ = 13 24 _AA!2 + _BB!2 ++  _CC!2 � _A _BAB � _B _CBC � _C _ACA35 ; (33)where ��� = 12(u�;�h�� + u�;�h��)� 13�h�� (34)with h�� = g�� � u�u�de�ned as the projetion tensor. The deeleration pa-rameter q is the measure of the osmi aelerated ex-pansion of the Universe. It is de�ned asq = ��aa_a2 : (35)The behavior of the Universe models is determinedby the sign of q. The positive value of the deelerationparameter suggests a deelerating model, while the neg-ative value indiates in�ation. Beause there are fourequations (12)�(15) and �ve unknowns, we need an ad-ditional onstraint to solve them. Here, we use a well-known relation [52℄ between the average sale fator aand the Hubble parameter H to solve the equations,H = la�n; (36)where l and n are positive onstants. This is an im-portant relation beause it yields a onstant value ofthe deeleration parameter and we onsequently obtain

power-law and exponential models of the Universe. Us-ing Eqs. (30) and (36), we obtain_a = la1�n (37)and the deeleration parameter beomesq = n� 1: (38)Integrating Eq. (37) yieldsa = (nlt+ k1)1=n; n 6= 0; (39)and a = k2 exp(lt); n = 0; (40)where k1 and k2 are integration onstants.3.2. Singular model of the UniverseHere, we investigate the model of the Universe whenn 6= 0, i. e., a = (nlt+ k1)1=n:In this ase, the metri oe�ients A, B, and C takethe formA = p1(nlt+ k1)1=n exp �q1(nlt+ k1)(n�3)=nl(n� 3) � ;n 6= 3; (41)B = p2(nlt+ k1)1=n exp �q2(nlt+ k1)(n�3)=nl(n� 3) � ;n 6= 3; (42)C = p3(nlt+ k1)1=n exp �q3(nlt+ k1)(n�3)=nl(n� 3) � ;n 6= 3: (43)The diretional Hubble parametersHi (i = 1; 2; 3) turnout to be Hi = lnlt+ k1 + qi(nlt+ k1)3=n : (44)The mean generalized Hubble parameter and the vol-ume sale fator areH = lnlt+ k1 ; V = (nlt+ k1)3=n: (45)The mean anisotropy parameter beomesA = q12 + q22 + q323l2(nlt+ k1)(6�2n)=n : (46)284
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Fig. 1. Behavior of the energy density (a) and pressure (b) versus time for t > 0 with n = 2, � = 1, l = 1, k1 = 0,q1 = 1 = q2, and q3 = �2The expansion salar and shear salar for this modelare given by� = 3lnlt+ k1 ; �2 = q12 + q22 + q322(nlt+ k1)6=n : (47)With Eqs. (12)�(15), the energy density of the Universeturns out to be� = 112(�+ 2�)(�+ 4�) �� �4(�+ 3�)� 3l2(nlt+ k1)2 + q1q2 + q2q3 + q3q1(nlt+ k1)6=n � �� �� 3l2(1� n)(nlt+ k1)2 + q12 + q22 + q32(nlt+ k1)6=n �� (48)while the pressure of the Universe beomesp = �112(�+ 2�)(�+ 4�) �� �4�� 3l2(nlt+ k1)2 + q1q2 + q2q3 + q3q1(nlt+ k1)6=n � ++ (3�+ 8�)� 3l2(1� n)(nlt+ k1)2 + q12 + q22 + q32(nlt+ k1)6=n �� : (49)The plots of �, p, and the equation-of-state parame-ter w = p=� as funtions of the time oordinate t areshown in Figs. 1 and 2. It is evident from Fig. 2 thatw ! 1=3 as t!1. Thus, the model orresponds to aradiation-dominated Universe as the time inreases.3.3. Nonsingular model of the UniverseFor this model, n = 0 and the average sale fatora = k2 exp(lt)
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Fig. 2. Behavior of w versus time for t > 0 with n = 2,� = 1, l = 1, k1 = 0, q1 = 1 = q2, and q3 = �2turns the metri oe�ients A, B, and C intoA = p1k2 exp(lt) exp ��q1 exp(�3lt)3lk23 � ; (50)B = p2k2 exp(lt) exp ��q2 exp(�3lt)3lk23 � ; (51)C = p3k2 exp(lt) exp ��q3 exp(�3lt)3lk23 � : (52)The diretional Hubble parameters Hi beomeHi = l + qik23 exp(�3lt): (53)The mean generalized Hubble parameter and the vol-ume sale fator turn out to beH = l; V = k23 exp(3lt): (54)285
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ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Bianhi type-I osmology in f(R; T ) gravityThe singular model of the universe orresponds ton 6= 0 with the average sale fatora = (nlt+ k1)1=n:This model has a point singularity whent � ts = �k1nl :The volume sale fator vanishes and the metri o-e�ients A, B, and C vanish at this singularity point.The osmologial parametersH1, H2, H3, H , �, and �2are all in�nite at this point of singularity. If we hoosek1 = 0, Fig. 1 suggests that the energy density of theUniverse is zero at this time. The pressure approahesnegative in�nity as t ! 0. This strong negative pres-sure is an indiation of dark energy. For this model,w ! 1=3 as t ! 1, whih orresponds to a radia-tion-dominated Universe. The mean anisotropy param-eter A also beomes in�nite at this point for 0 < n < 3and vanishes for n > 3. Moreover, the isotropy ondi-tion �2=� ! 0 as t! 1 is veri�ed for this model. Allthese onlusive observations suggest that the Universestarts its expansion with zero volume, strong negativepressure and energy density from t = ts, and it willontinue to expand for 0 < n < 3.We now disuss the nonsingular model of the Uni-verse orresponding to n = 0. For this model, the aver-age sale fator is a = k2 exp(lt). The model is nonsin-gular due to its exponential behavior. The expansionsalar � and the mean generalized Hubble parameterH are onstant in this ase. For �nite values of t, thephysial parameters H1, H2, H3, �2, and A are all �-nite. The metri funtions are de�ned for �nite timesand the isotropy ondition is satis�ed. There is an ex-ponential inrease in the volume as the time inreases.However, the energy density is approximately zero ini-tially and beomes onstant after some time. Pressureof the Universe remains in the negative zone for thismodel, whih may be an indiation of the presene ofdark energy in the Universe. Figure 4 suggests thatw ! �1 as t!1. Hene, the exponential model or-responds to a vauum �uid-dominated Universe. A-ording to the observations in [53℄, the expansion ofthe Universe is aelerating when w � �1.Therefore, we an hope that the problemati issuessuh as dark energy and aelerated expansion of theUniverse may be addressed using modi�ed theories ofgravity, espeially the f(R; T ) gravity. It would be in-teresting to explore more Bianhi-type solutions in thisontext. Exat solutions of a Bianhi type-V osmo-logial model in this theory are in progress.
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