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ROBUST STATIONARY DISTRIBUTED DISCORDIN THE JORDAN�WIGNER FERMION SYSTEM UNDERPERTURBATIONS OF THE INITIAL STATEE. B. Fel'dman *, A. I. Zenhuk **Institute of Problems of Chemial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaReeived April 22, 2014We investigate the Jordan�Wigner fermion lusters with a stationary distributed quantum pairwise disord.Suh lusters appear after the Jordan�Wigner transformation of a spin hain governed by the nearest-neighborXY Hamiltonian with the partiular initial state having one polarized node. We show that the quantum disordstationarity in suh systems is not destroyed by the �parasiti� polarization of at least two types. The �rst typeappears beause the initial state with a single polarized node is hardly realizable experimentally, and thereforethe low polarization of neighboring nodes must be taken into aount. The seond is the unavoidable additionalnoise polarization of all nodes. Although the stationarity may not be destroyed by perturbations of the above twotypes, the parasiti polarizations deform the pairwise disord distribution and may destroy lusters of orrelatedfermions with equal pairwise disords. Suh deformations are studied in this paper.DOI: 10.7868/S00444510140900771. INTRODUCTIONQuantum orrelations are responsible for the e�e-tive operation of quantum information devies havingthe essential advantages in omparison with their las-sial ounterparts [1�14℄. Aording to the urrentstandpoint, the total orrelations in a multi-partilesystem are desribed by mutual information, and quan-tum orrelations for both pure and mixed states areharaterized by the quantum disord [2�5; 10�14℄.In studing quantum orrelations, it is important tohoose a proper quantum system possessing the desir-able properties and realizable in pratie. In this re-gard, we note the hains of nulear spins, whih aresuitable for realization of quantum registers and quan-tum devies transferring and manipulating quantuminformation. It is hallenging that the multiple quan-tum (MQ) NMR methods [15, 16℄ allow onstrutingthe XY interating spin hains experimentally. More-over, using the NMR method, it is possible to reateonditions providing the onentration of polarizationat a single node of the hain (up to the unavoidableexperimental errors) [17℄. The dynamis of quantum*E-mail: efeldman�ip.a.ru**E-mail: zenhuk�itp.a.ru

orrelations in this model was �rst studied in Ref. [18℄.Moreover, it was shown reently [19℄ that suh hainsare onvenient for studying the dependene of the dis-ord on the representation basis of the density matrixdesribing the quantum system state. The quantumdisord alulated for interating nulear spins di�ersfrom that between the fermions arising after the Jor-dan�Wigner transformation [20℄ of the density matrixoperator [19, 21℄. It turned out that the quantumdisord between fermions may exhibit very interestingproperties [19℄, whih have not been observed in thedisord between nulear spins. The most importantproperty is the stationarity of the pairwise disord in afermion luster with the above initial state of a spin-1/2hain. Besides, if we polarize the proper initial node,then the quantum disord is the same for any fermionpair in the seleted fermion luster. Apparently, thisfat is important for the implementation of fermion reg-isters in quantum devies beause all fermion nodes areequivalent from the quantum orrelation standpoint.The existene of suh lusters motivates the studyof their stability with respet to both experimental er-rors in reating single-node polarization and noise ef-fets. We note that the stability of spin dynamis in thepresene of di�erent types of noise is a relevant problembeause noise is unavoidable in any quantum proess.In partiular, the �delity of the perfet state transfer471



E. B. Fel'dman, A. I. Zenhuk ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014(in the absene of noises) under noise perturbations ofthe oupling onstants in the Hamiltonian was onsid-ered in Refs. [22�26℄ for two hains: a ompletely en-gineered hain and a hain with remote endnodes. Inboth ases, the important result is that the noise re-dues the �delity without hanging the state transfertime.In this paper, we study the stability of the dis-ord distribution relative to perturbations of the initialstate in a homogeneous spin hain (i. e., the ouplingonstants in the Hamiltonian are assumed to be sta-ble). We show that the stationarity of the quantumdisord in the system with a single initially polarizednode may not be destroyed by the additional low po-larizations of the neighboring nodes, whih unavoidablyappear in the experiment. This perturbation just leadsto the deformation of the pairwise quantum disord andmay eventually destroy the lusters of fermions withthe equal pairwise disord. The threshold value of thelow polarization is found. We also onsider the defor-mation of the stationary disord distribution aused bythe noise polarization appearing in all nodes of the spinhain. It is remarkable that the disord stationarity isnot disturbed in both ases.The paper is organized as follows. The Jor-dan�Wigner transformation of the XY Hamiltonianwith nearest-neighbor interations is brie�y disussedin Se. 2. The stability of the pairwise disord sta-tionarity in the Jordan�Wigner fermion system of aspin-1/2 hain with single initially polarized nodes un-der perturbations of the initial state is demonstrated inSes. 3 and 4 with numerial simulations of the spin dy-namis of a 17-node hain. First, in Se. 3, the parasitipolarization of two neighboring nodes (with respet tothe seleted inner polarized node) is onsidered. Then,in Se. 4, the noise polarization of all nodes is takeninto aount using the perturbation method. Deforma-tions of the fermion lusters with equal pairwise disordunder the above perturbations are also onsidered inSes. 3 and 4. The basi results are disussed in Se. 5.A formula for alulating the disord in the X-typedensity matrix [27℄ is represented in the Appendix.2. JORDAN�WIGNER TRANSFORMATION OFTHE XY HAMILTONIAN WITH THENEAREST-NEIGHBOR INTERACTIONWe study quantum orrelations in the one-dimen-sional open spin-1/2 hain of N nodes governed bythe XY Hamiltonian with the nearest-neighbor inter-ations,

