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NORMAL PHASE AND SUPERCONDUCTING INSTABILITY INTHE ATTRACTIVE HUBBARD MODEL: A DMFT(NRG) STUDYN. A. Kuleeva a*, E. Z. Ku
hinskii a**, M. V. Sadovskii a;b***aInstitute for Ele
trophysi
s, Russian A
ademy of S
ien
es, Ural Bran
h620016, Ekaterinburg, RussiabInstitute for Metal Physi
s, Russian A
ademy of S
ien
es, Ural Bran
h620990, Ekaterinburg, RussiaRe
eived January 10, 2014We study the normal (nonsuper
ondu
ting) phase of the attra
tive Hubbard model within the dynami
al mean�eld theory (DMFT) using the numeri
al renormalization group (NRG) as an impurity solver. A wide rangeof attra
tive potentials U is 
onsidered, from the weak-
oupling limit, where super
ondu
ting instability is welldes
ribed by the BCS approximation, to the strong-
oupling region, where the super
ondu
ting transition isdes
ribed by Bose 
ondensation of 
ompa
t Cooper pairs, whi
h are formed at temperatures mu
h ex
eedingthe super
ondu
ting transition temperature. We 
al
ulate the density of states, the spe
tral density, and theopti
al 
ondu
tivity in the normal phase for this wide range of U , in
luding the disorder e�e
ts. We also presentthe results on super
ondu
ting instability of the normal state dependen
e on the attra
tion strength U andthe degree of disorder. The disorder in�uen
e on the 
riti
al temperature T
 is rather weak, suggesting in fa
tthe validity of Anderson's theorem, with the a

ount of the general widening of the 
ondu
tion band due todisorder.DOI: 10.7868/S00444510140800941. INTRODUCTIONThe study of super
ondu
tivity in the strong-
oup-ling region attra
ts theorists for a rather long time [1℄,and the most important advan
e here was made byNozieres and S
hmitt�Rink [2℄, who proposed an ef-fe
tive approa
h to des
ribe 
rossover from the weak-
oupling BCS limit to the pi
ture of Bose�Einstein
ondensation (BEC) of preformed Cooper pairs in thestrong-
oupling limit. The re
ent progress in experi-mental studies of ultra
old gases in magneti
 and op-ti
al traps, as well as in opti
al latti
es, allowed a 
on-trolled 
hange of parameters, su
h as the density andintera
tion strength (see reviews [3, 4℄), in
reasing thetheoreti
al interests in studies of super�uidity (super-
ondu
tivity) in the 
ase of a very strong pairing in-tera
tion, as well as in the BCS�BEC 
rossover region.Probably, the simplest model allowing theoreti
al stud-ies of the BCS�BEC 
rossover is the attra
tive Hub-*E-mail: strigina�iep.uran.ru**E-mail: ku
hinsk�iep.uran.ru***E-mail: sadovski�iep.uran.ru

bard model. It is widely used also for the studies ofthe super
ondu
tor�insulator transition (see a reviewin [5℄). The most e�e
tive modern approa
h to thesolution of the Hubbard model, both for strongly 
or-related ele
troni
 systems (SCES) with repulsive inter-a
tion and for the studies of the BCS�BEC 
rossoverin the 
ase of attra
tion, is the dynami
al mean �eldtheory (DMFT), giving an exa
t solution in the limitof in�nite dimensions [6�8℄. The attra
tive Hubbardmodel was studied within the DMFT in a number ofre
ent papers [9�12℄. However, only few results wereobtained for the normal (nonsuper
ondu
ting) phaseof this model, for example, there were pra
ti
ally nostudies of two-parti
le properties, su
h as the opti
al
ondu
tivity.To des
ribe the ele
troni
 properties of SCES, weobviously need to take di�erent additional intera
tions,whi
h are inevitably present in su
h systems into a
-
ount (ele
tron�phonon intera
tion, s
attering by �u
-tuations of di�erent order parameters, disorder s
at-tering, et
.). Re
ently, we have proposed the gen-eralized DMFT+� approa
h [13�16℄, whi
h is very
onvenient and e�e
tive for the studies of su
h addi-tional intera
tions (external with respe
t to the Hub-304
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ting instability : : :bard model itself, e. g., pseudogap �u
tuations [13�16℄,disorder [17; 18℄, and ele
tron�phonon intera
tion [19℄).This approa
h was also su

