ТЕПЛОВОЕ РАСШИРЕНИЕ ДИСЕЛЕНИДА НИОБИЯ В БАЗИСНОЙ ПЛОСКОСТИ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

И.Б. Крынецкий^а*, В.А. Кульбачинский^а, М.В. Голубков^b, Г.А. Калюжная^b,

Н. П. Шабанова^b, В. В. Родин^b, С. Ю. Гаврилкин^b, В. И. Коваленко^b

^а Московский государственный университет им. М. В. Ломоносова 119991 ГСП-2, Москва, Россия

^b Физический институт им. П. Н. Лебедева Российской академии наук 119991 ГСП-1, Москва, Россия

Поступила в редакцию 13 декабря 2013 г.

Проведены прецизионные измерения теплового расширения высококачественного монокристалла 2H-NbSe₂ в базисной плоскости в диапазоне температур от 5.7 К до 50 К. Обнаружена аномалия теплового расширения в базисной плоскости, обусловленная сверхпроводящим переходом. По величине изменения коэффициента теплового расширения α_{ab} рассчитана производная критической температуры по давлению $(dT_c/dp_{ab}) = (19.0 \pm 2.0) \cdot 10^{-9}$ К/Па, величина которой удовлетворительно согласуется с литературными данными. В предпереходной области обнаружена также дополнительная аномалия, свидетельствующая о фазовом переходе. Обсуждается возможная природа обнаруженного фазового перехода.

DOI: 10.7868/S0044451014090211

1. ВВЕДЕНИЕ

Гексагональный политип дихалькогенида ниобия 2H-NbSe₂ занимает особое место в классе сверхпроводящих материалов. Это связано с тем, что переход в сверхпроводящее состояние, происходящий при $T_c = 7.2$ К [1, 2], осуществляется в электронной подсистеме, находящейся в модулированном состоянии, характеризуемом волной зарядовой плотности (ВЗП), причем последняя несоизмерима с кристаллической решеткой [3-7]. Исследования спектра фононов 2H-NbSe₂ в области низких температур, осуществленные методами неупругого рассеяния нейтронов [6], а также рентгеновского излучения [7], показали, что возникновение ВЗП происходит путем фазового перехода второго рода и волновой вектор ВЗП имеет только одну ненулевую компоненту $\mathbf{Q}_{CDW} = (0.329, 0, 0)$. Выполненные в работе [6] исследования спектра фононов 2H-TaSe₂ изоморфного 2H-NbSe₂, в котором также возникает ВЗП $(T_{CDW} = 120 \text{ K})$, установили, что несмотря на различие температур возникновения ВЗП в обоих соединениях, соответствующие величины несовпадения с кристаллической решеткой практически совпадают. Там же установлено, что при возникновении ВЗП доминирующим является смещение атомов Та вдоль $\mathbf{q} \parallel [\zeta 00]$ (верхний предел около 0.09 Å), сопровождаемое незначительным встречным смещением атомов Se. Принимая во внимание удивительную идентичность характеристик ВЗП в селенидах ниобия и тантала, можно было ожидать, что и в 2H-NbSe₂ при возникновении ВЗП смещение атомов Nb также будет происходить преимущественно в плоскости (001), оказывая при этом влияние на тепловое расширение кристалла в базисной плоскости.

Результаты проведенных до настоящего времени исследований теплового расширения 2H-NbSe₂ с использованием различных экспериментальных методик приведены в работах [8–11]. В работе [8] методом рентгеновской дифракции был измерен параметр решетки вдоль оси *a* при двух температурах, T = 15 К и T = 298 К, и определена суммарная относительная деформация решетки $\Delta a/a = 1.34(\pm 0.10) \cdot 10^3$. В работе [9] также рентгеновским методом определен средний коэффициент теплового расширения в ба-

^{*}E-mail: krynets@plms.phys.msu.ru

Рис.1. Дифрактограмма (a) и кривая качания рефлекса (002) (б) для кристалла NbSe₂