H = !0 NXi=1 Iiz +D N�1Xi=1 (IixI(i+1)x + IiyI(i+1)y); (1)where !0 is the Larmor frequeny in the external mag-neti �eld, D is the spin�spin oupling onstant be-tween the nearest neighbors, and Ii� (i = 1; : : : ; N ,� = x; y; z) is the ith spin projetion on the � axis.Following Refs. [18, 19, 21℄, we diagonalize Hamil-tonian (1) using the Jordan�Wigner transformationmethod [20℄,H =Xk "k�yk�k � 12N!0; "k = D os(k) + !0; (2)where the fermion operators �j are expressed in termsof other fermion operators j by means of the Fouriertransformation �k = NXj=1 gk(j)j ; (3)and the fermion operators j are de�ned as [20℄j = (�2)j�1I1zI2z : : : I(j�1)zI�j : (4)Here, gk(j) = � 2N + 1�1=2 sin kj; k = �nN + 1 ;n = 1; 2; : : : ; N: (5)We an readily express the projetion operators Ijz interms of the fermion operators j asIjz = yjj � 12 ; 8 j: (6)Hereafter, diagonal representation (2) of the XYHamiltonian is used to desribe the dynamis of thedensity matrix assoiated with the spin-1/2 hain.3. INITIAL STATE WITH THREE POLARIZEDNODESThe dynamis of the Jordan�Wigner fermions as-soiated with the spin-1/2 hain with a single initiallypolarized node j0 has been studied in Refs. [18, 19, 21℄.There, the stationarity of the pairwise disord in suhsystems is demonstrated and fermion lusters withequal pairwise disord are revealed.We now onsider the initial state with an inner ini-tially polarized node j0 (i. e., 1 < j0 < N) and assumethe parasiti low polarization of two neighboring nodes;the initial density matrix is therefore given by472



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Robust stationary distributed disord : : :�0 = 1Z exp0� j0+1Xk=j0�1 bkIk;z1A == 12N j0+1Yk=j0�1�1 + 2Ikz th bk2 � ;Z = Tr0� j0+1Yk=j0�1 ebkIkz1A = 2N j0+1Yk=j0�1 h bk2 ; (7)
where bj = ~!j0=kT , ~ is the Plank onstant, k is theBoltzmann onstant, and T is the temperature of thesystem.The motivation for onsidering this initial state isdisussed in the introdution. Namely, an experimentalsheme may not provide the ideal single-node polariza-tion. Hene, two neighboring nodes j0 � 1 also aquiresome polarization whenever j0 is an inner node, i. e.,1 < j0 < N . This polarization might be alled para-siti. As was shown in Refs. [19, 21℄, a fermion lusterwith equal pairwise disords (whih is our subjet inthis paper) may be obtained if the polarized node j0 isan inner one. This ase is related to the density matrixin Eq. (7) and is disussed below.The evolution of the initial density matrix (7) in thefermion representation of Hamiltonian (2) is given by�(t) = exp(�itXk "k�yk�k) �0 �� exp(itXk "k�yk�k) : (8)Using the identityexp��i'�yk�k��yk exp�i'�yk�k� == exp(�i')�yk; 8 '; (9)we rewrite density matrix (8) as [18℄�(t) = 12N j0+1Yj=j0�10�1� th bj2 + 2 th bj2 ��Xk;k0 exp f�it("k�"k0)g gk(j)gk0 (j)�yk�k01A == Aj00 +Xk;k0 Aj0kk0 exp f�it("k � "k0)g�yk�k0 ++ Xk;k0 ;q;q0 Aj0kqk0q0 exp f�it("k+"q�"k0�"q0)g �

� �yk�k0�yq�q0 + Xk;k0;q;q0;l;l0 Aj0kqlk0q0l0 �� exp f�it("k + "q + "l � "k0 � "q0 � "l0)g �� �yk�k0�yq�q0�yl �l0 ; (10)where Aj00 = 12N j0+1Yj=j0�1�1� th bj2 � ; (11)Aj0kk0 = 12N�1 ��1� th bj02 � �� �1� th bj0+12 � th bj0�12 gk(j0�1)gk0(j0�1) ++�1� th bj0�12 ��1� th bj0+12 � th bj02 gk(j0)gk0(j0) ++ �1� th bj0�12 ��1� th bj02 � �� th bj0+12 gk(j0 + 1)gk0(j0 + 1)� ;Aj0kqk0q0 = 12N�2 ��1� th bj0�12 � th bj02 �� th bj0+12 gk(j0)gk0 (j0)gq(j0 + 1)gq0(j0 + 1) ++�1� th bj02 � th bj0�12 th bj0+12 �� gk(j0 � 1)gk0(j0 � 1)gq(j0 + 1)gq0(j0 + 1) ++ �1� th bj0+12 � th bj0�12 th bj02 gk(j0 � 1) �� gk0(j0 � 1)gq(j0)gq0(j0)� ;Aj0kqlk0q0l0 = 12N�3 th bj0�12 th bj02 th bj0+12 �� gk(j0�1)gk0(j0�1)gq(j0)gq0(j0)gl(j0+1)gl0(j0+1):Finally, using the fermion antiommutation relations[28℄ and relations among the oe�ients Aj0kqk0q0 andAj0kqlk0q0l0 ,NXq=1Aj0kqqk0 = NXq=1Aj0klqk0ql0 = NXq=1Aj0kqlqk0 l0 == NXq=1Aj0klqqk0 l0 = 0; (12)whih follow from the orthogonality relation473



E. B. Fel'dman, A. I. Zenhuk ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014NXk=1 gk(j)gk(l) = Æjl; (13)we easily transform Eq. (10) to the anoni form�(t) = 12N j0+1Yj=j0�1�1� th bj2 �++Xk;k0 Aj0kk0 exp f�it("k � "k0)g�yk�k0 �� Xk;k0;q;q0k 6=q;k0 6=q0 Aj0kqk0q0 exp f�it("k + "q � "k0 � "q0)g �� �yk�yq�k0�q0 � Xk;k0;q;q0 ;l;l0k 6=q 6=l;k0 6=q0 6=l0 Aj0kqlk0q0l0 �� exp f�it("k + "q + "l � "k0 � "q0 � "l0)g �� �yk�yq�yl �k0�q0�l0 : (14)3.1. Redued density matrixStudying quantum orrelations, we onsider onlythe pairwise disord. First, in alulating the disordbetween the nth and mth fermions, we have to reduedensity matrix (14) with respet to all nodes exeptthe nth and mth, whih leads to the marginal densitymatrix of the form�j0nm(t) = Bj0nm + Xk;k0=n;mBj0nmkk0 �� exp f�it("k � "k0)g�yk�k0 + Cj0nm�yn�ym�m�n; (15)where all oe�ients are independent of the time t:Bj0nm = 14 j0+1Yj=j0�1�1� th �j2 �++ 2N�3 Xk 6=n;mAj0kk ++2N�4 Xk;qk 6=q;k;q 6=n;m (�Aj0kqkq+Aj0kqqk)�2N�5�� Xk;q;l 6=n;mk 6=q 6=l (�Aj0kqlkql +Aj0kqlklq +Aj0kqlqkl �

�Aj0kqllkq �Aj0kqlqlk +Aj0kqllqk);Bj0nmkk0 = 2N�2Aj0kk0 + 2N�3 �� Xq;q 6=k;k0(�Aj0kqk0q+Aj0kqqk0+Aj0qkk0q�Aj0qkqk0 )�� 2N�4 Xq;lq 6=l6=k 6=k0 (�Aj0kqlk0ql+Aj0kqlk0 lq ++Aj0kqlqk0 l�Aj0kqllk0q�Aj0kqlqlk0++Aj0kqllqk0+Aj0qklk0ql��Aj0qklk0 lq�Aj0qklqk0 l+Aj0qkllk0q +Aj0qklqlk0 ��Aj0qkllqk0 �Aj0qlkk0ql +Aj0qlkk0 lq ++Aj0qlkqk0 l �Aj0qlklk0q �Aj0qlkqlk0 +Aj0qlklqk0 );Cj0nm == 2N�2(Aj0nmmn�Aj0nmnm�Aj0mnmn+Aj0mnnm)�� 2N�3 Xk 6=n;m(Aj0knmkmn �Aj0knmknm ��Aj0kmnkmn +Aj0kmnknm �Aj0knmmkn ++Aj0knmnkm +Aj0kmnmkn �Aj0kmnnkm ++Aj0knmmnk �Aj0knmnmk �Aj0kmnmnk ++Aj0kmnnmk �Aj0nkmkmn +Aj0nkmknm ++Aj0mknkmn �Aj0mknknm +Aj0nkmmkn ��Aj0nkmnkm �Aj0mknmkn +Aj0mknnkm ��Aj0nkmmnk +Aj0nkmnmk +Aj0mknmnk ��Aj0mknnmk +Aj0nmkkmn �Aj0nmkknm ��Aj0mnkkmn +Aj0mnkknm �Aj0nmkmkn ++Aj0nmknkm +Aj0mnkmkn �Aj0mnknkm ++Aj0nmkmnk�Aj0nmknmk�Aj0mnkmnk+Aj0mnknmk):

