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KINEMATIC SPIN-FLUCTUATION MECHANISMOF HIGH-TEMPERATURE SUPERCONDUCTIVITYN. M. Plakida a*, V. S. Oudovenko baJoint Institute for Nulear Researh141980, Dubna, Mosow Region, RussiabRutgers University08854, New Jersey, USAReeived February 20, 2014We study d-wave superondutivity in the extended Hubbard model in the strong orrelation limit for a largeintersite Coulomb repulsion V . We argue that in the Mott�Hubbard regime with two Hubbard subbands, thereemerges a new energy sale for the spin-�utuation oupling of eletrons of the order of the eletroni kinetienergy W muh larger than the exhange energy J . This oupling is indued by the kinemati interation forthe Hubbard operators, whih results in the kinemati spin-�utuation pairing mehanism for V . W . Thetheory is based on the Mori projetion tehnique in the equation of motion method for the Green's funtions interms of the Hubbard operators. The doping dependene of the superondutivity temperature T is alulatedfor various values of U and V .DOI: 10.7868/S00444510140902351. INTRODUCTIONOne of ruial issues in the superondutivity the-ory is to dislose the mehanism of high-temperaturesuperondutivity (HTSC) in uprates (see, e. g., [1,2℄). In early studies of the problem, a model of stronglyorrelated eletrons was proposed by Anderson [3℄,where superondutivity ours at �nite doping in theresonating valene bond state due to the antiferromag-neti (AF) superexhange interation J . However, theintersite Coulomb interation (CI) V that in upratesis of the order of J may destroy the resonating valenebond state and superonduting pairing. Reently, aompetition of the intersite CI V and pairing induedby the on-site CI U in the Hubbard model [4℄ or bythe intersite CI V was atively disussed. In parti-ular, it was stressed in [5℄ that a ontribution fromthe repulsive well-sreened weak CI in the �rst orderstrongly suppresses the pairing indued by ontribu-tions of higher orders, and a possibility of superon-dutivity �from repulsion� was questioned. Using therenormalization group method, the extended Hubbardmodel with CI V was studied in [6℄, where superon-duting pairing of various symmetries, extended s-, p-,*E-mail: plakida�theor.jinr.ru

and d-wave types was found depending on the ele-tron onentration and V . Following the original ideaof Kohn�Luttinger [7℄, it was shown in [8℄ that thep-wave superondutivity exists in the eletroni gas atlow density with a strong repulsion U and a relativelystrong intersite CI V (also see [9℄ and the referenestherein). Studies of the phase diagram within the ex-tended Hubbard model in the weak orrelation limithave shown that superonduting pairing of di�erenttypes of symmetry, s, p, dxy, and dx2�y2 , an ourdepending on the CI between the nearest V1 and thenext V2 neighbor sites and eletron hopping parame-ters between distant sites in a broad region of eletrononentration [10℄.However, the Fermi-liquid model was onsidered inthe weak orrelation limit U . W in these investiga-tions, while uprates are Mott�Hubbard (more au-rately, harge-transfer) doped insulators, where a the-ory of strongly orrelated eletroni systems should beapplied for U & W . Here, W � 4t is the eletronikineti energy for the two-dimensional Hubbard modelwith the nearest-neighbor hopping parameter t. In thelimit of strong orrelations, various numerial methodsfor �nite lusters are ommonly used. There are manyinvestigations of the onventional Hubbard model (see,e. g., [11�14℄), but only a few studies of the extendedHubbard model in whih the intersite CI V is taken631



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014into aount. In partiular, in Refs. [15�17℄, the ex-tended Hubbard model was onsidered in a broad re-gion of U and V . The results in Refs. [15, 16℄ showthat a strong on-site repulsion U e�etively enhanesthe d-wave pairing, whih is preserved for large valuesof V � J . In Ref. [17℄, using the slave-boson represen-tation, it was found that superondutivity is destroyedat a small value of V = J . We disuss these results inmore detail in Se. 4.3 by omparing them with our�ndings.In our reent paper [18℄, we studied the extendedHubbard model in the limit of strong orrelations bytaking the CI V and eletron�phonon oupling intoaount. It was found that the high-T d-wave pair-ing is mediated by the strong kinemati interation ofeletrons with spin �utuations. Contributions omingfrom a weak CI V and phonons turned out to be smallsine only l = 2 harmonis of the interations make aontribution to the d-wave pairing.In this paper, we onsider superondutivity in thetwo-dimensional extended Hubbard model with a largeintersite Coulomb repulsion V in the limit of strongorrelations to eluidate the spin-�utuation meha-nism of high-temperature superondutivity. We ar-gue that in the two-subband regime for the Hubbardmodel with U & 6t, a spin�eletron kinemati inter-ation results from ompliated ommutation relationsfor the Hubbard operators (HOs) [19℄. This intera-tion leads to the weak exhange interation J = 4t2=Udue to interband hopping, and at the same time in-traband hopping results in a muh stronger kinematiinteration gsf � W � J of eletrons with spin exi-tations. Therefore, the exhange interation J is notso important for the spin-�utuation pairing driven bythe strong kinemati interation gsf . We alulate thedoping dependene of the superonduting T for var-ious values of U and V and show that as long as Vdoes not exeed the kinemati interation, V . W ,the d-wave pairing is preserved. In alulations, we usethe Mori-type projetion tehnique [20℄ in the equati-on-of-motion method for thermodynami Green's fun-tions (GFs) [21℄ expressed in terms of the HOs. Theself-energy in the Dyson equation is alulated in theself-onsistent Born approximation (SCBA) as in ourprevious publiations [18; 22℄.In Se. 2, the two-subband extended Hubbardmodel is introdued and equations for the GFs in theNambu representation are derived. A self-onsistentsystem of equations for GFs and the self-energy is for-mulated in Se. 3. Results and disussion are presentedin Se. 4. Conluding remarks are given in Se. 5.