зисной плоскости в интервале температур от 150 К до 300 К: 6.6·10⁻⁶ К⁻¹. Измерения теплового расширения 2H-NbSe₂ в базисной плоскости, выполненные с использованием емкостного дилатометра, обладающего значительно большей чувствительностью по сравнению с возможностями традиционной рентгеновской дифракции, в диапазоне температур от 4 К до 300 К не выявили каких-либо аномалий ни при температуре возникновения ВЗП (T = 32 K), ни при сверхпроводящем переходе (T = 7.2 K) [10]. Исходя из чувствительности экспериментальной установки, в работе [10] были проведены оценки возможного изменения $\Delta a/a$ не более чем $2 \cdot 10^{-7}$, и, соответственно, величины скачка коэффициента теплового расширения, менее чем $3\cdot 10^{-7}~{\rm K}^{-1},$ сопутствующих образованию ВЗП. Тепловое расширение вдоль гексагональной оси монокристалла 2H-NbSe₂ было измерено в диапазоне температур от 5 К до 45 К емкостным дилатометром, обладающим чувствительностью по абсолютной деформации, равной 10⁻⁸ м [11]. Экспериментальная кривая температурной зависимости относительной деформации вдоль оси с имела довольно плавный характер и не демонстрировала явных аномалий, однако после математической обработки экспериментальных результатов, заключавшейся в нормировке измеренной относительной деформации к температуре измерения, были выявлены две аномалии: при $T_c = 7.2$ К и в области температуры возникновения ВЗП ($T_{CDW} = 32$ K). Низкотемпературная аномалия имела вид, характерный

для фазового перехода второго рода, что естественно объяснялось возникновением сверхпроводящего состояния. Аномалия в температурной зависимости линейного КТР вдоль оси c, наблюдающаяся вблизи T = 30 К, имела куполообразную форму, что интерпретировалось как признак фазового перехода второго рода при наличии флуктуаций, либо топологического перехода Лифшица 2.5 рода, либо слабовыраженного фазового перехода первого рода [11].

Анализ полученных к настоящему времени экспериментальных данных о тепловом расширении дихалькогенида ниобия при низких температурах свидетельствует о целесообразности измерения теплового расширения 2H-NbSe₂ в базисной плоскости, что и было выполнено в данной работе.

2. ОБРАЗЦЫ И МЕТОДИКА

Монокристаллы NbSe₂ были выращены газотранспортным методом в запаянных кварцевых ампулах, в качестве транспортирующего агента был использован йод. Монокристаллы представляли собой правильно ограненные зеркально блестящие пластины со средними размерами 7 × 7 × 0.2 мм³, причем пластины легко расслаивались вдоль базисных плоскостей, имеющих ориентацию (001) [12].

Исследуемые кристаллы NbSe₂ предварительно контролировались на рентгеновском дифрактометре ДРОН-2.0 с использованием графитового моно-

Рис.2. Низкотемпературный участок зависимости магнитной восприимчивости χ от температуры для кристалла NbSe_2 . Показано определение температуры начала сверхпроводящего перехода

хроматора и медного K_{α} -излучения. На рис. 1*а* приведена дифрактограмма одного из кристаллов NbSe₂. На ней видно, что базисная плоскость слоистого кристалла совпадает с кристаллографической плоскостью (001). Узкая кривая качания (рис. 16) и отсутствие на дифрактограмме отражений от других кристаллографических плоскостей, кроме серии (00ℓ) , говорят о высоком структурном совершенстве исследуемых кристаллов. Характеристики перехода кристаллов в сверхпроводящее состояние изучались по температурной зависимости магнитной восприимчивости $\chi(T)$ на переменном токе с частотой 96 кГц. Монокристаллы NbSe₂ полностью переходили в сверхпроводящее состояние (объем сверхпроводящей фазы — 100%), температура начала перехода в сверхпроводящее состояние T_c составляла 7.2–7.3 К, ширина перехода ΔT_c (10–90%) 0.07-0.09 К (рис. 2).

Измерения теплового расширения образца производились с использованием тензометрического дилатометра, изготовленного в лабораторных условиях. Два плеча измерительного моста составляли тензодатчики, наклеенные на исследуемый образец и пластинку из плавленого кварца. Датчики были изготовлены в ЦАГИ из сплава НМ23ХЮ, специально разработанного для криогенных измерений в сильных магнитных полях, для наклеивания датчиков применялся клей БФ-2. Сборка, состоящая из образца и пластинки из плавленого кварца с наклеенными тензодатчиками, укреплялась на держателе из плав-

леного кварца и размещалась внутри измерительной вставки. Вставка представляла собой двустенную трубку из нержавеющей стали, нагревательный элемент размещался в межстенном пространстве. Регулируя давление газообразного гелия в межстенном пространстве и во внутреннем объеме и задавая закон изменения тока через нагревательный элемент, можно было регулировать скорость развертки температуры образца в пределах от 0.045 К/мин до 0.3 К/мин. Температура образца измерялась при помощи термопары Cu-2 ат. % Fe. Изменение температуры образца по заданной программе осуществлялось с использованием температурного контроллера Lakeshore 331. Сигнал раскомпенсации измерительного моста, пропорциональный деформации образца, измерялся мультиметром Kethley 2010. Чувствительность экспериментальной установки по относительной деформации была не хуже, чем $0.5 \cdot 10^{-7}$. Управление процессом измерения теплового расширения и сбор экспериментальных данных проводились с использованием пакета Labview 7.0.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 3 приведено тепловое расширение диселенида ниобия в плоскости кристалла *ab*, измеренное в диапазоне температур от 5.7 К до 50 К. Сплошная линия на рисунке представляет аппроксимацию по дебаевской модели. Видно, что при температурах выше 10 К экспериментальные точки достаточно хорошо ложатся на теоретическую кривую. Отметим