(16)

Next, using the basisj00i; j01i; j10i; j11i; (17)we represent the marginal density matrix operator (15)in the matrix form�j0nm(t) = 0BBBB� Bj0nm 0 0 00 Bj0nm +Bj0nmnn Bj0nmnme�it("n�"m) 00 Bj0nmmneit("n�"m) Bj0nm +Bj0nmmm 00 0 0 Bj0nm +Bj0nmmm +Bj0nmnn + Cj0nm 1CCCCA : (18)
474



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Robust stationary distributed disord : : :Formula (18) shows that the diagonal elements ofmarginal matrix (18) are independent of the time t.The t-dependene appears only in nondiagonal ele-ments. However, the pairwise disord for the X-matrixdepends on the absolute value jBj0nmnmj of nondiagonalelements (see the Appendix, Se. 6) and, onsequently,does not depend on t. This means that the pertur-bations onsidered in this setion do not destroy thestationarity of the disord. However, the distributionof the disord beomes deformed, whih may eventu-ally destroy the fermion lusters with equal pairwisedisords. Deformations aused by the parasiti polar-izations of (j0 � 1)th nodes are studied numerially inthe next subsetion.3.2. Numerial simulationsWe present numerial simulations for a partiularase of an N = 17 node spin hain and assume that thepolarization is initially onentrated at suh a node j0that the fermion lusters with equal pairwise disordmay be seleted from the whole system of 17 fermions[21℄. The interest in this ase appears beause suhlusters might be promising in QIP devies as andi-dates for large quantum registers.In aordane with Refs. [19, 21℄, suh a luster Clappears in an odd-node spin hain in two ases. First,if j0 is the middle node (j0 = 9 in our ase), then theluster Cl is formed by the odd fermions. Seond, ifN = 5+6i (i = 1; 2; : : : ) and j0 = 2(i+1) (in our ase,with N = 17, i = 2 and hene j0 = 6), then the lusterCl is formed by all fermions exept eah third one. Inboth ases, the pairwise disord Qnm between the nthand mth node isQnm == ( Q0 = onst; n 2 Cl; m 2 Cl0; n =2 Cl and/or m =2 Cl: (19)In other words, the disord Qnm is zero if at least oneof the subsripts n or m is not in the set Cl.We therefore onsider two lusters orresponding totwo ases of the initially polarized node j0:1) j0 = 6, the luster of fermions with equal pair-wise disords is formed by all fermions exept eah thirdone: Cl = f1; 2; 4; 5; 7; 8; 10; 11; 13; 14; 16; 17g; (20)2) j0 = 9, the odd fermions form the luster withequal pairwise disords:Cl = f1; 3; 5; : : : ; 17g: (21)