essfully extended to theanalysis of opti
al 
ondu
tivity [17, 20℄. In this pa-per, we apply the DMFT+� approa
h to the studies ofthe normal-state properties of the attra
tive Hubbardmodel, in
luding the e�e
ts of disorder.2. THE BASICS OF THE DMFT+� APPROACHIn the general 
ase, we 
onsider the nonmagneti
Hubbard model with site disorder. The Hamiltonian ofthis model 
an be written asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the transfer integral between nearestsites of the latti
e, U is the onsite intera
tion (U < 0in the 
ase of attra
tion), ni� = ayi�ai� is onsite ele
-tron number operator, ai� (ayi�) is the annihilation (
re-ation) operator for the ele
tron with spin � on site i,and lo
al energy levels �i are assumed to be indepen-dent random variables at di�erent latti
e sites. To sim-plify the diagram te
hnique in what follows, we assumethe Gaussian distribution of these energy levels:P(�i) = 1p2�� exp�� �2i2�2� : (2)The parameter � represents the measure of disorder,and this Gaussian random �eld (with the �white noise�
orrelation on di�erent latti
e sites) generates �impu-rity� s
attering and leads to the standard diagram te
h-nique for the 
al
ulation of ensemble-averaged Green'sfun
tions [21℄.The generalized DMFT+� approa
h [13�16℄ ex-tends the standard DMFT [6�8℄ by introdu
ing an ad-ditional �external� self-energy �p(") (in the general
ase, momentum dependent), whi
h is due to someintera
tion me
hanism outside the DMFT. It givesan e�e
tive pro
edure to 
al
ulate both single- andtwo-parti
le properties [17, 20℄. The su

ess of thisapproa
h is 
onne
ted with the 
hoi
e of the single-parti
le Green's fun
tion in the formG(";p) = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� ele
troni
 dispersion, whilethe total self-energy negle
ts the interferen
e betweenthe Hubbard and �external� intera
tion and is given bythe additive sum of the DMFT lo
al self-energy �(")and the �external� self-energy �p("). This preserves

the standard stru
ture of DMFT equations [6�8℄. Butthere are two important di�eren
es from the standardDMFT. At ea
h iteration of the DMFT 
y
le, we re-
al
ulate the �external� self-energy �p(") using someapproximate s
heme for the des
ription of �external�intera
tion, and the lo
al Green's fun
tion is �dressed�by �p(") at ea
h step of the standard DMFT pro
e-dure.For the �external� self-energy due to disorder s
at-tering entering the DMFT+� 
y
le below, we use thesimplest approximation negle
ting the diagrams with�interse
ting� intera
tion lines, i. e., the self-
onsistentBorn approximation. For the Gaussian distribution ofsite energies, it is independent of the momentum andis given by �p(")! ~� = �2Xp G(";p); (4)where G(";p) is the single-parti
le Green's fun
tion (3)and � is the strength of site energy disorder.To solve the single Anderson impurity problemof DMFT, we have used the reliable algorithm ofthe numeri
al renormalization group [22℄, i. e., theDMFT(NRG) approa
h.Within the DMFT+� approa
h, we 
an also inves-tigate the two-parti
le properties. In parti
ular, thereal part of the dynami
al (opti
al) 
ondu
tivity hasthe following general expression in DMFT+� [17; 20℄:Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)� �A("�)! �2 �� �0RR" (!) �1� �R("+)� �R("�)! �2) ; (5)where e is ele
troni
 
harge, f("�) is the Fermi distri-bution for "� = "� !=2, and�0RR(RA)" (!) == limq!0 �0RR(RA)" (!;q)� �0RR(RA)" (!; 0)q2 ; (6)where the two-parti
le Green's fun
tions�0RR(RA)" (!;q) 
ontain all vertex 
orre
tions fromthe �external� intera
tion, but do not in
lude vertex
orre
tions from the Hubbard intera
tion. This 
on-siderably simpli�es 
al
ulations of opti
al 
ondu
tivitywithin the DMFT+� approximation, be
ause we onlyhave to solve the single-parti
le problem determining7 ÆÝÒÔ, âûï. 2 (8) 305
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Fig. 1. Densities of states for di�erent values of (a) Hubbard attra
tion and (b ) repulsion. Temperature T=2D = 0:05the lo
al self-energy �("�) via the DMFT+� pro-
edure. The nontrivial 
ontribution from nonlo
al
orrelations enters only via �0RR(RA)" (!;q), whi
h 
anbe 
al
ulated in an appropriate approximation, takingonly the �external� intera
tion into a

