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We study the normal (nonsuperconducting) phase of the attractive Hubbard model within the dynamical mean
field theory (DMFT) using the numerical renormalization group (NRG) as an impurity solver. A wide range
of attractive potentials U is considered, from the weak-coupling limit, where superconducting instability is well
described by the BCS approximation, to the strong-coupling region, where the superconducting transition is
described by Bose condensation of compact Cooper pairs, which are formed at temperatures much exceeding
the superconducting transition temperature. We calculate the density of states, the spectral density, and the
optical conductivity in the normal phase for this wide range of U, including the disorder effects. We also present
the results on superconducting instability of the normal state dependence on the attraction strength U and
the degree of disorder. The disorder influence on the critical temperature T, is rather weak, suggesting in fact
the validity of Anderson’s theorem, with the account of the general widening of the conduction band due to

disorder.

DOI: 10.7868,/S0044451014080094
1. INTRODUCTION

The study of superconductivity in the strong-coup-
ling region attracts theorists for a rather long time [1],
and the most important advance here was made by
Nozieres and Schmitt—Rink [2], who proposed an ef-
fective approach to describe crossover from the weak-
coupling BCS limit to the picture of Bose—Einstein
condensation (BEC) of preformed Cooper pairs in the
strong-coupling limit. The recent progress in experi-
mental studies of ultracold gases in magnetic and op-
tical traps, as well as in optical lattices, allowed a con-
trolled change of parameters, such as the density and
interaction strength (see reviews [3, 4]), increasing the
theoretical interests in studies of superfluidity (super-
conductivity) in the case of a very strong pairing in-
teraction, as well as in the BCS-BEC crossover region.
Probably, the simplest model allowing theoretical stud-
ies of the BCS-BEC crossover is the attractive Hub-
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bard model. It is widely used also for the studies of
the superconductor—insulator transition (see a review
in [5]). The most effective modern approach to the
solution of the Hubbard model, both for strongly cor-
related electronic systems (SCES) with repulsive inter-
action and for the studies of the BCS-BEC crossover
in the case of attraction, is the dynamical mean field
theory (DMFT), giving an exact solution in the limit
of infinite dimensions [6-8]. The attractive Hubbard
model was studied within the DMFT in a number of
recent papers [9-12]. However, only few results were
obtained for the normal (nonsuperconducting) phase
of this model, for example, there were practically no
studies of two-particle properties, such as the optical
conductivity.

To describe the electronic properties of SCES, we
obviously need to take different additional interactions,
which are inevitably present in such systems into ac-
count (electron—phonon interaction, scattering by fluc-
tuations of different order parameters, disorder scat-
tering, etc.). Recently, we have proposed the gen-
eralized DMFT+Y approach [13-16], which is very
convenient and effective for the studies of such addi-
tional interactions (external with respect to the Hub-
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bard model itself, e. g., pseudogap fluctuations [13-16],
disorder [17, 18], and electron—phonon interaction [19]).
This approach was also successfully extended to the
analysis of optical conductivity [17, 20]. In this pa-
per, we apply the DMFT+3Y approach to the studies of
the normal-state properties of the attractive Hubbard
model, including the effects of disorder.

2. THE BASICS OF THE DMFT-}+X APPROACH

In the general case, we consider the nonmagnetic
Hubbard model with site disorder. The Hamiltonian of
this model can be written as

H=—t Z aifaaja + Zemw +U Zn”nu, (].)
(ij)o io i

where t > 0 is the transfer integral between nearest
sites of the lattice, U is the onsite interaction (U < 0
in the case of attraction), n;,, = a;rgaw is onsite elec-
tron number operator, a;, (a;fa) is the annihilation (cre-
ation) operator for the electron with spin o on site i,
and local energy levels ¢; are assumed to be indepen-
dent random variables at different lattice sites. To sim-
plify the diagram technique in what follows, we assume
the Gaussian distribution of these energy levels:

Ple) = e (5 ). )

The parameter A represents the measure of disorder,
and this Gaussian random field (with the “white noise”
correlation on different lattice sites) generates “impu-
rity” scattering and leads to the standard diagram tech-
nique for the calculation of ensemble-averaged Green’s
functions [21].