We haraterize the polarization by the inverse tem-peratures bj0+1 = bj0�1 = b; 0 � b � bj0 ;bj = 0; j 6= j0; j0 � 1: (22)In pratie, b must be suh that th(bj0�1=2) is severaltimes less than th(bj0=2). Below, we take bj0 = 10 (thelow-temperature limit).The presene of parasiti polarization leads to a de-formation of the ideal (bj0�1 = 0) disord distributionshown in Fig. 2a (below). As a result, some spreadof the disord appears in the luster Cl. Besides, thezero-valued disords at b = 0 beome nonzero for b > 0.To haraterize both these e�ets of parasiti polar-ization, we introdue the funtionsClmax(b) = max(n;m)2ClQnm(b);Clmin(b) = min(n;m)2ClQnm(b); (23)Zmax(b) = max(n;m)=2ClQnm(b);Zmin(b) = min(n;m)=2ClQnm(b): (24)Here, the notation (n;m) =2 Cl means that n =2 Cland/or m =2 Cl. Funtions Clmax and Clmin hara-terize the spread of the pairwise disord in lusters (20)and (21), while Zmax and Zmin haraterize the spreadof the �parasiti� disord that was zero in the unper-turbed ase:Clmin(b) � Qnm � Clmax(b);n 2 Cl; m 2 Cl;Zmin(b) � Qnm � Zmax(b);n =2 Cl and/or m =2 Cl: (25)The funtions Clmax(b), Clmin(b), and Zmax(b) forj0 = 6 and j0 = 9 are plotted in Figs. 1a and 1b.The funtion Zmin(b) (although it is nonzero for b > 0)is not shown beause it is not important in this se-tion (but it is used in Se. 4.1 to haraterize the noisee�ets).A natural question arises: what is the ritial valueof the parameter b (haraterizing the value of the �par-asiti� polarization) that still does not ompletely de-stroy the luster Cl? We onsider the value of b or-responding to the intersetion point of Clmin(b) andZmax(b) as the ritial value bl suh that the lus-ter Cl does not exist if b > bl. The ritial value isbl = 0:480 for j0 = 6 and bl = 0:533 for j0 = 9, asshown in Figs. 1a,b.475



E. B. Fel'dman, A. I. Zenhuk ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014
0.005

0 0.2 0.4 0.6 0.8

bcl

Clmax

Clmin

Clmin

Zmax

bcl

а

j0 = 6

2 4 6 8 10

b

Clmax

Clmin

bcl

Zmax

0 0.5

0.005

0.015

0.010

Zmax

Clmin

bcl

Clmax

j0 = 9

b

00

0.02

0.04

2 4 6 8 10

b

0.02

0.08

0.06

0.04

Clmax, Clmin, Zmax
Clmax, Clmin, Zmax

Clmax

Zmax
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An example of the disord distribution for j0 = 6and b = bl = 0:48 (at the threshold value) is shown inFig. 2b. We see that this distribution signi�antly dif-fers from the unperturbed ase b = 0 shown in Fig. 2a.However, we emphasize one again that the parasitipolarization does not lead to evolution of the disordin the onsidered fermion system, i. e., the stationarityof the pairwise disord is not destroyed.

4. NOISE EFFECT ON THE PAIRWISEDISCORD DISTRIBUTIONIn this setion, we assume that there is no para-siti polarization onsidered in Se. 3 (i. e., bj0�1 = 0),but there is noise polarization of all nodes. The initialdensity matrix (7) must be replaed with the followingone:476



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Robust stationary distributed disord : : :�0 = 12N �1 + Ij0z �2 th bj02 + �~bj0���� NYk=1k 6=j0 �1 + Ikz�~bk� ; Z = 2N h bj02 ; (26)where � is the double noise-polarization amplitude in aspin-1/2 hain, �� 1, and ~bj are the random numbersin the range � 12 � ~bj � 12 . Using Eqs. (3) and (6), wetransform the initial density matrix to [18℄�0 = 12N 0�aj00 +Xk;k0 aj0kk0�yk�k01A�� NYj=1j 6=j0 0�aj0 +Xk;k0 ajkk0�yk�k01A ; (27)whereaj0 = 8>>><>>>: 1� th bj02 � �~bj02 ; j = j0;1� �~bj2 ; j 6= j0;ajkk0 == 8><>: �2 th bj02 + �~bj0� gk(j0)gk0(j0); j = j0;�~bjgk(j)gk0(j); j 6= j0: (28)
The quantities ajkk0 , j 6= j0, are proportional to � andare therefore onsidered small parameters hereafter.We now assume that the noise e�et an be studiedby the perturbation method for small �. We then ex-pand the initial density matrix in the ajkk0 , j 6= j0. Weonsider two density matries orresponding to trun-ating the series and keeping the terms through therespetive order ajkk0 and (ajkk0 )2. Taking the normal-ization ondition (unit trae of the density matrix) intoaount, we write these matries as follows:�0i = ~�0iZi ; Zi = Tr ~�0i; i = 1; 2;~�01 = 12N 0�aj00 +Xk;k0 aj0kk0�yk�k01A��0B� NYl=1l6=j0 al0+ NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CA ��Xk;k0 ankk0�yk�k01CA ;

~�02 = 12N 0�aj00 +Xk;k0 aj0kk0�yk�k01A��0B� NYi=1i6=j0 al0+ NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CAXk;k0 ankk0�yk�k0 ++ NXn;n0=1n0 6=n6=j0 0B� NYm=1m6=j0 6=n6=n0 am0 1CA�� Xk;k0 ;q;q0 ankk0an0qq0�yk�k0�yq�q01CA :
(29)

