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NORMAL PHASE AND SUPERCONDUCTING INSTABILITY INTHE ATTRACTIVE HUBBARD MODEL: A DMFT(NRG) STUDYN. A. Kuleeva a*, E. Z. Kuhinskii a**, M. V. Sadovskii a;b***aInstitute for Eletrophysis, Russian Aademy of Sienes, Ural Branh620016, Ekaterinburg, RussiabInstitute for Metal Physis, Russian Aademy of Sienes, Ural Branh620990, Ekaterinburg, RussiaReeived January 10, 2014We study the normal (nonsuperonduting) phase of the attrative Hubbard model within the dynamial mean�eld theory (DMFT) using the numerial renormalization group (NRG) as an impurity solver. A wide rangeof attrative potentials U is onsidered, from the weak-oupling limit, where superonduting instability is welldesribed by the BCS approximation, to the strong-oupling region, where the superonduting transition isdesribed by Bose ondensation of ompat Cooper pairs, whih are formed at temperatures muh exeedingthe superonduting transition temperature. We alulate the density of states, the spetral density, and theoptial ondutivity in the normal phase for this wide range of U , inluding the disorder e�ets. We also presentthe results on superonduting instability of the normal state dependene on the attration strength U andthe degree of disorder. The disorder in�uene on the ritial temperature T is rather weak, suggesting in fatthe validity of Anderson's theorem, with the aount of the general widening of the ondution band due todisorder.DOI: 10.7868/S00444510140800941. INTRODUCTIONThe study of superondutivity in the strong-oup-ling region attrats theorists for a rather long time [1℄,and the most important advane here was made byNozieres and Shmitt�Rink [2℄, who proposed an ef-fetive approah to desribe rossover from the weak-oupling BCS limit to the piture of Bose�Einsteinondensation (BEC) of preformed Cooper pairs in thestrong-oupling limit. The reent progress in experi-mental studies of ultraold gases in magneti and op-tial traps, as well as in optial latties, allowed a on-trolled hange of parameters, suh as the density andinteration strength (see reviews [3, 4℄), inreasing thetheoretial interests in studies of super�uidity (super-ondutivity) in the ase of a very strong pairing in-teration, as well as in the BCS�BEC rossover region.Probably, the simplest model allowing theoretial stud-ies of the BCS�BEC rossover is the attrative Hub-*E-mail: strigina�iep.uran.ru**E-mail: kuhinsk�iep.uran.ru***E-mail: sadovski�iep.uran.ru

bard model. It is widely used also for the studies ofthe superondutor�insulator transition (see a reviewin [5℄). The most e�etive modern approah to thesolution of the Hubbard model, both for strongly or-related eletroni systems (SCES) with repulsive inter-ation and for the studies of the BCS�BEC rossoverin the ase of attration, is the dynamial mean �eldtheory (DMFT), giving an exat solution in the limitof in�nite dimensions [6�8℄. The attrative Hubbardmodel was studied within the DMFT in a number ofreent papers [9�12℄. However, only few results wereobtained for the normal (nonsuperonduting) phaseof this model, for example, there were pratially nostudies of two-partile properties, suh as the optialondutivity.To desribe the eletroni properties of SCES, weobviously need to take di�erent additional interations,whih are inevitably present in suh systems into a-ount (eletron�phonon interation, sattering by �u-tuations of di�erent order parameters, disorder sat-tering, et.). Reently, we have proposed the gen-eralized DMFT+� approah [13�16℄, whih is veryonvenient and e�etive for the studies of suh addi-tional interations (external with respet to the Hub-304



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Normal phase and superonduting instability : : :bard model itself, e. g., pseudogap �utuations [13�16℄,disorder [17; 18℄, and eletron�phonon interation [19℄).This approah was also suessfully extended to theanalysis of optial ondutivity [17, 20℄. In this pa-per, we apply the DMFT+� approah to the studies ofthe normal-state properties of the attrative Hubbardmodel, inluding the e�ets of disorder.2. THE BASICS OF THE DMFT+� APPROACHIn the general ase, we onsider the nonmagnetiHubbard model with site disorder. The Hamiltonian ofthis model an be written asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the transfer integral between nearestsites of the lattie, U is the onsite interation (U < 0in the ase of attration), ni� = ayi�ai� is onsite ele-tron number operator, ai� (ayi�) is the annihilation (re-ation) operator for the eletron with spin � on site i,and loal energy levels �i are assumed to be indepen-dent random variables at di�erent lattie sites. To sim-plify the diagram tehnique in what follows, we assumethe Gaussian distribution of these energy levels:P(�i) = 1p2�� exp�� �2i2�2� : (2)The parameter � represents the measure of disorder,and this Gaussian random �eld (with the �white noise�orrelation on di�erent lattie sites) generates �impu-rity� sattering and leads to the standard diagram teh-nique for the alulation of ensemble-averaged Green'sfuntions [21℄.The generalized DMFT+� approah [13�16℄ ex-tends the standard DMFT [6�8℄ by introduing an ad-ditional �external� self-energy �p(") (in the generalase, momentum dependent), whih is due to someinteration mehanism outside the DMFT. It givesan e�etive proedure to alulate both single- andtwo-partile properties [17, 20℄. The suess of thisapproah is onneted with the hoie of the single-partile Green's funtion in the formG(";p) = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� eletroni dispersion, whilethe total self-energy neglets the interferene betweenthe Hubbard and �external� interation and is given bythe additive sum of the DMFT loal self-energy �(")and the �external� self-energy �p("). This preserves