The generalized DMFT+Y approach [13-16] ex-
tends the standard DMFT [6-8] by introducing an ad-
ditional “external” self-energy Y,(¢) (in the general
case, momentum dependent), which is due to some
interaction mechanism outside the DMFT. It gives
an effective procedure to calculate both single- and
two-particle properties [17, 20]. The success of this
approach is connected with the choice of the single-
particle Green’s function in the form

1
et p—c(p)—2(e) = Tp(e)’

G(e,p) =

(3)

where £(p) is the “bare” electronic dispersion, while
the total self-energy neglects the interference between
the Hubbard and “external” interaction and is given by
the additive sum of the DMFT local self-energy ()
and the “external” self-energy ¥,(c). This preserves

7 ZKST®, Bem. 2 (8)

the standard structure of DMFT equations [6-8]. But
there are two important differences from the standard
DMFT. At each iteration of the DMFT cycle, we re-
calculate the “external” self-energy ¥, (¢) using some
approximate scheme for the description of “external”
interaction, and the local Green’s function is “dressed”
by ¥p(¢) at each step of the standard DMFT proce-
dure.

For the “external” self-energy due to disorder scat-
tering entering the DMFT+X cycle below, we use the
simplest approximation neglecting the diagrams with
“intersecting” interaction lines, i.e., the self-consistent
Born approximation. For the Gaussian distribution of
site energies, it is independent of the momentum and
is given by

Sp(e) = S =A% S G(e,p), (4)

where G(e, p) is the single-particle Green’s function (3)
and A is the strength of site energy disorder.

To solve the single Anderson impurity problem
of DMFT, we have used the reliable algorithm of
the numerical renormalization group [22], i.e., the
DMFT(NRG) approach.

Within the DMFT+3 approach, we can also inves-
tigate the two-particle properties. In particular, the
real part of the dynamical (optical) conductivity has
the following general expression in DMFT+X [17, 20]:

o'}
2

Reo(w) = 52 [ delf(e) = f(en)] %

x Re {¢2RA (w) {1 -

SR (ey) = z%_)r

— ¢2RR(OJ) |:1 _ ER(E+) — ER(£—):|2} 7 (5)

w

where e is electronic charge, f(e1) is the Fermi distri-
bution for ey =e¢+w/2, and

2D (w) =

(I)(E)RR(RA) (w,q) — (E)RR(RA) (@,0)

=li : 6
lim " , (6)
where the two-particle Green’s functions

<I>2RR(RA)(w7q) contain all vertex corrections from

the “external” interaction, but do not include vertex
corrections from the Hubbard interaction. This con-
siderably simplifies calculations of optical conductivity
within the DMFT+Y approximation, because we only
have to solve the single-particle problem determining



N. A. Kuleeva, E. Z. Kuchinskii, M. V. Sadovskii

MKIT®, Tom 146, Boin. 2 (8), 2014

1— —U/2

D =02

1—U/2D =02

Fig. 1. Densities of states for different values of (a) Hubbard attraction and (b) repulsion. Temperature T'/2D = 0.05

the local self-energy (i) via the DMFT+X pro-
cedure. The nontrivial contribution from nonlocal
correlations enters only via <I>2RR(RA) (w,q), which can
be calculated in an appropriate approximation, taking
only the “external” interaction into account. To obtain
the loop contributions PURR(RA) (w,q), determined
by disorder scattering, we can either use the “lad-
der” approximation in the case of weak disorder, or,
following Ref. [17], use the generalization of the self-
consistent theory of localization [23, 24], which allows
treating the case of sufficiently strong disorder. In this
approach, the conductivity is determined mainly by
the generalized diffusion coefficient obtained from the
generalization of the self-consistency equation [23, 24]
of this theory, which is to be solved in combination
with the DMFT+X procedure.