The evolution of these matries e�itH�0ieitH , takingthe fermion representation of the Hamiltonian (givenby formula (2)) and relation (9) into aount, is givenby�i(t) = ~�i(t)Zi ;~�1(t) = 12N 0�aj00 +Xk;k0 aj0kk0e�it("k�"k0 )�yk�k01A��0B� NYl=1l6=j0 al0+ NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CA ��Xk;k0 ankk0e�it("k�"k0 )�yk�k01CA ;~�2(t) = 12N 0�aj00 +Xk;k0 aj0kk0e�it("k�"k0 )�yk�k01A��0B� NYl=1l6=j0 al0+ NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CA ��Xk;k0 ankk0e�it("k�"k0 )�yk�k0 ++ NXn;n0=1n0 6=n6=j0 0B� NYm=1m6=j0 6=n6=n0 am0 1CA�� Xk;k0;q;q0 ankk0an0qq0e�it("k+"q�"k0�"q0 ) �� �yk�k0�yq�q01CA :

(30)

Formulas (30) an be transformed to form (10) with477
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Fig. 3. Deformations of the fermion luster in the system of N = 17 fermions with the noise polarization of the initial state.The pairwise disord is averaged over 102 realizations of random hoies of the parameters ~bj , j = 1; : : : ; 17, for eah �xedvalue of the small parameter �, � = 0, 0:1, 0:2, 0:3, 0:4. The luster deformation by noise e�ets for the density matrix �1(solid lines) and �2 (dashed lines) is haraterized by the funtions Clmax(�), Clmin(�), Zmax(�), and Zmin(�). (a) Theinitially polarized node j0 = 6, the funtions Clmax(�) and Clmin(�). (b ) The initially polarized node j0 = 6, the funtionsZmax(�) and Zmin(�). () The initially polarized node j0 = 9, the funtions Clmax(�) and Clmin(�). (d) The initiallypolarized node j0 = 9, the funtions Zmax(�) and Zmin(�)Aj00 = 12N NYl=1 al0;Aj0kk0 = 12N 0B�aj00 NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CA ankk0++ aj0kk0 NYl=1l6=j0 al01CA ;Aj0kqk0q0 = aj0kk02N NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CAanqq0 ;Aj0kqlk0q0l0 = 0
(31)

for the density matrix �1, or

Aj00 = 12N NYl=1 al0;Aj0kk0 = 12N 0B�aj00 NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CA ankk0 ++ aj0kk0 0B� NYl=1l6=j0 al01CA1CA ;Aj0kqk0q0 = 12N 0B�aj0kk0 NXn=1n6=j0 0B� NYm=1m6=j0 6=n am0 1CAanqq0 ++ aj00 NXn;n0=1n0 6=n6=j0 0B� NYm=1m6=j0 6=n6=n0 am0 1CA ankk0an0qq01CA ;
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ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Robust stationary distributed disord : : :Aj0kqlk0q0l0 = aj0kk02N NXn;n0=1n0 6=n6=j0 ��0B� NYm=1m6=j0 6=n6=n0 am0 1CA anqq0an0ll0 (32)for the density matrix �2. In this setion, formu-las (14)�(18) hold as well. The stationarity of the pair-wise quantum disord between fermions follows fromthe struture of the marginal matrix �j0nm in Eq. (18)and an be shown in a way similar to that proposed inSe. 3. 4.1. Numerial simulationsSimilarly to the numerial simulations in Se. 3.2,we perform numerial simulations in the partiular aseof an N = 17 node spin hain with the initially polar-ized spins j0 = 6 and j0 = 9. For eah �xed valueof the small parameter � in the interval 0 � � � 0:4(� = 0; 0:1; 0:2; 0:3; 0:4), we average the disord over102 realizations of the random set of the parameters~bj , j = 1; : : : ; 17, haraterizing the noise polarizationof the jth node of the spin-1/2 hain. For the averageddisord, we use the same notation Qnm in this setion.Again, to haraterize the deformation of the dis-ord distribution aused by the noise polarization, weuse the funtions Clmax(�), Clmin(�) and Zmax(�),Zmin(�) de�ned by formulas (23) and (24) in whih wereplae b with � to haraterize the spread of the dis-ord in the luster Cl and the spread of the parasitidisord, whih is zero in the absene of noise. Pairsof funtions Clmax(�), Clmin(�) and Zmax(�), Zmin(�)are respetively shown in Figs. 3a and 3b for j0 = 6and in Figs. 3 and 3d for j0 = 9. We see that thedi�erene between the disord distribution orrespond-ing to the density matries �1 and �2 is not signi�antinside the interval 0 � � � 0:4, as is shown in Fig. 3.More exatly, the urves Clmax orresponding to themaximal disord for the density matries �1 and �2 arelose to eah other (see the upper solid and dashed linesin Figs. 3a and 3), as well as the appropriate urvesClmin (see the lower solid and dashed lines in Figs. 3aand 3). The same statement holds for the urves Zmaxand Zmin in Figs. 3b and 3d. We onsider this a justi-�ation of using the perturbation theory.To demonstrate the magnitude of deformation ofthe disord distribution under the small-amplitudenoise polarization, we represent the disord distribu-tion in the luster of orrelated fermions for the initiallypolarized node j0 = 6, the density matrix �2 = ~�2=Z2,
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Fig. 4. The averaged disord distribution Qnm in thesystem of N = 17 fermions with the initially polarizednode j0 = 6, density matrix �2, and noise amplitude� = 0:4. The pairwise disord is averaged over 102realizations of random hoies of the parameters ~bj ,j = 1; : : : ; 17. This distribution is slightly deformedin omparison with that in Fig. 2a for � = 0. Thedi�erene is visible in the peaksand the noise amplitude � = 0:4 in Fig. 4. The om-parison of Figs. 4 and 2a shows that the deformation ofthe disord distribution is approximately negligible inthe luster of the orrelated fermions Cl. It is impor-tant that noise does not destroy the stationarity of thedisord distribution, similarly to the ase of parasitipolarization onsidered in Se. 3.4.2. Stationarity of the pairwise disord in afermion system with noiseIn the preeding setion, we demonstrated that thepairwise disord in the Jordan�Wigner fermion systemwith a single initially polarized node remains stationaryunder perturbations of two types, parasiti polarizationof two neighboring nodes and noise polarization, on-sidered by the perturbation method. In both ases, thedensity matrix operator involves at most three-fermionterms (see Eqs. (10) and (29)). However, it an be read-ily shown that the stationarity may not be destroyedby noise polarization even if we take all terms of theperturbed density matrix into aount. Or, even moregenerally, the pairwise disord distribution is station-ary for the initial density matrix of the form�0 = ~�Z ; Z = Tr ~�;479