the standard struture of DMFT equations [6�8℄. Butthere are two important di�erenes from the standardDMFT. At eah iteration of the DMFT yle, we re-alulate the �external� self-energy �p(") using someapproximate sheme for the desription of �external�interation, and the loal Green's funtion is �dressed�by �p(") at eah step of the standard DMFT proe-dure.For the �external� self-energy due to disorder sat-tering entering the DMFT+� yle below, we use thesimplest approximation negleting the diagrams with�interseting� interation lines, i. e., the self-onsistentBorn approximation. For the Gaussian distribution ofsite energies, it is independent of the momentum andis given by �p(")! ~� = �2Xp G(";p); (4)where G(";p) is the single-partile Green's funtion (3)and � is the strength of site energy disorder.To solve the single Anderson impurity problemof DMFT, we have used the reliable algorithm ofthe numerial renormalization group [22℄, i. e., theDMFT(NRG) approah.Within the DMFT+� approah, we an also inves-tigate the two-partile properties. In partiular, thereal part of the dynamial (optial) ondutivity hasthe following general expression in DMFT+� [17; 20℄:Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)� �A("�)! �2 �� �0RR" (!) �1� �R("+)� �R("�)! �2) ; (5)where e is eletroni harge, f("�) is the Fermi distri-bution for "� = "� !=2, and�0RR(RA)" (!) == limq!0 �0RR(RA)" (!;q)� �0RR(RA)" (!; 0)q2 ; (6)where the two-partile Green's funtions�0RR(RA)" (!;q) ontain all vertex orretions fromthe �external� interation, but do not inlude vertexorretions from the Hubbard interation. This on-siderably simpli�es alulations of optial ondutivitywithin the DMFT+� approximation, beause we onlyhave to solve the single-partile problem determining7 ÆÝÒÔ, âûï. 2 (8) 305
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Fig. 1. Densities of states for di�erent values of (a) Hubbard attration and (b ) repulsion. Temperature T=2D = 0:05the loal self-energy �("�) via the DMFT+� pro-edure. The nontrivial ontribution from nonloalorrelations enters only via �0RR(RA)" (!;q), whih anbe alulated in an appropriate approximation, takingonly the �external� interation into aount. To obtainthe loop ontributions �0RR(RA)" (!;q), determinedby disorder sattering, we an either use the �lad-der� approximation in the ase of weak disorder, or,following Ref. [17℄, use the generalization of the self-onsistent theory of loalization [23, 24℄, whih allowstreating the ase of su�iently strong disorder. In thisapproah, the ondutivity is determined mainly bythe generalized di�usion oe�ient obtained from thegeneralization of the self-onsisteny equation [23, 24℄of this theory, whih is to be solved in ombinationwith the DMFT+� proedure.In what follows, we onsider the three-dimensionalsystem with a �bare� semi-ellipti density of states (perelementary ell and one spin projetion), whih is givenby N0(") = 2�D2pD2 � "2 (7)with the bandwidth W = 2D. All alulations beloware done for a quarter-�lled band (n = 0:5). The valueof ondutivity on all �gures is given in universal units�0 = e2=ha (where a is the lattie spaing).

3. MAIN RESULTSIn Fig. 1, we show the densities of states obtainedfor T=2D = 0:05 and quarter �lling of the band(n = 0:5) for di�erent values of the attrative (U < 0,Fig. 1a) and repulsive (U > 0, Fig. 1b ) interation. Itis well known that at half-�lling (n = 1), the density ofstates of the attrative and repulsive Hubbard modelsoinide (due to the exat mapping of these models ontoeah other). This is not so when we deviate from half-�lling. From Fig. 1, we an see that the density of stateslose to the Fermi level dereases as U inreases, forboth attration (Fig. 1a) and repulsion (Fig. 1b ), buta signi�ant inrease in jU j in the repulsive ase leadsonly to the vanishing of the quasipartile peak, andthe density of states at the Fermi level beomes pra-tially independent of U , while in the attrative ase,the inrease in jU j leads to the superonduting pseu-dogap opening at the Fermi level (urve 3 in Fig. 1a);for jU j=2D > 1:2, we observe the full gap opening atthe Fermi level (urves 4, 5 in Fig. 1a). This gap is notrelated to the appearane of a superonduting state,but is due to the appearane of preformed Cooper pairs,beause the temperature at whih the results shown inFig. 1 were obtained is larger than the superondutingtransition temperature (f. Fig. 7 below). Thus, we ob-serve an important di�erene from the repulsive ase,where the deviation from half-�lling leads to a metallistate for arbitrary values of U , while the insulating gapat large U opens not at the Fermi level.This piture of the density-of-states evolution with306
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Fig. 2. Optial ondutivity for di�erent values of Hub-bard attration. Temperature T=2D = 0:05