ount. To obtainthe loop 
ontributions �0RR(RA)" (!;q), determinedby disorder s
attering, we 
an either use the �lad-der� approximation in the 
ase of weak disorder, or,following Ref. [17℄, use the generalization of the self-
onsistent theory of lo
alization [23, 24℄, whi
h allowstreating the 
ase of su�
iently strong disorder. In thisapproa
h, the 
ondu
tivity is determined mainly bythe generalized di�usion 
oe�
ient obtained from thegeneralization of the self-
onsisten
y equation [23, 24℄of this theory, whi
h is to be solved in 
ombinationwith the DMFT+� pro
edure.In what follows, we 
onsider the three-dimensionalsystem with a �bare� semi-ellipti
 density of states (perelementary 
ell and one spin proje
tion), whi
h is givenby N0(") = 2�D2pD2 � "2 (7)with the bandwidth W = 2D. All 
al
ulations beloware done for a quarter-�lled band (n = 0:5). The valueof 
ondu
tivity on all �gures is given in universal units�0 = e2=ha (where a is the latti
e spa
ing).

3. MAIN RESULTSIn Fig. 1, we show the densities of states obtainedfor T=2D = 0:05 and quarter �lling of the band(n = 0:5) for di�erent values of the attra
tive (U < 0,Fig. 1a) and repulsive (U > 0, Fig. 1b ) intera
tion. Itis well known that at half-�lling (n = 1), the density ofstates of the attra
tive and repulsive Hubbard models
oin
ide (due to the exa
t mapping of these models ontoea
h other). This is not so when we deviate from half-�lling. From Fig. 1, we 
an see that the density of states
lose to the Fermi level de
reases as U in
reases, forboth attra
tion (Fig. 1a) and repulsion (Fig. 1b ), buta signi�
ant in
rease in jU j in the repulsive 
ase leadsonly to the vanishing of the quasiparti
le peak, andthe density of states at the Fermi level be
omes pra
-ti
ally independent of U , while in the attra
tive 
ase,the in
rease in jU j leads to the super
ondu
ting pseu-dogap opening at the Fermi level (
urve 3 in Fig. 1a);for jU j=2D > 1:2, we observe the full gap opening atthe Fermi level (
urves 4, 5 in Fig. 1a). This gap is notrelated to the appearan
e of a super
ondu
ting state,but is due to the appearan
e of preformed Cooper pairs,be
ause the temperature at whi
h the results shown inFig. 1 were obtained is larger than the super
ondu
tingtransition temperature (
f. Fig. 7 below). Thus, we ob-serve an important di�eren
e from the repulsive 
ase,where the deviation from half-�lling leads to a metalli
state for arbitrary values of U , while the insulating gapat large U opens not at the Fermi level.This pi
ture of the density-of-states evolution with306
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Fig. 2. Opti
al 
ondu
tivity for di�erent values of Hub-bard attra
tion. Temperature T=2D = 0:05
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tral density at the Fermi surfa
e for dif-ferent values of Hubbard attra
tion. TemperatureT=2D = 0:05an in
rease in jU j is supported by the behavior of thedynami
 (opti
al) 
ondu
tivity shown in Fig. 2. Wesee that with an in
rease in jU j, the Drude peak atzero frequen
y (
urves 1, 2 in Fig. 2) is repla
ed by apseudogap dip (
urve 3 in Fig. 2) and the wide max-imum of 
ondu
tivity at a �nite frequen
y, 
onne
tedwith s
attering a
ross the pseudogap. A further in-
rease in jU j leads to the appearan
e of the full gapin opti
al 
ondu
tivity due to the formation of Cooperpairs (
urves 4 and 5 in Fig. 2).A similar evolution with the in
rease in jU j is alsoobserved in the spe
tral density. In Fig. 3, we show thespe
tral density
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Fig. 4. Distribution fun
tion for di�erent values of Hub-bard attra
tion. Temperature T=2D = 0:05; �F is thekineti
 energy of ele
trons at the Fermi surfa
eA(";p) = � 1� ImGR(";p)at the Fermi surfa
e (p = pF ) for di�erent values of theattra
tive intera
tion U . With the in
rease in jU j, anarrow peak in the spe
tral density at the Fermi level(
urves 1, 2 in Fig. 3) is smeared, and with the fur-ther in
rease in jU j, the pseudogap dip appears at theFermi level (
urve 3 in Fig. 3). At still larger jU j, thisdip is transformed into a real gap (
urves 4 and 5 inFig. 3). This behavior of the spe
tral density 
orrelateswell with the qualitative 
hange (with the in
rease injU j) of the distribution fun
tion n(�k) (Fig. 4), de�nedas n(�k) = 1Z�1 d"A("; �k)f("); (8)where �k is the kineti
 energy of ele
trons. It 
an beseen that this distribution 
hanges from a more or lessde�ned Fermi step-fun
tion at small jU j (
urves 1, 2in Fig. 4) to an e�e
tive 
onstant at large values ofjU j (
urves 4 and 5 in Fig. 4), due to the formationof Cooper pairs with the binding energy of the orderof jU j.The formation of the super
ondu
ting pseudogapand the Cooper pairing gap with an in
rease in jU j isalso well demonstrated by the spe
tral density mapsshown in Fig. 5 for di�erent values of U . Color rep-resents the spe
tral density intensity. We observe thatthe in
rease in jU j leads to the transformation of theinitially well-de�ned dispersion in Fig. 5a to dispersionswith a pseudogap region, shown in Fig. 5b,
, whi
h307 7*
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d eFig. 5. Spe
tral density maps for di�erent values of Hubbard attra
tion. Color represents the spe
tral density intensity.Temperature T=2D = 0:05transforms into the real Cooper gap shown in Fig. 5d,ewith a further in
rease in jU j.3.1. Disorder e�e
tsIn Fig. 6, we show the evolution of the density ofstates and opti
al 
ondu
tivity with 
hanging disor-der. At a su�
iently weak attra
tion (jU j=2D = 0:8,Fig. 6a,b ), we see that the in
rease in disorder smearsthe density of states, leading to some widening of theband. This smearing masks the pe
uliarities of the den-sity of states due to 
orrelation e�e
ts. In parti
ular,the quasiparti
le peak and �wings� due to the upper andlower Hubbard bands observed in the density of statesin Fig. 6a in the absen
e of disorder 
ompletely vanishat a su�
iently strong disorder. There are no singulari-ties in the density of states due to the Anderson metal�insulator transition, whi
h o