E. B. Fel'dman, A. I. Zenhuk ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014~� = 1 +Xi iIzi + Xi1 6=i2 i1i2Izi1Izi2 ++ Xi1 6=i2 6=i3 i1i2i3Izi1Izi2Izi3 + : : :: : :+ 1:::NIz1 : : : IzN ; (33)where the  are salar onstants. The evolution ofthe density matrix desribed by the Liouville equationd�=dt = �i[H; �℄ is given by�(t) = e�itH�0eitH : (34)After some transformations using Eqs. (2), (3), (6), and(9), we obtain the density matrix in the form (we writethe t-dependene expliitly)�(t) = 1Z  1 + NXi=1 �ikk0e�it("k�"k0 )�yk�k0 ++ NXi1;i2=1�i1i2k1k2k01k02e�it("k1+"k2�"k01�"k02 ) �� �yk1�k01�yk2�k02 + : : :! ; (35)

where the � are expressed in terms of the . Equa-tion (35) is an in�nite series. An important fat re-garding its struture is that the produt of the op-erators �yk�k0 appears together with the exponentiale�it("k�"k0 ).Considering the redued density matrix operatorwith respet to all fermions exept the nth and mth,we obtain the density matrix in the form�nm(t) = ~�nm0 + Xk;k0=n;m ~�nmkk0 e�it("k�"0k)�yk�k0 ++ ~�nmnmnm�yn�ym�m�n; (36)where all the oe�ients ~� are expressed in terms ofthe oe�ients � in Eq. (35) and do not depend on t.We do not give expliit expressions for the ~�. Terms ofhigher degrees in the � operators do not appear in thetwo-partile density matrix operator (36) beause ofthe fermion operator property �2k = (�yk)2 = 0. Usingthe basis in Eq. (17), we an represent density opera-tor (36) in the matrix form
�nm(t) = 0BBBB� ~�nm0 0 0 00 ~�nm0 + ~�nmnn e�it("n�"m)~�nmnm 00 eit("n�"m)(~�nmnm)� ~�nm0 + ~�nmmm 00 0 0 ~�nm0 + ~�nmnn + ~�nmmm + ~�nmnmnm 1CCCCA : (37)Thus, the t-dependene appears only in the exponentsin the nondiagonal elements.We now repeat the arguments used in the demon-stration of the disord stationarity in Ses. 3.1 and 4.Namely, it is shown in the Appendix that the pairwisedisord in X-matrix (37) depends on the absolute valuej~�nmnmj of the nondiagonal element of this matrix. Con-sequently the disord does not depend on the time t.5. CONCLUSIONSWe have shown that the property of stationarity forthe pairwise disord in the system of Jordan�Wignerfermions is stable with respet to polarization-like per-turbations of the initial state. Two types of suh para-siti polarizations are onsidered in detail. The �rst isassoiated with the experimental error in the reationof the single-node polarization initial state, resultingin low polarizations of the neighboring nodes. Theseond type is related to the noise polarization of all

