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EFFECT OF VORTEX PINNING BY POINT DEFECTS ON THELOWER CRITICAL FIELD IN LAYERED SUPERCONDUCTORSG. P. Mikitik *Verkin Institute for Low Temperature Physis and Engineering, Ukrainian Aademy of Sienes61103, Kharkov, UkraineReeived Marh 2, 2014The lower ritial �eld H1 in layered superondutors is alulated under the assumption that vortex pinning bypoint defets is strong in these materials. We onsider the ase of a purely eletromagneti oupling of vortexpanakes and the ase of both the eletromagneti and Josephson ouplings of the panakes in a vortex line.In the latter ase, singularities in the temperature dependene of H1 are predited at ertain harateristitemperatures.DOI: 10.7868/S00444510140901681. INTRODUCTIONE�ets of thermal �utuations of vorties on thelower ritial �eld H1 and on the magnetization oftype-II superondutors were onsidered in a numberof papers [1�6℄. It was shown that the �utuations leadto a renormalization of the temperature dependene ofH1. In addition, e�ets of �ux-line pinning on theequilibrium magnetization M of superondutors wereanalyzed for the ases of pinning by point [7, 8℄ andolumnar [9, 10℄ defets. In this paper, we onsider thee�et of pinning by point defets on the lower ritial�eld in layered superondutors, leaving aside the anal-ysis of this e�et for three-dimensional superondutingmaterials.In layered superondutors like Bi2Sr2CaCu2O8+Æ,a vortex is the stak of vortex panakes (VPs) loalizedin superondutive layers, and the vortex elastiity "ldisplays two features that, as we see in what follows,result in a notieable e�et of vortex pinning by pointdefets on H1. Both these features are aused by largeanisotropy of these superondutors. The �rst featureis that the elastiity is relatively small, and this small-ness leads to the Larkin length L that does not exeedthe interlayer spaing d. In other words, the hara-teristi pinning energy of a vortex panake is largerthan its harateristi elasti energy, and hene pinningof the VPs is strong in these superondutors at least*E-mail: mikitik�ilt.kharkov.ua

for not too high temperatures T [11�13℄. The seondfeature is that in ontrast to the pratially onstant"l in three-dimensional superondutors, the elastiityin layered superondutors essentially depends on thesale of the vortex distortion, i. e., on the wave vetorkz along the vortex [11�14℄. This funtion "l(kz) resultsfrom an interplay of the eletromagneti and Josephsonouplings of the VPs in a vortex line.In the experiments in [15, 16℄, the temperature de-pendenes of the magnetization M were measured atvarious magneti indutions B in Bi2Sr2CaCu2O8+Ærystals, and a seond-order phase transition line Bg(T )was observed in the vortex system of these superon-dutors at moderate temperatures of the order of 40 K.Sine a seond-order phase transition line annot havea ritial point similar to that of the �rst-order phasetransition line between a liquid and its vapor [17℄, theend of the urve Bg(T ) in the T�B plane should lie onthe line B = 0 that orresponds to the lower ritial�eld. Hene, the experimental data in [15, 16℄ indi-retly suggest that the Bi-based superondutors mayexhibit a singular behavior of H1(T ) near a tempera-ture lose to 40 K.This paper is organized as follows. In Se. 2, asimple model for the vortex elastiity "l(kz) in layeredsuperondutors is formulated, and in Se. 3 the mainformulas desribing strong pinning of the VPs are pre-sented. In Se. 4, the �eld H1 is studied in the asewhere purely eletromagneti oupling of the VPs in avortex line ours. In this situation, H1(T ) is renor-malized both by thermal �utuations of the vortex pan-563 10*