Относительная деформация, 10⁻⁵

Рис. 3. Тепловое расширение кристалла $\rm NbSe_2$ в плоскости (001). Сплошная линия на рисунке соответствует аппроксимации по дебаевской модели

Рис.4. Температурная зависимость линейного коэффициента теплового расширения (КТР) в плоскости слоя α_{ab} , полученная при учете вклада от компенсационного датчика, наклеенного на пластинку из плавленого кварца

также, что никакие аномалии в тепловом расширении кристалла в плоскости *ab* при возникновении несоизмеримой ВЗП (Т = 33 К) не наблюдаются, что согласуется с данными работы [10]. Наиболее удивительным оказался вид кривой теплового расширения в области температур ниже 10 К, содержащей около 5000 экспериментальных точек. Начальный, почти линейный рост относительной деформации образца, заканчивающийся при T = 7.2 К, совпадающей с температурой сверхпроводящего перехода в 2H-NbSe₂, естественно приписать тепловому расширению диселенида ниобия в сверхпроводящем состоянии. Поскольку в диселениде ниобия переход в сверхпроводящее состояние является фазовым переходом второго рода [13], кривая теплового расширения при T = 7.2 К должна была испытать резкий излом с выходом на плавную кривую, достаточно близкую к дебаевской кривой. Вместо этого на экспериментальной кривой наблюдается достаточно резкий минимум, после которого кривая становится дебаевской зависимостью.

Обнаруженная аномалия теплового расширения свидетельствует о том, что в диселениде ниобия переходу в сверхпроводящее состояние при понижении температуры предшествует какой-то фазовый переход. При выяснении природы фазового перехода очень информативной является температурная зависимость коэффициента теплового расширения (КТР) в области аномалии. Для нахождения температурной зависимости линейного КТР в плоско-

Рис. 5. Температурная зависимость линейного КТР α_c кристалла $Ho_{0.5}Dy_{0.5}FeO_3$ в области спонтанных спин-переориентационных фазовых переходов [15]

сти *ab* кристалла было проведено численное дифференцирование экспериментальной кривой теплового расширения. Предварительно экспериментальная кривая аппроксимировалась полиномами Чебышева, при этом использовалось частичное перекрывание соседних участков аппроксимации в целях сглаживания кривой. Также был учтен вклад от компенсационного датчика, наклеенного на кварцевую пластинку. Данные по тепловому расширению кварца были взяты из работы [14]. Температурная зависимость линейного КТР в плоскости ab диселенида ниобия представлена на рис. 4. Полученная кривая позволяет четко выявить аномальное поведение KTP в области температур, непосредственно предшествующих переходу образца в сверхпроводящее состояние. Анализ нетривиального характера температурной зависимости линейного КТР позволяет сделать вывод о том, что обнаруженный фазовый переход обладает чертами фазового перехода первого рода. Для сравнения на рис. 5 представлены результаты измерения линейного КТР вдоль оси c ромбического кристалла $Ho_{0.5}Dy_{0.5}FeO_3$, полученные одним из авторов (И. Б. К.) на аналогичной экспериментальной установке [15]. Скачки линейного КТР, наблюдающиеся при $T_1 \sim 18~{
m K}$ и при $T_2 \sim 24$ K, связаны с двумя спонтанными спин-переориентационными фазовыми переходами второго рода, тогда как острый минимум вблизи $T_M \sim 46$ К обусловлен спин-переориентационным фазовым переходом первого рода, аналогичным переходу Морина в гематите. Определенное из данных рис. 4 изменение линейного КТР базисной плоскости диселенида ниобия при сверхпроводящем переходе составляет $\Delta \alpha_{ab} = (4.7 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$, при этом значение КТР в несверхпроводящем состоянии вычислялось по экстраполированной в соответствии с дебаевской моделью кривой теплового расширения. Полученная величина отличается от скачка линейного КТР вдоль гексагональной оси, определенного в работе [11]: $\Delta \alpha_c = 2.4 \cdot 10^{-6} \text{ K}^{-1}$, что, вероятно, объясняется слоистой структурой 2H-NbSe₂. Поскольку сверхпроводящий переход в диселениде ниобия является фазовым переходом второго рода, используя первое уравнение Эренфеста, можно вычислить производную критической температуры по давлению:

$$\frac{dT_c}{dp_i} = \frac{3vT_c\Delta\alpha_i}{\Delta c_p}$$

Здесь v — молярный объем, $\Delta \alpha_i$ — увеличение линейного коэффициента теплового расширения в *i*-ом направлении и ΔC_p — скачок теплоемкости при фазовом переходе. Используя измеренное в работе [11] значение $\Delta C_p = 0.206 \, \text{Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1}$ и определенное в настоящей работе $\Delta \alpha_{ab} = (4.7 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$, получаем, что $(dT_c/dp_{ab}) = (19.0 \pm 2.0) \cdot 10^{-9}$ К/Па. Данная величина удовлетворительно согласуется со значением, полученным непосредственно при воздействии давления [16]: $(dT_c/dp_{\parallel c}) = 15 \cdot 10^{-9} \text{ K}/\Pi \text{a}.$ Как известно [5], в соединении 2H-TaSe₂, являющемся изоморфным диселениду ниобия, также существует ВЗП, которая при понижении температуры испытывает ряд трансформаций. При T = 120 Kвозникает несоизмеримая ВЗП, причем этот переход носит черты фазового перехода второго рода, а при T = 90 К происходит фазовый переход первого рода из несоизмеримой ВЗП в соизмеримую ВЗП. Таким образом, основным состоянием электронной подсистемы в 2H-TaSe₂ является соизмеримая с кристаллической решеткой ВЗП. Результаты [5] для 2H-TaSe₂ можно рассматривать в качестве дополнительного аргумента, подтверждающего основной вывод нашей работы о том, что обнаруженный по результатам измерения теплового расширения в базисной плоскости диселенида ниобия в области температур, предшествующих возникновению сверхпроводимости, фазовый переход первого рода является переходом из несоизмеримой в соизмеримую ВЗП. И далее, в электронной подсистеме, находящейся в состоянии соизмеримой ВЗП, происходит сверхпроводящий переход. Наши данные не согласуются с данными нейтронографических исследований 2H-NbSe₂ [6], на основании которых делается вывод о том, что в диселениде ниобия вплоть до T = 5 К не наблюдается переход в состояние соизмеримой ВЗП. При этом, однако, авторы работы [6] специально отмечают, что масса образца была слишком мала для определения волнового вектора более слабого искажения решетки $\mathbf{Q}_{2\delta} = (1+2\delta)\mathbf{a}^*/3$, где $a^* = 4\pi/\sqrt{3} a (a$ — параметр решетки в базисной плоскости), который, в отличие от волнового вектора основного искажения решетки $\mathbf{Q}_{\delta} = (1 - \delta) \mathbf{a}^* / 3$, возникает только в состоянии несоизмеримой ВЗП. Что касается отсутствия аномалии теплового расширения диселенида ниобия в плоскости *ab* при возникновении ВЗП (T = 32 K), то этому факту может быть дано следующее объяснение. В связи с тем, что возникновение ВЗП в диселениде ниобия происходит путем фазового перехода второго рода, на кривой теплового расширения должен наблюдаться явно выраженный излом. Исследование температурных зависимостей упругих характеристик 2H-TaSe₂ показало, что величины аномалий при переходе в состояние соизмеримой ВЗП на порядок превышают аномалии, сопутствующие переходу в состояние несоизмеримой ВЗП [5].