urs at �=2D = 0:37 [17℄,be
ause the density of states does not feel Anderson lo-
alization. The evolution of opti
al 
ondu
tivity withthe in
rease in disorder �, shown in Fig. 6b, 
orre-sponds in general to the evolution of the density ofstates. The in
rease in disorder, while it remains suf-

�
iently weak (
urves 1, 2 in Fig. 6b ), leads to somein
rease in stati
 
ondu
tivity, whi
h is 
onne
ted withthe suppression of 
orrelation e�e
ts at the Fermi level,noted above (
urves 1 and 2 in Fig. 6a). The further in-
rease in disorder leads to a signi�
ant widening of theband and the de
rease in the density of states (
urve 3in Fig. 6a,b ), whi
h leads to a de
rease in stati
 
on-du
tivity. Finally, with the further in
rease in disorder,Anderson lo
alization e�e
ts be
ome important. AtT = 0, the Anderson transition o

urs at �=2D = 0:37[17℄. However, we here 
onsider the 
ase of high enoughtemperature T=2D = 0:05, su
h that the stati
 
on-du
tivity (
urves 4 and 5 in Fig. 6b ) remains �nite,although we 
learly observe lo
alization behavior with�(!) / !2 at �nite frequen
ies. At larger value of theattra
tive intera
tion jU j=2D = 1, the evolution of thedensity of states and opti
al 
ondu
tivity is more orless similar (Fig. 6
,d). However, in the absen
e of dis-order, we here observe a super
ondu
ting pseudogap inthe density of states and the in
rease in disorder sup-presses it, leading both to the in
rease in the density ofstates at the Fermi level and the appropriate in
reasein stati
 
ondu
tivity. Finally, at a still larger attra
-308
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d
f 2Fig. 6. Evolution of the density of states (left panels) and opti
al 
ondu
tivity (right panels) with disorder for di�erentvalues of U ((a,b) jU j=2D = 0:8; (
,d) jU j=2D = 1:0; (e,f) jU j=2D = 1:6)tion jU j=2D = 1:6 (Fig. 6e,f) in the absen
e of disor-der, there is a real Cooper gap in the density of states.This gap is also 
learly observed in opti
al 
ondu
tivity.With the in
rease in disorder, the Cooper gap both inthe density of states and in 
ondu
tivity be
omes nar-rower (
urves 1�3 ). A further in
rease in disorder leadsto the 
omplete suppression of the Cooper gap andrestoration of the metalli
 state with a �nite densityof states at the Fermi level and a �nite stati
 