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014akes and by their pinning. The lower ritial �eldin the ase of both the Josephson and eletromagnetiouplings of the VPs is onsidered in Se. 5. In thisase, the renormalization of H1(T ) is aompanied bysingularities in the T -dependene ofH1 at ertain tem-peratures. The results of the paper are brie�y summa-rized in Se. 6.2. ELASTICITY OF A VORTEX LINEIn a layered superondutor, pinning fores andthermal �utuations shift the VPs omprising a vor-tex line away from its axis, and the line is distorted.Below, we deal with the distortions with large wavevetors kz of the order of �=d, where d is the interlayerspaing. For suh kz , the elastiity "l(kz) of a vortexline in a layered superondutor has the form [11�14℄"l(kz) � "0 �"2 ln� d"u�+ 1�2k2z ln��u�� ; (1)where "0 = (�0=4��)2, � is the planar London pene-tration depth, �0 is the �ux quantum, " � 1 is theanisotropy parameter of the superondutor, and u isthe amplitude of the vortex�panake displaements. Itis taken into aount in Eq. (1) that in the ase of strongpinning, the displaement u an be large, ukz > 1. The�rst term in formula (1) desribes the Josephson ou-pling of the VPs, and the seond term is due to theireletromagneti interation. The parameter "�kz har-aterizes the relative roles of the Josephson and ele-tromagneti ouplings of the VPs in the elastiity ofthe vortex line.The logarithmi fators in formula (1) are of thesame order of magnitude when � � d=". This situa-tion just ours in Bi-based superondutors at not toohigh temperatures (e. g., at � = 0:2�m, d = 1:5 nm,and " = 1=200, we obtain "�=d � 0:7). Hereafter,we replae the logarithmi fators by the quantityq � 0:5 ln(�2�2=hu2i), where � = �=� is the Ginzburg�Landau parameter, � is the planar oherene length,and hu2i gives the averaged value of u2 for the VPs inthe ase of strong pinning. The expliit value of thisquantity q is given below (see formula (23)). To sim-plify our analysis further, we use the following modeldependene for "l(kz) that reprodues the main fea-tures of Eq. (1):"l(kz) = "0q"2; kmaxz � kz � k�; (2)"l(kz) = "0q�2k2z ; kz � k�: (3)

This model is similar to that used in Refs. [18, 19℄ (inthose papers, q = 1). Here, kmaxz = �=d is the max-imum value of kz , and k� � ("�)�1. Formula (2) de-sribes the Josephson oupling of the VPs, and Eq. (3)orresponds to their eletromagneti oupling.To haraterize the type of the oupling in a vortex,we de�ne the parameter p asp � kmaxzk� = �"�d : (4)When p < 1, the region of the Josephson oupling isabsent for all kz. In this ase, the elasti energy of avortex Eel = �=dZ0 dkz2� "l(kz)k2z ju(kz)j2 (5)an be represented in the form [12℄Eel =Xi Eemq u2i�2 ; (6)where ui is the displaement of the VP in the ith layerof the superondutor,u(kz) = dXi ui exp(�ikzzi)is the orresponding Fourier transform, andEem � "0d�2=�2. Formula (6) shows that theVPs in di�erent layers an be regarded as independent�partiles� in an e�etive mean-�eld harmoni potentialgenerated by all other VPs of the vortex line [12℄.When p > 1, the elasti energy Eel onsists of twoparts, Eel = E>el + E<el . The Josephson oupling ofthe VPs omprising the vortex line ours for the vi-bration modes of the vortex with kz in the intervalkmaxz > kz > k�, and the elasti energy of these modesis E>el = "0q"2 kmaxzZk� dkz2� k2z ju(kz)j2: (7)On the other hand, the vibrating modes with kz < k�lead to an unorrelated motion of vortex segments ofthe length L� = (kmaxz =k�) d = �"�, and the elasti en-ergy of these longwave modes is given by an expressionsimilar to Eq. (6),E<el =Xj EemqL�d �u2j�2 ; (8)where �uj is the displaement of the jth segment as awhole.In Ses. 3 and 4, the ase of purely eletromagnetioupling of the VPs (p < 1) is onsidered, whereas thease p > 1 is disussed in Se. 5.564



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�et of vortex pinning by point defets : : :3. STRONG PINNING OF THE VORTEXPANCAKESStrong pinning of the VPs was analyzed in Refs.[11�13℄. Here, using somewhat di�erent approah, wederive the appropriate formulas again and present themin the form that permits us to use the obtained equa-tions at realisti values of the vortex elastiity and pin-ning.We onsider an individual VP in a pinning poten-tial generated by point defets. The distribution w(E)of its potential energies is Gaussian1) [11℄:w(E) = 1p�Up exp��E2U2p � ; (9)where the parameter Up is of the order of U0p == �(f2pnp�2d)1=2, the harateristi pinning energy ofthe VPs; fp is the mean pinning fore aused by apoint pinning enter; and np is the density of theseenters. For low B and T , we have U0p ; Up � Eem