nodes. The only e�et of both suh perturbations isdeformation of the pairwise disord distribution in theluster Cl of orrelated fermions. In partiular, suhperturbations an destroy the luster, whih is expli-itly demonstrated in Se. 3 for two neighboring-nodeparasiti polarization. Hene, the disord stationarityin the Jordan�Wigner fermion system an be takenas a reliable and stable advantage of the onsideredfermion system in omparison with the original spinsystem. This enourages us to onsider the possibilityof a quantum gate realization on the basis of suh sys-tems of virtual partiles.
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ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Robust stationary distributed disord : : :APPENDIXQuantum disord in the X-type state (37)The two-partile density matrix onsidered in thispaper is a partiular ase of the so-alled X-matrix [27℄:�red = 0BBBB� �11 0 0 00 �22 �23 00 ��23 �33 00 0 0 �44 1CCCCA ; 4Xi=1 �ii = 1: (38)The disord for the X-matrix was studied in [27℄. Wereall that the disord between partiles n and m of abipartile quantum system an be alulated asQm = I(�)� Cm(�); (39)if the von Neumann type measurements are performedover the partile m. Here, I(�) is the total mutualinformation [4℄, whih an be written asI(�) = S(�(n)) + S(�(m)) + 3Xj=0 �j log2 �j ; (40)where �j (j = 0; 1; 2; 3) are the nonzero eigenvalues ofthe density matrix �(nm),�0 = �11; �1 = �44;�2;3 = 12 ��22+�33 �p(�22��33)2+4j�23j2 � ; (41)and �(n) = Trm�(nm) and �(m) = Trn�(nm) are themarginal density matries. The appropriate entropiesS(�(n)) and S(�(m)) are given by the formulasS(�(n)) = �(�11 + �22) log2(�11 + �22)�� (�33 + �44) log2(�33 + �44);S(�(m)) = �(�11 + �33) log2(�11 + �33)�� (�22 + �44) log2(�22 + �44): (42)The so-alled lassial ounterpart CB(�(nm)) of themutual information an be found by onsidering theminimization over projetive measurements performedon the partile m as follows [27℄:C(m)(�) = S(�(n))� mink2[0;1℄(p0S0 + p1S1); (43)whereS(�i) � Si = �1� �i2 log2 1� �i2 �� 1 + �i2 log2 1 + �i2 ; (44)

p0 = (�11 + �33)k + (�22 + �44)l;p1 = (�11 + �33)l + (�22 + �44)k; (45)�0 = 1p0 ��p((�11 � �33)k + (�22 � �44)l)2 + 4klj�23j2;�1 = 1p1 ��p((�11 � �33)l + (�22 � �44)k)2 + 4klj�23j2: (46)Here, the parameters k and l are related by the equa-tion [27℄ k + l = 1: (47)It is easy to show that the quantum disord Qn ob-tained by performing the von Neumann type measure-ments on the partile n is related to Qm asQn = Qmj�(nn)$�(mm) (48)for the system with the density matrix �red given byEq. (38). We then de�ne the disord Qnm as the min-imum of Qn and Qm [29℄,Qnm = min(Qn; Qm); n 6= m; (49)with the obvious property Qnm = Qmn. We see that ifthe �nn, n = 1; 2; 3; 4, and j�23j do not depend on thetime t, then the disord does not evolve with time aswell. REFERENCES1. R. F. Werner, Phys. Rev. A 40, 4277 (1989).2. W. H. Zurek, Ann. Phys. (Leipzig) 9, 855 (2000).3. L. Henderson and V. Vedral, J. Phys. A: Math. Gen.34, 6899 (2001).4. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88,017901 (2001).5. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).6. L. Amio, R. Fazio, A. Osterloh, and V. Vedral, Rev.Mod. Phys. 80, 517 (2008).7. R. Horodeki, P. Horodeki, M. Horodeki, and K. Ho-rodeki, Rev. Mod. Phys. 81, 865 (2009).8. C. H. Bennett, D. P. DiVinenzo, C. A. Fuhs, T. Mor,E. Rains, P. W. Shor, J. A. Smolin, and W. K. Woot-ters, Phys. Rev. A 59, 1070 (1999).5 ÆÝÒÔ, âûï. 3 (9) 481
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