ondu
-tivity. This 
losure of the Cooper gap is related to the

widening of the e�e
tive bandwidth Weff due to dis-order, whi
h leads to the diminishing ratio jU j=Weff ,whi
h 
ontrols the formation of the Cooper gap. Thesituation here is similar to the 
losure of the Mott gapby disorder in the repulsive Hubbard model [17℄. Ho-wever, at larger disorder (
urve 5 in Fig. 6f), we 
learlyobserve lo
alization behavior, su
h that the in
rease indisorder at T = 0 �rst leads to the metalli
 state (the
losure of the Cooper gap), while the further in
reasein disorder indu
es the Anderson metal�insulator tran-309
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Fig. 7. Dependen
e of the super
ondu
ting 
riti
altemperature on the attra
tive intera
tion strength.Bla
k squares, white 
ir
les, and white squares showthe respe
tive results in Refs. [9; 10; 12℄ for the quarter-�lled band with n = 0:5. Stars represent the resultsobtained from the 
riterion of instability of the normalphase. Filled 
ir
les show T
 obtained in the Nozieres�S
hmitt-Rink approximation. The 
ontinuous bla
k
urve represents the result of the BCS theorysition. A similar pi
ture is observed for large positiveU at half-�lling (n = 1) [17℄, where the in
rease indisorder leads to the Mott-insulator�
orrelated-metal�Anderson-insulator transition.3.2. Super
ondu
ting transition temperatureThe super
ondu
ting transition temperature T
 inthe attra
tive Hubbard model was studied in a numberof papers [9, 10, 12℄, both from the 
riterion of instabil-ity of the normal phase (divergen
e of the Cooper sus-
eptibility) [9℄ and from the 
ondition of vanishing ofthe super
ondu
ting order parameter [10, 12℄. In Fig. 7,bla
k squares, white 
ir
les, and white squares respe
-tively show the results in Refs. [9; 10; 12℄ for quarter-�lling1) n = 0:5.A
tually, the overall pi
ture of the T
 dependen
e onU is well approximated by the �lled-
ir
le 
urve shownin Fig. 7 and obtained from the Nozieres�S
hmitt-Rink[2℄ approa
h, whi
h gives the 
orre
t (approximate) de-s
ription of the BCS�BEC 
rossover. For the 
riti
al1) In Ref. [10℄, it was 
laimed that n = 0:75 was 
onsidered,but the results obtained pra
ti
ally 
oin
ide with those in Ref. [9℄obtained for n = 0:5.

temperature T
, we then have the usual BCS-like equa-tion 1 = jU j2 DZ�D d"N0(")("� �)�1 th "� �2T
 ; (9)while the 
hemi
al potential for di�erent values of Uis to be determined from DMFT 
al
ulations (for a�xed band-�lling). From Fig. 7, we 
an see that in theweak-
oupling region jU j=2D� 1, the 
riti
al temper-ature in this approa
h is 
lose to the usual result ofthe BCS theory (see the appropriate 
urve in Fig. 7).For jU j=2D � 1, the 
riti
al temperature T
 has themaximum value, while for jU j=2D� 1, it de
reases asT
 � 1=jU j [2℄, be
ause for su
h high values of attra
-tive intera
tion, the 
riti
al temperature is determinedby the 
ondition of Bose 
ondensation of preformedCooper pairs and the transfer amplitude of these pairsappears only in the se
ond order of the perturbationtheory and is proportional to t2=jU j [2℄. Stars in Fig. 7show the 
riti
al temperature obtained from the 
rite-rion of normal-phase instability. For large enough U ,de
reasing the temperature leads to an instability ofthe DMFT(NRG) iteration pro
edure: at high enoughtemperatures, the DMFT(NRG) pro
edure 
onvergesto a single solution, while for temperatures below some
riti
al temperature, we observe two di�erent stable so-lutions for odd or even iterations. We suggest that thisinstability of the iteration pro
edure 
orresponds to thephysi
al instability of the normal phase. Unfortunately,for jU j=2D < 1, the observed instability is rather weak(the di�eren
e between the odd and even iterations istoo small), and hen
e the a