forBi-based superondutors [11�13℄. As in Refs. [11�13℄,we assume that for the unit area of a superondutinglayer ontaining the vortex panake, the number of thepinning-potential extrema lying below an energy E isgiven byn(E) = 1��2 EZ�1 dE0w(E0) = 1 + erf(E=Up)2��2 ; (10)where 1=��2 is the density of these extrema, i. e., ofpinning wells and humps, and erf(x) is the probabilityintegral [20℄, erf(x) � 2p� xZ0 dt exp(�t2): (11)We now onsider a VP in the vortex line. Its totalenergy is the sum of its energy in the pinning potentialand of its elasti energy. The pinning potential �stim-ulates� the panake to seek the deepest minimum ofthis potential in the appropriate layer. On the otherhand, the displaement u of the vortex panake fromthe vortex-line axis leads to an inrease in its elasti en-ergy Eel(u) = Eemqu2=�2. At T = 0, in eah layer, theappropriate vortex panake oupies the energy min-imum with the lowest total energy, i. e., the absolute1) A uniform distribution of point defets leads to a renormal-ization of � and hene of H1. This renormalization of H1 isproportional to the mean density of the defets, np, and is notonsidered here. The pinning potential is generated by spatial�utuations of the density around np, and hene the mean energyfor distribution (9) is zero.

energy minimum in the layer. To proeed with theanalysis of this absolute minimum, we �rst estimate thedistribution of the loal energy minima in the layer inthe ase of strong olletive pinning of the VPs by pointdefets. This strong pinning ours when the hara-teristi sale of the pinning potential, Up, is essentiallylarger than the harateristi elasti energy Eemq, i. e.,when Æ � UpqEem � 1: (12)In this ase, any of the VPs forming the vortex line an�explore� many wells of the pinning potential, and itstotal energy has many loal minima in the layer. Thenumber gm(E) dE of these minima in the interval fromsome E < 0 to E + dE is obtained asgm(E) = 1Z0 2�u dudn(E �Eel(u))dE == 1Z0 dEelEemqw(E �Eel) = 1Eemq EZ�1 d�w(�) == ��2n(E)Eemq = 1 + erf(E=Up)2Eemq ; (13)where 2�udu �dn(E�Eel(u)) is the number of the min-ima in the in�nitesimal ring bounded by u and u+ du,and we have hanged the integration variable from u toEel. With the funtion gm(E), the onditionE0Z�1 gm(E) dE = 1 (14)determines E0 < 0, the upper boundary of the energiesof the VPs forming the vortex line at T = 0. Condi-tion (14) means that gm(E) at E � E0 is the probabil-ity density for a vortex panake inside the vortex lineto be in the absolute energy minimum E.With formula (13), Eq. (14) for E0 an be rewrittenin the formÆ2 �x0[1 + erf(x0)℄ + 1p� exp(�x20)� = 1; (15)where x0 � E0=Up < 0. When the parameter Æ is solarge that jx0j � 1, Eq. (15) redues toUp4Eemqp� x20 exp(�x20) � 1; (16)and its approximate solution isE0 = Upx0 � �Up �ln� Up4Eemqp���1=2 : (17)565



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014In obtaining Eq. (16), the following expression forerf(x) in the limit x� 1 has been used [20℄:erf(x) � 1� 1p� x exp(�x2)�1� 12x2� : (18)The VP energy averaged over the layers is the pin-ning energy of the panake in the vortex line,Epin = E0Z�1 Egm(E) dE: (19)Using Eq. (13), we arrive atEpin = U2p4Eemq �� �(x20 � 0:5)[1 + erf(x0)℄ + x0p� exp(�x20)� ; (20)where x0 = E0=Up. Taking Eq. (15) into aount, theenergy Epin an also be rewritten in the formEpin == E0�12 � 14x20 + Up8p�Eemqx20 exp(�x20)� : (21)This expression together with formula (16) reveals thatEpin tends to E0 when jx0j � 1. In Fig. 1, the energiesjEpinj and jE0j are shown as funtions of the param-eter Æ. It an be seen that in the interval 100 > Æ >> 20, the energy jEpinj is approximately 20�40% largerthan jE0j.We next alulate hu2i, the averaged shift of theVPs forming the vortex line from the axis of this line,hu2i = E0Z�1 dE 1Z0 2�u3dudn(E �Eel(u))dE == ��4(Eemq)2 E0Z�1 (E0 �E0)n(E0) dE0 == �2(E0 �Epin)Eemq : (22)In the limit jx0j = jE0j=Up � 1, Eq. (22) giveshu2i�2 � Up2qEem �ln� Up4Eemqp����1=2 : (23)Omitting all logarithmi fators under the sign of thelogarithm, we �nd the following estimate of the quan-tity q = 0:5 ln(�2�2=hu2i) introdued in Se. 2: q �� 0:5 ln(�2Eem=Up).