In what follows, we consider the three-dimensional
system with a “bare” semi-elliptic density of states (per
elementary cell and one spin projection), which is given
by

_ 2
T D2

No(e) D? -2 (7)

with the bandwidth W = 2D. All calculations below
are done for a quarter-filled band (n = 0.5). The value
of conductivity on all figures is given in universal units
o9 = €%/ha (where a is the lattice spacing).
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3. MAIN RESULTS

In Fig. 1, we show the densities of states obtained
for T/2D = 0.05 and quarter filling of the band
(n = 0.5) for different values of the attractive (U < 0,
Fig. 1a) and repulsive (U > 0, Fig. 1b) interaction. It
is well known that at half-filling (n = 1), the density of
states of the attractive and repulsive Hubbard models
coincide (due to the exact mapping of these models onto
each other). This is not so when we deviate from half-
filling. From Fig. 1, we can see that the density of states
close to the Fermi level decreases as U increases, for
both attraction (Fig. 1a) and repulsion (Fig. 1b), but
a significant increase in |U] in the repulsive case leads
only to the vanishing of the quasiparticle peak, and
the density of states at the Fermi level becomes prac-
tically independent of U, while in the attractive case,
the increase in |U| leads to the superconducting pseu-
dogap opening at the Fermi level (curve 3 in Fig. 1a);
for |U|/2D > 1.2, we observe the full gap opening at
the Fermi level (curves 4, 5 in Fig. 1a). This gap is not
related to the appearance of a superconducting state,
but is due to the appearance of preformed Cooper pairs,
because the temperature at which the results shown in
Fig. 1 were obtained is larger than the superconducting
transition temperature (cf. Fig. 7 below). Thus, we ob-
serve an important difference from the repulsive case,
where the deviation from half-filling leads to a metallic
state for arbitrary values of U, while the insulating gap
at large U opens not at the Fermi level.

This picture of the density-of-states evolution with
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Fig.2. Optical conductivity for different values of Hub-
bard attraction. Temperature T/2D = 0.05

Fig.3. Spectral density at the Fermi surface for dif-
ferent values of Hubbard attraction. Temperature
T/2D = 0.05

an increase in |U]| is supported by the behavior of the
dynamic (optical) conductivity shown in Fig. 2. We
see that with an increase in |U|, the Drude peak at
zero frequency (curves 1, 2 in Fig. 2) is replaced by a
pseudogap dip (curve 3 in Fig. 2) and the wide max-
imum of conductivity at a finite frequency, connected
with scattering across the pseudogap. A further in-
crease in |U| leads to the appearance of the full gap
in optical conductivity due to the formation of Cooper
pairs (curves 4 and 5 in Fig. 2).

A similar evolution with the increase in |U] is also
observed in the spectral density. In Fig. 3, we show the
spectral density

1— U/2D =0.2

—0.2 0 0.2 014 0.6
(éx — &r)/2D

Fig.4. Distribution function for different values of Hub-
bard attraction. Temperature T'/2D = 0.05; {F is the
kinetic energy of electrons at the Fermi surface

1
A(e,p) = ——ImG™(e,p)

at the Fermi surface (p = pr) for different values of the
attractive interaction U. With the increase in |U], a
narrow peak in the spectral density at the Fermi level
(curves 1, 2 in Fig. 3) is smeared, and with the fur-
ther increase in |U|, the pseudogap dip appears at the
Fermi level (curve 3 in Fig. 3). At still larger |U|, this
dip is transformed into a real gap (curves 4 and 5 in
Fig. 3). This behavior of the spectral density correlates
well with the qualitative change (with the increase in
|U]) of the distribution function n(¢) (Fig. 4), defined
as

n(&) = / A=A, &)1 (E). (®)

where £, is the kinetic energy of electrons. It can be
seen that this distribution changes from a more or less
defined Fermi step-function at small |U| (curves 1, 2
in Fig. 4) to an effective constant at large values of
|U| (curves 4 and 5 in Fig. 4), due to the formation
of Cooper pairs with the binding energy of the order
of [U].