Наши измерения показали, что в диселениде ниобия при переходе в состояние соизмеримой ВЗП наблюдается изменение линейного коэффициента теплового расширения, равное $\Delta \alpha_{ab} = (4.7 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$, следовательно, ожидаемая величина аномалии в области температур $T \sim 32$ К может иметь порядок 10^{-7} K^{-1} , что близко к чувствительности нашей экспериментальной установки.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе выполнено экспериментальное исследование теплового расширения монокристалла 2H-NbSe₂ в базисной плоскости в области низких температур. Измерения проводились с использованием тензометрического дилатометра, в котором деформация образца определялась с помощью тензодатчика, наклеенного на поверхность кристалла, представляющего собой пластинку толщиной менее 0.1 мм, совпадающую с кристаллографической плоскостью (001). Обнаружено, что тепловое расширение диселенида ниобия в базисной плоскости в области низких температур имеет аномальный характер. Установлено, что помимо аномалии, обусловленной переходом в сверхпроводящее состояние, которая ранее также не наблюдалась, в предпереходной области существует еще одна аномалия, имеющая форму ярко выраженного минимума. Данная аномалия позволяет сделать вывод, что в диселениде ниобия в непосредственной близости перед переходом в сверхпроводящее состояние происходит еще какой-то фазовый переход, который с учетом особенности обнаруженной аномалии может быть отнесен к фазовым переходам первого рода. Поскольку в диселениде ниобия электронная подсистема ниже T = 32 К находится в состоянии несоизмеримой ВЗП, естественно предположить, что обнаруженный фазовый переход первого рода обусловлен трансформацией несоизмеримой ВЗП в соизмеримую. И далее сверхпроводимость развивается в электронной подсистеме, находящейся в состоянии соизмеримой ВЗП. Наши результаты расходятся с данными нейтронографических исследований [6] о существовании несоизмеримой ВЗП в диселениде ниобия вплоть до 5 К, однако в работе [6] оговаривается, что масса образца была слишком мала для надежного определения волнового вектора более слабых искажений, существующих только в состоянии несоизмеримой ВЗП. Определенное в настоящей работе изменение линейного КТР в базисной плоскости при сверхпроводящем переходе $\Delta \alpha_{ab} = (4.7 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$ оказалось почти в два раза больше соответствующей величины вдоль гексагональной оси $\Delta \alpha_c = 2.4 \cdot 10^{-6} \text{ K}^{-1}$ [11], что, вероятно, является следствием ярко выраженной слоистой структуры диселенида ниобия. Используя выражение для производной критической температуры по давлению, выведенное из первого уравнения Эренфеста, при подстановке определенного в работе $\Delta \alpha_{ab} = (4.7 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$ получено значение $(dT_c/dp_{ab}) = (19.0 \pm 2.0) \cdot 10^{-9} {
m K/\Pi}$ а. Данная величина удовлетворительно согласуется со значением, найденным непосредственно при воздействии давления: $(dT_c/dp_{\parallel c}) = 15 \cdot 10^{-9} \text{ K}/\Pi \text{a}$ [16].

Наши измерения также показывают, что использование тензодатчиков для исследования теплового расширения в базисной плоскости тонкослойных образцов является более предпочтительным по сравнению с емкостным дилатометром.

ЛИТЕРАТУРА

- E. Revolinsky, E. P. Lautenschager, and C. H. Armitage, Sol. St. Comm. 1, 59 (1963).
- E. Revolinsky, G. A. Spiering, and P. J. Beerntsen, J. Phys. Chem. Sol. 26, 1029 (1965).
- M. Barmatz, H. J. Leamy, and H. S. Chen, Rev. Sci. Instr. 42, 885 (1971).
- J. M. E. Harper, T. H. Geballe, and F. J. Di Salvo, Phys. Lett. A 54, 27 (1975).
- M. Barmatz, L. R. Testardi, and F. J. Di Salvo, Phys. Rev. B 12, 4367 (1975).
- D. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. Lett. 34, 734 (1975).
- F. Weber, S. Rosenkranz, J.-P. Castellan et al., Phys. Rev. Lett. 107, 107403 (2011).
- M. Marezio, P. D. Dernier, A. Menth, and G. W. Hull, J. Sol. St. Chem. 4, 425 (1972).
- F. L. Givens and G. E. Fredericks, J. Phys. Chem. Sol. 38, 1363 (1977).
- O. Sezerman, A. M. Simpson, and M. H. Jericho, Sol. St. Comm. 36, 737 (1980).
- V. Eremenko, V. Sirenko, V. Ibulaev et al., Phys. C 469, 259 (2009).
- 12. Е. А. Антонова, К. В. Киселева, Г. А. Калюжная и др., в сб.: Труды 4 Всесоюзного совещания по физико-химии, металловедению и металлофизике сверхпроводников, под ред. Е. М. Савицкой, В. В. Барон, Наука, Москва (1969), с. 23.
- L. Huang, J.-Y. Lin, Y. T. Chang et al., Phys. Rev. B 76, 212504 (2007).
- С. И. Новикова, Тепловое расширение твердых тел, Наука, Москва (1971).
- 15. А. М. Кадомцева, И. Б. Крынецкий, в сб.: Физика и химия магнитных полупроводников и диэлектриков, под ред. К. П. Белова, Ю. Д. Третьякова, Изд-во МГУ, Москва (1979), с. 37.
- М. А. Оболенский, Х. Б. Чашка, В. И. Белецкий, В. М. Гвоздиков, ФНТ 15, 984 (1989).