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Fig. 1. Energies jE0j (solid line), Eq. (15), and jEpinj(irles), Eq. (20), as funtions of the parameterÆ = Up=(Eemq). The energy jEpinj in the ase of weakpinning, Eq. (24), is shown by dots. All the energiesare measured in units of UpFormulas (17) and (23) agree with the appropriateresults obtained in Refs. [11�13℄, where strong pinningof the VPs was analyzed in the limit jE0j � Up. How-ever, for realisti values Æ . 100, the limit jE0j � Upis not reahed (see Fig. 1), and hene expressions (13)�(15) and (19)�(22) for gm(E), E0, Epin, and hu2i per-mit us to �nd these quantities in realisti situations.Moreover, expressions (13)�(15) and (19)�(22) alsoallow extrapolating the quantities gm(E), E0, Epin,and hu2i from the region Æ � 1 to the boundary (Æ �� 1) between the regimes of strong and weak pinning.Here, we estimate this boundary as the point at whihE0 reahes zero. Aording to Eq. (15), this ours atÆ = 2p�, and at this point, Epin = �U2p=(8Eemq) == �Upp�=4 � �0:44Up and hu2i=�2 = �=2. Of ourse,these values are only estimates beause the derivationof gm given in Eqs. (13) fails at Æ � 1, and at suh Æ, theexat gm(E) would generally di�er from the expressionused here.For ompleteness, we present a formula for Epin inthe ase of weak pinning of the VPs. In this ase,the VP displaement u is found from the balane be-tween the mean pinning fore U0p=� and the elasti fore2Eemqu=�2 [i. e., u=� = U0p=(2Eemq)℄, and the pinningenergy of the panake isEpin = Eemq�u��2 � U0p� u = � (U0p )24Eemq : (24)At the boundary of the weak pinning regime, u reahes�, i. e., we have U0p = 2Eemq and Epin = �Eemq. If we566



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�et of vortex pinning by point defets : : :impose the requirement that Eq. (20) gives the sameenergy �Eemq at this boundary, we �nd that this o-urs at Æ � 2:88 and Epin � �0:35Up. We note thatthis boundary Æ � 2:88 is relatively lose to the value2p� � 3:54 estimated above from the side of strongpinning (see Fig. 1).4. FREE ENERGY OF A VORTEX LINE WITHPURELY ELECTROMAGNETIC COUPLINGOF THE VORTEX PANCAKES4.1. General formulasAt p < 1 (the ase of a purely eletromagneti ou-pling), positions of the VPs omprising the vortex linein di�erent superonduting layers are not orrelated(Se. 2). Let E � E0 be the minimum energy of aVP in one of the layers. Then the free energy of thispanake an be written in the formfpn = e0d+E � T lnZ(E); (25)where e0 = "0 ln� is the usual expression for the energyof a vortex per its unit length,Z(E) = 1ZE g(E0) exp��E0 �ET � dE0 (26)is the partition funtion of the VP, and g(E) is the den-sity of VP states in the elasti and pinning potentials.The last (entropy) term in Eq. (25) is aused by ther-mal �utuations of the VPs, and this term takes intoaount that at T > 0, the panake an oupy notonly its optimal energy state.The lower ritial �eld H1 = 4�f=�0 is determinedby the free energy f of a vortex per its unit length. Av-eraging expression (25) over the layers with the fun-tion gm(E), this free energy f an be represented asf = e0 + 1dEpin � Td lnZ; (27)where Epin < 0 is de�ned by Eq. (19) andlnZ = E0Z�1 ln[Z(E)℄ gm(E) dE: (28)In distintion to gm(E) desribing the distributionof the energy minima of VPs in a vortex line, g(E)gives the total density of states for suh VPs, inlud-ing the states in whih the pinning and the elastifores ating on the panakes are not balaned. Asthe starting point, we onsider the density of states