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widening of the e�etive bandwidth Weff due to dis-order, whih leads to the diminishing ratio jU j=Weff ,whih ontrols the formation of the Cooper gap. Thesituation here is similar to the losure of the Mott gapby disorder in the repulsive Hubbard model [17℄. Ho-wever, at larger disorder (urve 5 in Fig. 6f), we learlyobserve loalization behavior, suh that the inrease indisorder at T = 0 �rst leads to the metalli state (thelosure of the Cooper gap), while the further inreasein disorder indues the Anderson metal�insulator tran-309
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temperature T, we then have the usual BCS-like equa-tion 1 = jU j2 DZ�D d"N0(")("� �)�1 th "� �2T ; (9)while the hemial potential for di�erent values of Uis to be determined from DMFT alulations (for a�xed band-�lling). From Fig. 7, we an see that in theweak-oupling region jU j=2D� 1, the ritial temper-ature in this approah is lose to the usual result ofthe BCS theory (see the appropriate urve in Fig. 7).For jU j=2D � 1, the ritial temperature T has themaximum value, while for jU j=2D� 1, it dereases asT � 1=jU j [2℄, beause for suh high values of attra-tive interation, the ritial temperature is determinedby the ondition of Bose ondensation of preformedCooper pairs and the transfer amplitude of these pairsappears only in the seond order of the perturbationtheory and is proportional to t2=jU j [2℄. Stars in Fig. 7show the ritial temperature obtained from the rite-rion of normal-phase instability. For large enough U ,dereasing the temperature leads to an instability ofthe DMFT(NRG) iteration proedure: at high enoughtemperatures, the DMFT(NRG) proedure onvergesto a single solution, while for temperatures below someritial temperature, we observe two di�erent stable so-lutions for odd or even iterations. We suggest that thisinstability of the iteration proedure orresponds to thephysial instability of the normal phase. Unfortunately,for jU j=2D < 1, the observed instability is rather weak(the di�erene between the odd and even iterations istoo small), and hene the auray of our alulationsis insu�ient to determine T in this way. Surprisinglyenough, the results for T obtained from the approxi-mate approah in Ref. [2℄ and from the instability of theDMFT(NRG) yle are rather lose to eah other. Thisis espeially surprising for large values of the U=2D ra-tio, where the pseodigap (or even the real gap) developsin the density of states.In Fig. 8, we show the dependene of the riti-al temperature, obtained from the riterion of nor-mal state instability, on the disorder strength � forjU j=2D = 1:6. At small �, we observe a weak suppres-sion of T by disorder, whih is apparetnly due to thegeneral smearing of the density of states and bandwidthwidening by disorder sattering. At large enough dis-order, we observe a signi�ant inrease in T with theinrease in �. This is related to the inrease in thee�etive bandwith Weff due to disorder, leading to ane�etive inrease in the ratio jU j=Weff , ontrolling thevalue of the ritial temperature in this model. The310
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ane of a Cooper gap is related to the formation ofompat Cooper pairs at temperatures that are signi�-antly higher than the ritial superonduting transi-tion temperature T, whih is determined as the Bose-ondensation temperature of suh (preformed) pairs.Within our DMFT+�, approah, we have also studiedthe in�uene of disorder on the properties of the nor-mal phase. It was shown that the inrease in disorderin the strong-oupling region leads to the losure of theCooper gap and restoration of the metalli state, whilein the intermediate-oupling region, disorder smearsthe superonduting pseudogap and inreases the den-sity of states at the Fermi level. In both ases, thisis related to the general widening of the band (in theabsene of U) by disorder.We have determined the ritial superondutingtransition temperature T from the ondition of insta-bility of the normal phase. Two methods to �nd thisinstability were used, demonstrating quantitativelysimilar results. In the weak-oupling region, T is welldesribed by the BCS theory, while in the strong-oupling region, it is related to Bose ondensation of(preformed) Cooper pairs and dereases as 1=jU j withthe inrease in jU j, passing through the maximumat jU j=2D � 1. We have also studied the e�etsof disorder on T. It was shown that the e�et ofdisorder on T is rather weak. In the strong-ouplingregion, e. g., for U=2D = 1:6, we observe both weaksuppression of the ritial temperature and someinrease in T with the inrease in � for strong enoughdisorder. In fat, this behavior suggests the validityof the Anderson theorem (as was onjetured for theBCS�BEC rossover region in Ref. [25℄), with hangesof T related to the widening of the ondution bandby disorder. These results are also onsistent with thereent lowest-order perturbation theory analysis of thee�ets of disorder throughout the BCS�BEC rossoverregion [26℄.This work was supported in part by the RFBR(grant � 14-02-00065) and was performed withinthe Program of Fundamental Researh of the UralBranh of the Russian Aademy of Sienes �Quantummarophysis and nonlinear dynamis� (projets�� 12-�-2-1002, 12-T-2-1001).REFERENCES1. A. J. Leggett, in Modern Trends in the Theory of Con-densed Matter, ed. by A. Pekalski and J. Przystawa,Springer, Berlin (1980).311
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