The formation of the superconducting pseudogap
and the Cooper pairing gap with an increase in |U]| is
also well demonstrated by the spectral density maps
shown in Fig. 5 for different values of U. Color rep-
resents the spectral density intensity. We observe that
the increase in |U| leads to the transformation of the
initially well-defined dispersion in Fig. 5a to dispersions
with a pseudogap region, shown in Fig. 5b,c, which
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Fig.5. Spectral density maps for different values of Hubbard attraction. Color represents the spectral density intensity.
Temperature 7'/2D = 0.05

transforms into the real Cooper gap shown in Fig. 5d,e
with a further increase in |U|.

3.1. Disorder effects

In Fig. 6, we show the evolution of the density of
states and optical conductivity with changing disor-
der. At a sufficiently weak attraction (|U]/2D = 0.8,
Fig. 6a,b), we see that the increase in disorder smears
the density of states, leading to some widening of the
band. This smearing masks the peculiarities of the den-
sity of states due to correlation effects. In particular,
the quasiparticle peak and “wings” due to the upper and
lower Hubbard bands observed in the density of states
in Fig. 6a in the absence of disorder completely vanish
at a sufficiently strong disorder. There are no singulari-
ties in the density of states due to the Anderson metal—
insulator transition, which occurs at A/2D = 0.37 [17],
because the density of states does not feel Anderson lo-
calization. The evolution of optical conductivity with
the increase in disorder A, shown in Fig. 6b, corre-
sponds in general to the evolution of the density of
states. The increase in disorder, while it remains suf-
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ficiently weak (curves 1, 2 in Fig. 6b), leads to some
increase in static conductivity, which is connected with
the suppression of correlation effects at the Fermi level,
noted above (curves 1 and 2 in Fig. 6a). The further in-
crease in disorder leads to a significant widening of the
band and the decrease in the density of states (curve 3
in Fig. 6a,b), which leads to a decrease in static con-
ductivity. Finally, with the further increase in disorder,
Anderson localization effects become important. At
T = 0, the Anderson transition occurs at A/2D = 0.37
[17]. However, we here consider the case of high enough
temperature T/2D = 0.05, such that the static con-
ductivity (curves 4 and 5 in Fig. 6b) remains finite,
although we clearly observe localization behavior with
o(w) o< w? at finite frequencies. At larger value of the
attractive interaction |U|/2D = 1, the evolution of the
density of states and optical conductivity is more or
less similar (Fig. 6¢,d). However, in the absence of dis-
order, we here observe a superconducting pseudogap in
the density of states and the increase in disorder sup-
presses it, leading both to the increase in the density of
states at the Fermi level and the appropriate increase
in static conductivity. Finally, at a still larger attrac-
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Fig.6. Evolution of the density of states (left panels) and optical conductivity (right panels) with disorder for different
values of U ((a,b) |U|/2D = 0.8; (¢,d) |U|/2D = 1.0; (e.f) |U|/2D = 1.6)

tion |U|/2D = 1.6 (Fig. 6e,f) in the absence of disor-
der, there is a real Cooper gap in the density of states.
This gap is also clearly observed in optical conductivity.
With the increase in disorder, the Cooper gap both in
the density of states and in conductivity becomes nar-
rower (curves 1-3). A further increase in disorder leads
to the complete suppression of the Cooper gap and
restoration of the metallic state with a finite density
of states at the Fermi level and a finite static conduc-
tivity. This closure of the Cooper gap is related to the