g(E) in the ase where the pinning of the VPs is ab-sent, i. e., when the VPs are in the elasti potentialonly, E = Eel(u) = Eemqu2=�2. In this ase, we haveg(E) = gel(E), wheregel(E) = 0; E < 0;gel(E) = 2�u dus0dE = ��2s0 1Eemq ; E > 0; (29)2�u du is the area of the in�nitesimal ring from u tou+ du, and the elemental area s0 determines the num-ber 1=s0 of states of an individual vortex panake perunit area. It was assumed in [4℄ that this area is of theorder of ��2, while in [6℄, s0 was found from an analysisof the superonduting order-parameter exitations inthe vortex ore. In analyzing the e�et of pinning onH1, the exat value of s0 is not important, and we donot �x it here.Interestingly, gel(E) an also be obtained from for-mulas (13) for gm if we multiply this gm by the fator��2=s0 and set Up = 0. Indeed, in this ase, w(E) inEq. (9) beomes the delta funtion, w(E) = Æ(E), andformula (13) transforms intogel(E > 0) = ��2s0 1Eemq EZ�1 d�w(�) = ��2s0 1Eemq :Generalizing this property of gel(E) to the ase wherethe VP experienes both the elasti and pinning po-tentials, we assume below that g(E) is given by therelation g(E) = (��2=s0)gm(E), i. e.,g(E) = ��2s0 1Eemq EZ�1 d�w(�) == ��2s0 [1 + erf(x)℄2Eemq ; (30)where x � E=Up. Formula (30) shows that pinningsmoothes the sharp step that ours in gel(E) in theabsene of the pinning potential, and the sale of thissmoothing is Up, as we see in Fig. 2. Thus, our assump-tion is no more than a simple realization of the quitenatural idea on the e�et of pinning on g(E).4.2. Analysis of the formulasWhen pinning of the VPs is absent (E0 = Epin == 0), the partition funtion is simple,Z = 1Z0 gel exp��E0T � dE0 = Tgel; (31)567
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Fig. 2. The density of states g(E) of a vortex panake,Eq. (30), as a funtion of its energy E (solid line withdots). For omparison, the solid line shows the funtiongel(E), Eq. (29). Both these funtions are measured inunits of (��2)=(s0Eemq), whereas E is in units of Up.The dashed lines mark the energies E0 = �1:21Up andEpin = �1:47Up alulated at Æ = 80with the onstant gel = gel(E > 0), Eq. (29). Then theontribution of the thermal �utuation of the vortexpanakes to the free energy is given byfT = �Td ln(Tgel); (32)and the lower ritial �eld HT1 renormalized by thesethermal �utuations takes the formHT1 = H01(T )� 4�T�0d ln(Tgel); (33)where H01(T ) = 4�e0=�0 = (�0=4��2) ln� is the usualexpression for H1. It an be seen that the �utuationorretion to H01(T ) is pratially linear in T and issimilar to the orretion obtained for three-dimensionalsuperondutors or for layered superondutors withthe Josephson oupling of the VPs [2, 4, 5℄.To obtain a orretion to formula (33) in the ase ofsmall Up=T (high temperatures), we extrat the step-like funtion gel(E) from the density of states g(E)given by Eq. (30), g(E) = gel(E) + �g(E). The fun-tion�g(E) thus obtained oinides with g(E) atE < 0,is antisymmetri in E, and di�ers from zero in a regionof the order of Up (see Fig. 2). Then the partitionfuntion Z(E) in Eq. (26) an be written as