ura
y of our 
al
ulationsis insu�
ient to determine T
 in this way. Surprisinglyenough, the results for T
 obtained from the approxi-mate approa
h in Ref. [2℄ and from the instability of theDMFT(NRG) 
y
le are rather 
lose to ea
h other. Thisis espe
ially surprising for large values of the U=2D ra-tio, where the pseodigap (or even the real gap) developsin the density of states.In Fig. 8, we show the dependen
e of the 
riti-
al temperature, obtained from the 
riterion of nor-mal state instability, on the disorder strength � forjU j=2D = 1:6. At small �, we observe a weak suppres-sion of T
 by disorder, whi
h is apparetnly due to thegeneral smearing of the density of states and bandwidthwidening by disorder s
attering. At large enough dis-order, we observe a signi�
ant in
rease in T
 with thein
rease in �. This is related to the in
rease in thee�e
tive bandwith Weff due to disorder, leading to ane�e
tive in
rease in the ratio jU j=Weff , 
ontrolling thevalue of the 
riti
al temperature in this model. The310
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Fig. 8. Dependen
e of the super
ondu
ting 
riti
altemperature on disorder for jU j=2D = 1:6. Inset:T
 suppression by weak disorder for band-�lling valuesn = 0:5, n = 0:6, and n = 0:8in
rease in disorder leads to the de
rease in jU j=Wefffrom 1:6 at � = 0 to jU j=Weff � 1 for �=2D � 0:4,whi
h leads to the appropriate in
rease in the 
riti
altemperature (
f. Fig. 7). This behavior is similar to thein
rease in the 
riti
al value of repulsion in the Hubbardmodel for the Mott metal�insulator transition with thein
rease in disorder (
f. Ref. [17, 18℄). The de
rease injU j=Weff with the in
rease in disorder does not allowguaranteeing the su�
ient a

ura
y of the values of T
in the 
ase jU j=2D � 1 for disorder values larger than�=2D = 0:11. For su
h small values of disorder andfor jU j=2D � 1, the 
riti
al temperature is weakly sup-pressed by disorder, similarly to the behavior shown inFig. 8 for jU j=2D = 1:6. In the inset to Fig. 8, we showthe suppression of the 
riti
al temperature by weak dis-order for di�erent band-�lling values: n = 0:5, n = 0:6,and n = 0:8. 4. CONCLUSIONSWithin the DMFT+� generalization of dynami
almean �eld theory, we have studied the properties of thenormal (nonsuper
ondu
ting) state of the attra
tiveHubbard model for the wide region of values of the on-site attra
tive intera
tion U . The results for the densityof states, spe
tral density, distribution fun
tion, anddynami
 (opti
al) 
ondu
tivity demonstrate the forma-tion of the super
ondu
ting pseudogap at the Fermilevel for intermediate values of the 
oupling strengthjU j=2D � 1 and the formation of a real Cooper gap inthe strong-
oupling region jU j=2D > 1. The appear-

an
e of a Cooper gap is related to the formation of
ompa
t Cooper pairs at temperatures that are signi�-
antly higher than the 
riti
al super
ondu
ting transi-tion temperature T
, whi
h is determined as the Bose-
ondensation temperature of su
h (preformed) pairs.Within our DMFT+�, approa
h, we have also studiedthe in�uen
e of disorder on the properties of the nor-mal phase. It was shown that the in
rease in disorderin the strong-
oupling region leads to the 
losure of theCooper gap and restoration of the metalli
 state, whilein the intermediate-
oupling region, disorder smearsthe super
ondu
ting pseudogap and in
reases the den-sity of states at the Fermi level. In both 
ases, thisis related to the general widening of the band (in theabsen
e of U) by disorder.We have determined the 
riti
al super
ondu
tingtransition temperature T
 from the 
ondition of insta-bility of the normal phase. Two methods to �nd thisinstability were used, demonstrating quantitativelysimilar results. In the weak-
oupling region, T
 is welldes
ribed by the BCS theory, while in the strong-
oupling region, it is related to Bose 
ondensation of(preformed) Cooper pairs and de
reases as 1=jU j withthe in
rease in jU j, passing through the maximumat jU j=2D � 1. We have also studied the e�e
tsof disorder on T
. It was shown that the e�e
t ofdisorder on T
 is rather weak. In the strong-
ouplingregion, e. g., for U=2D = 1:6, we observe both weaksuppression of the 
riti
al temperature and somein
rease in T
 with the in
rease in � for strong enoughdisorder. In fa
t, this behavior suggests the validityof the Anderson theorem (as was 
onje
tured for theBCS�BEC 
rossover region in Ref. [25℄), with 
hangesof T
 related to the widening of the 
ondu
tion bandby disorder. These results are also 
onsistent with there
ent lowest-order perturbation theory analysis of thee�e
ts of disorder throughout the BCS�BEC 
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