widening of the effective bandwidth W,z due to dis-
order, which leads to the diminishing ratio |U|/W,ys,
which controls the formation of the Cooper gap. The
situation here is similar to the closure of the Mott gap
by disorder in the repulsive Hubbard model [17]. Ho-
wever, at larger disorder (curve 5 in Fig. 6f), we clearly
observe localization behavior, such that the increase in
disorder at T = 0 first leads to the metallic state (the
closure of the Cooper gap), while the further increase
in disorder induces the Anderson metal-insulator tran-
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Fig.7. Dependence of the superconducting critical
temperature on the attractive interaction strength.
Black squares, white circles, and white squares show
the respective results in Refs. [9, 10, 12] for the quarter-
filled band with n = 0.5. Stars represent the results
obtained from the criterion of instability of the normal
phase. Filled circles show T. obtained in the Nozieres—
Schmitt-Rink approximation. The continuous black
curve represents the result of the BCS theory

sition. A similar picture is observed for large positive
U at half-filling (n = 1) [17], where the increase in
disorder leads to the Mott-insulator—correlated-metal—
Anderson-insulator transition.

3.2. Superconducting transition temperature

The superconducting transition temperature 7, in
the attractive Hubbard model was studied in a number
of papers [9, 10, 12], both from the criterion of instabil-
ity of the normal phase (divergence of the Cooper sus-
ceptibility) [9] and from the condition of vanishing of
the superconducting order parameter [10, 12]. In Fig. 7,
black squares, white circles, and white squares respec-
tively show the results in Refs. [9,10,12] for quarter-
filling") n = 0.5.

Actually, the overall picture of the T, dependence on
U is well approximated by the filled-circle curve shown
in Fig. 7 and obtained from the Nozieres-Schmitt-Rink
[2] approach, which gives the correct (approximate) de-
scription of the BCS-BEC crossover. For the critical

D In Ref. [10], it was claimed that n = 0.75 was considered,
but the results obtained practically coincide with those in Ref. [9]
obtained for n = 0.5.
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temperature T,, we then have the usual BCS-like equa-
tion

E—pu
2T,

D
1= |—g| / deNo(e)(e — )~ th 9)
-D

while the chemical potential for different values of U
is to be determined from DMFT calculations (for a
fixed band-filling). From Fig. 7, we can see that in the
weak-coupling region |U|/2D < 1, the critical temper-
ature in this approach is close to the usual result of
the BCS theory (see the appropriate curve in Fig. 7).
For |U|/2D ~ 1, the critical temperature T, has the
maximum value, while for |U|/2D > 1, it decreases as
T. ~ 1/|U| [2], because for such high values of attrac-
tive interaction, the critical temperature is determined
by the condition of Bose condensation of preformed
Cooper pairs and the transfer amplitude of these pairs
appears only in the second order of the perturbation
theory and is proportional to t*>/|U] [2]. Stars in Fig. 7
show the critical temperature obtained from the crite-
rion of normal-phase instability. For large enough U,
decreasing the temperature leads to an instability of
the DMFT(NRQ) iteration procedure: at high enough
temperatures, the DMFT(NRG) procedure converges
to a single solution, while for temperatures below some
critical temperature, we observe two different stable so-
lutions for odd or even iterations. We suggest that this
instability of the iteration procedure corresponds to the
physical instability of the normal phase. Unfortunately,
for |U|/2D < 1, the observed instability is rather weak
(the difference between the odd and even iterations is
too small), and hence the accuracy of our calculations
is insufficient to determine 7, in this way. Surprisingly
enough, the results for T, obtained from the approxi-
mate approach in Ref. [2] and from the instability of the
DMFT(NRG) cycle are rather close to each other. This
is especially surprising for large values of the U/2D ra-
tio, where the pseodigap (or even the real gap) develops
in the density of states.