Z(E) � gelT exp�ET �0B�1� 1T 2 jEjZE E0dE0�g(E0)gel ++ 1T 1ZjEj dE0�g(E0)gel 1CA ; (34)where E < 0; exp(�E0=T ) is here replaed with1�(E0=T ), and we keep only the largest nonzero terms.Inserting this expression in Eq. (28) giveslnZ � EpinT +ln(gelT )�U2pT 2 E0Z�1 gm(E)I2 � EUp� dE�� UpT E0Z�1 gm(E)I1 � EUp� dE; (35)whereI1(x) = xZ�1 dt1 + erf(t)2 == x[1 + erf(x)℄2 + 12p� e�x2 ; (36)I2(x) = 0Zx t[1 + erf(t)℄dt == �x2[1 + erf(x)℄2 � x2p� e�x2 + erf(x)4 : (37)The �rst term in Eq. (35) anels the term Epin=d informula (27). The seond term in Eq. (35) leads tothe thermal-�utuation orretion to H1, Eq. (33). Inthe third term in Eq. (35), we have I2(x) � �1=4at large Æ, and this term is approximately equal toU2p=4T 2. As regards the last term in Eq. (35), it issmall and an be negleted ompared to the third termin the region Up < T < UpÆ=4. Indeed, we haveI1(x) � I1(x0) = Eemq=Up (see Eq. (15)). Hene, theorretion to lnZ assoiated with this term is of the or-der of Eemq=T . Eventually, we arrive at the followingpinning orretion to HT1:H1 �HT1 � � �U2p�0Td ; (38)whih is quadrati in Up and dereases with inreasingthe temperature (Up / ��1��2, see the Appendix inRef. [21℄).568



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�et of vortex pinning by point defets : : :If the temperature is so low that Up=T � 1, theseond term in Eq. (27) is larger than the third one,and the lower ritial �eld H1 is mainly renormalizedby pinning,H1 �H01 � 4�Epin�0d = �Up�0dA ; (39)where the dimensionless fator A � 4Epin=Up,A = Æ �(x20�0:5)[1+erf(x0)℄+ x0p� exp(�x20)� ; (40)weakly depends on Æ (see Fig. 1). Hene, at low tem-peratures, the pinning orretion to H1 is pratiallyproportional to the pinning strength Up.We emphasize that the obtained e�et of pinningon H1 is substantially due to the absene of posi-tion orrelations between the VPs in a vortex line ofthe layered superondutors, Eq. (6), and results fromthe spei� form of "(kz) in the ase of the eletro-magneti oupling of the VPs, Eq. (3). We note thateven weak pinning (Æ . 1) would have an e�et onH1 in suh layered superondutors. Indeed, beauseEpin � U2p=(Eemq) in the ase of weak pinning (seeEq. (24) and Fig. 1), we obtain from Eq. (39) at lowtemperatures that H1�H01 is quadrati in Up. Thus,the di�erene in the renormalization of H1 in the asesof weak and strong pinning is only in the magnitude ofthe e�et.4.3. Temperature dependene of H1We next onsider the temperature dependene ofH1, Fig. 3. This dependene has been alulated nu-merially with both pinning and thermal �utuationsof the VPs taken into aount,H1(T ) = H01(T ) + 4�Epin�0d � 4�T�0d lnZ : (41)In onstruting Fig. 3, the following temperature de-pendenes of � and Up were assumed: �(T )=�(0) == (1 � t2)�1=2, Up / ��1��2 [21℄, and � �� �(T )=�(T ) = 70, where t = T=T with T = 90 K.For omparison, this �gure also shows the lower riti-al �eld HT1(T ) renormalized by thermal �utuationsonly, Eq. (33), and H1(T ) alulated within a simpli-�ed approah. In that approah, averaging over thelayers in Eqs. (19) and (28) is replaed by the formulasEpin = E0 and lnZ = lnZ(E0). In other words, itis assumed that at T = 0, the VPs in di�erent layersare all in the same state with the energy E = E0. Itan be seen that the simpli�ed approah does not dis-turb H1 essentially, and hene this simpli�ation anbe suessfully used in alulations of H1(T ) at Æ � 1.
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Fig. 3. The dependene H1(T ) alulated withEq. (41) (solid line) in the ase of the purely ele-tromagneti oupling of the VPs, i. e., for T < TJ .The dashed line shows H1(T ) within the simpli�edapproah, the dotted line is H01(T ) = 4�e0=�0, andthe irles give HT1(T ), Eq. (33). Here, " = 1=500,d = 1:5 nm, Up(0) = 20 K, � = 70, �(0) = 0:2�m,s0 = ��2, and the temperature dependenes of � andUp are presented in the text. These values of the pa-rameters give H1(0) � 169 G, Eem(0) � 0:14 K,q(0) � 1:77, Æ(0) � 80, p(0) � 0:84, TJ � 50 K, andTdp � 25 KWe note that if p � �"�=d < 1 at T = 0, thena rossover temperature TJ < T neessarily exists atwhih the parameter p(T ) reahes unity, p(TJ) = 1.This is due to the divergene of �(T ) as T ! T. When�(T ) / [1� (T=T)2℄�1=2, we �ndTJ = Tp1� p(0)2 : (42)The results in this setion are valid at T < TJ (H1at T > TJ is onsidered in Se. 5.1). For the parame-ters in Fig. 3, we have TJ � 50 K, and the data of this�gure show that the e�et of pinning on H1 dies outompletely at temperatures lower than TJ . To identifythe harateristi temperature at whih the pinning be-omes negligible, we de�ne the so-alled depinning tem-perature Tdp [14℄ by the equationTdp = jEpin(Tdp)j; (43)where Epin is given by Eq. (19). At temperatureshigher than this Tdp, the VPs easily jump out of theirpinning wells, the VP pinning beomes ine�etive, andwe an neglet this pinning in analyzing H1.569



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 20145. EFFECT OF JOSEPHSON COUPLING OFTHE VORTEX PANCAKES ON H15.1. TJ > TdpAssuming that TJ > Tdp, we onsider the tempera-ture dependene of H1 at T > TJ . In this temperaturerange, we have p > 1, and besides, the VP pinning isnegligible, i. e., H1 = HT1. When p > 1, the vibratingmodes with kz < k� lead to an unorrelated motion ofvortex segments of the length L� = (kmaxz =k�) d = �"�(see Se. 2), and the ontribution of these longwavemodes to the free energy f isf1 = � TL� ln�TgeldL� � : (44)This expression generalizes formula (32). On theother hand, the Josephson oupling of the VPs om-prising a vortex line ours for vibration modes withkmaxz > kz > k�. These modes generate an internalmotion of the vortex segments, and they give the fol-lowing ontribution to f :f2 = �T� �=dZk� dkz ln� T�"lds0k2z� == �Td ln� Te2d"ls0��+ TL� ln� Te2�"lds0k2�� : (45)To display the di�erene between the total thermal partof the free energy, f1 + f2, and fT given by Eq. (32),we represent f1 + f2 in the form fT +�fT where�fT � f1 + f2 � fT = Td R(p); (46)R(p) = 2 ln(p=e) + 1p ln(e2p): (47)The funtion R(p) is equal to zero at p = 1 and in-reases monotonially with inreasing p for p > 1.Eventually, we obtain the following HT1 in the ase ofp > 1,HT1 = H01(T )� 4�T�0d ln(Tgel) + 4�T�0d R(p): (48)Formulas (48) and (33) respetively desribe H1at the temperatures T > TJ and TJ > T > Tdp.At T = TJ , aording to these formulas, a break inthe temperature dependene HT1(T ) ours due to theterm proportional to R(p). The appropriate jump ofdHT1=dT at this point is equal to� �dHT1dT � = 4�TJ�0d d(ln�(T ))dT ����T=TJ (49)