In Fig. 8, we show the dependence of the criti-
cal temperature, obtained from the criterion of nor-
mal state instability, on the disorder strength A for
|U|/2D = 1.6. At small A, we observe a weak suppres-
sion of T, by disorder, which is apparetnly due to the
general smearing of the density of states and bandwidth
widening by disorder scattering. At large enough dis-
order, we observe a significant increase in T, with the
increase in A. This is related to the increase in the
effective bandwith W, due to disorder, leading to an
effective increase in the ratio |U|/W,. s, controlling the
value of the critical temperature in this model. The
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Fig.8. Dependence of the superconducting critical

temperature on disorder for |U|/2D 1.6. Inset:
T. suppression by weak disorder for band-filling values
n=0.5, n=0.6, and n = 0.8

increase in disorder leads to the decrease in |U|/Weyr
from 1.6 at A =0 to |U|/Weyss ~ 1 for A/2D ~ 0.4,
which leads to the appropriate increase in the critical
temperature (cf. Fig. 7). This behavior is similar to the
increase in the critical value of repulsion in the Hubbard
model for the Mott metal-insulator transition with the
increase in disorder (cf. Ref. [17, 18]). The decrease in
|U|/We s with the increase in disorder does not allow
guaranteeing the sufficient accuracy of the values of T,
in the case |U|/2D ~ 1 for disorder values larger than
A/2D = 0.11. For such small values of disorder and
for [U|/2D ~ 1, the critical temperature is weakly sup-
pressed by disorder, similarly to the behavior shown in
Fig. 8 for |U|/2D = 1.6. In the inset to Fig. 8, we show
the suppression of the critical temperature by weak dis-
order for different band-filling values: n = 0.5, n = 0.6,
and n = 0.8.

4. CONCLUSIONS

Within the DMFT+X generalization of dynamical
mean field theory, we have studied the properties of the
normal (nonsuperconducting) state of the attractive
Hubbard model for the wide region of values of the on-
site attractive interaction U. The results for the density
of states, spectral density, distribution function, and
dynamic (optical) conductivity demonstrate the forma-
tion of the superconducting pseudogap at the Fermi
level for intermediate values of the coupling strength
|U|/2D ~ 1 and the formation of a real Cooper gap in
the strong-coupling region |[U|/2D > 1. The appear-
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ance of a Cooper gap is related to the formation of
compact Cooper pairs at temperatures that are signifi-
cantly higher than the critical superconducting transi-
tion temperature 7., which is determined as the Bose-
condensation temperature of such (preformed) pairs.
Within our DMFT+3X, approach, we have also studied
the influence of disorder on the properties of the nor-
mal phase. It was shown that the increase in disorder
in the strong-coupling region leads to the closure of the
Cooper gap and restoration of the metallic state, while
in the intermediate-coupling region, disorder smears
the superconducting pseudogap and increases the den-
sity of states at the Fermi level. In both cases, this
is related to the general widening of the band (in the
absence of U) by disorder.

We have determined the critical superconducting
transition temperature 7, from the condition of insta-
bility of the normal phase. Two methods to find this
instability were used, demonstrating quantitatively
similar results. In the weak-coupling region, 7 is well
described by the BCS theory, while in the strong-
coupling region, it is related to Bose condensation of
(preformed) Cooper pairs and decreases as 1/|U| with
the increase in |U|, passing through the maximum
at |U|/2D ~ 1. We have also studied the effects
of disorder on T,.. It was shown that the effect of
disorder on T, is rather weak. In the strong-coupling
region, e.g., for U/2D = 1.6, we observe both weak
suppression of the critical temperature and some
increase in T, with the increase in A for strong enough
disorder. In fact, this behavior suggests the validity
of the Anderson theorem (as was conjectured for the
BCS-BEC crossover region in Ref. [25]), with changes
of T, related to the widening of the conduction band
by disorder. These results are also consistent with the
recent lowest-order perturbation theory analysis of the
effects of disorder throughout the BCS-BEC crossover
region [26].
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