and is ompletely determined by the temperature de-pendene of � in the viinity of the point tJ = TJ=T,� �dHT1dT ��mGK � = 86:7d [nm℄ tJf 0(tJ )f(tJ) ; (50)where f(t) � �(t)=�(0) and f 0(t) � df=dt. We notethat this jump is relatively small,� �dHT1dT � = � 2TJe0(TJ) d �dH01dT �����T=TJ �� ����dH01dT ����T=TJ : (51)For example, for the parameters in Fig. 3, we �nd that2TJ=e0(TJ) d � 0:049, and �[dHT1=dT ℄ � 26 mG/K.Finally, we emphasize that we have obtained asharp break in HT1(T ) at the rossover temperatureTJ beause our model dependene "l(kz) desribed byEqs. (2) and (3) also exhibits a break. It is lear thatthe break in HT1(T ) an be somewhat smoothed in thease of the more realisti dependene (1) for "l(kz). In-deed, using this dependene (1), we an �nd the ther-mal part of the free energy and the appropriate R(p):R(p) = ln�1 + p2e2 �+ 2 artg(p)p ;whih is now de�ned at p < 1 as well. In the viinityof the point p = p = 0:3, this R(p) is lose to thefuntion R(p < p) = 0, R(p � p) = 0:4(p � p),whih has a break at a renormalized TJ de�ned byp(TJ) = p. Below, we disregard the e�ets assoiatedwith the smoothing of the break and with the renormal-ization of TJ , and, for simpliity, use Eqs. (2) and (3)only. 5.2. TJ < TdpWe next onsider H1 for the opposite rela-tion between the temperatures Tdp and TJ . When0 < TJ < Tdp, the parameter p exeeds unity in thetemperature range where pinning is not negligiblein general. At T < TJ , the formulas in Se. 4 arevalid for the alulation of H1. At T > TJ , theharateristi elasti energy of a VP is Eemqp2 ratherthan Eemq. Beause pinning of the VPs is impliedto be strong ompared with this elasti energy, wehave L = d for the Larkin length L. Thus, fortemperatures TJ < T < Tdp, the VPs omprisingthe vortex line predominantly sit in the wells of thepinning potential, their positions are not orrelateddue to strong pinning, and H1(T ) is still given by the570



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�et of vortex pinning by point defets : : :formulas in Se. 4 if we replae q with qp2. At T = TJ ,the temperature dependene of H1 has a break similarto that in the ase TJ > Tdp onsidered above. Inpartiular, if 0 < TJ � Tdp, the appropriate jump indH1=dT an be estimated using formulas (15), (20),and (39):� �dHp1dT � � 8�(E0 �Epin)�0d d(ln �(T ))dT ����T=TJ : (52)Similarly to the ase TJ > Tdp, this jump is relativelysmall.We now onsider H1 in the viinity of the de-pinning temperature Tdp, assuming that TJ < Tdp.In the viinity of Tdp, the Larkin length sharply in-reases [14℄. When it reahes L�, a further inreasein L does not our beause vortex deformations areunorrelated on the sales larger than L�. This meansthat at T � Tdp, a rossover from strong pinning ofindividual VPs to the regime of pinning of vortex seg-ments of the length L� ours. At this rossover, thehange �fT = f1 + f2 � fT (p > 1) in the thermal partof the free energy an be estimated as�fT � Td ��2 + ln(e2p)p � ; (53)where we have taken into aount that at TJ < T << Tdp, the thermal ontribution to the free energy hasthe form fT (p > 1) = �Td ln�Tgelp2 � (54)due to the replaement of q with qp2 in Eq. (29). Atthe rossover, this hange �fT is aompanied by apositive hange in the pinning energy �fpin. Indeed,above Tdp, most of the VPs in the vortex line eas-ily leave the pinning wells, and the e�et of the pin-ning energy on H1 dereases. An interplay of thispositive hange in the pinning energy �fpin with thenegative �fT given by Eq. (53) produes a �step��H1 � 4�(�fT + �fpin)=�0 in the temperature de-pendene of H1 at T � Tdp in addition to the di�er-ene in dH1=dT for points above and below Tdp. Ofourse, in reality, this step is smeared, and its temper-ature width an be roughly estimated as E0 � Epin.Moreover, for the smeared step, the interplay of thethermal and pinning ontributions to the free energyan in priniple result in an internal struture of thisstep.To illustrate the behavior of H1 near the depinningtemperature, the dependene H1(T ) at T < Tdp hasbeen alulated numerially using formulas in Se. 4
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