2. GENERAL FORMULATION2.1. Extended Hubbard modelWe onsider the extended Hubbard model on asquare lattie,H = Xi 6=j;� tijayi�aj� � �Xi Ni ++ U2 Xi Ni�Ni�� + 12Xi 6=j Vij NiNj ; (1)where ti;j are the single-eletron hopping parameters,ayi� and ai� are the Fermi reation and annihilationoperators for eletrons with spin �=2 (� = �1 == ("; #); �� = ��) on the lattie site i, U is the on-siteCI, and the Vij is the intersite CI. Furthermore, Ni ==P� Ni� , Ni� = ayi�ai� is the number operator and �is the hemial potential.In the strong orrelation limit, the model de-sribes the Mott�Hubbard insulating state at half-�lling (n = hNii = 1) when the ondution bandsplits into two Hubbard subbands. In this ase, theFermi operators ayi� and ai� in (1) fail to desribe sing-le-partile eletron exitations in the system and theFermi-liquid piture beomes inappliable to uprates.The projeted-type operators, the HOs, referring to thetwo subbands, singly ouped ayi�(1�Ni��) and doublyoupied ayi�Ni�� , must be introdued. In terms of theHOs, model (1) beomesH = "1Xi;� X��i + "2Xi X22i + 12Xi 6=j VijNiNj ++ Xi 6=j;� tij �X�0i X0�j +X2�i X�2j ++ � (X2��i X0�j +H::)	; (2)where "1 = �� is the single-partile energy and "2 == U � 2� is the two-partile energy. The matrix HOX��i = ji�ihi�j desribes transition from the state ji; �ito the state ji; �i on a lattie site i taking four possiblestates for holes into aount: an empty state (�; � = 0),a singly oupied hole state (�; � = �), and a doublyoupied hole state (�; � = 2). The number operatorand the spin operators are de�ned in terms of the HOsas Ni =X� X��i + 2X22i ; (3)S�i = X���i ; Szi = (�=2)[X��i �X ����i ℄: (4)The hemial potential � is determined from the equa-tion for the average oupation number for holes632



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Kinemati spin-�utuation mehanism : : :n = 1 + Æ = hNii; (5)where h: : : i denotes the statistial average with Hamil-tonian (2).The HOs obey the ompleteness relation X00i ++P� X��i + X22i = 1, whih rigorously preserves theonstraint that only one quantum state � an be ou-pied on any lattie site i. The ommutation relationsfor the HOshX��i ; XÆj i� = Æij �Æ�X�Æi � ÆÆ�X�i � ; (6)with the upper sign for Fermi-type operators (suhas X0�i ) and the lower sign for Bose-type operators(suh as Ni in (3) or the spin operators in (4)), re-sult in the so-alled kinemati interation. To demon-strate this, we onsider the equation of motion for theHO X�2i = ayi�ai�ai�� in the Heisenberg representation(~ = 1):i ddtX�2i = [X�2i ; H ℄ =  U��+Xl VilNl! X�2i ++Xl;�0 til �B22i��0X�02l � � B21i��0X0��0l ���Xl tilX02i �X�0l + �X2��l � ; (7)where B��i��0 are the Bose-type operatorsB22i��0 = (X22i +X��i ) Æ�0� +X���i Æ�0�� == (Ni=2 + � Szi ) Æ�0� + S�i Æ�0�� ; (8)B21i��0 = (Ni=2 + �Szi )Æ�0� � S�i Æ�0�� : (9)We see that the hopping amplitudes depend on thenumber operator in (3) and spin operators (4), whihresults in the kinemati interation desribing e�etivesattering of eletrons on spin and harge �utuations.In phenomenologial models for uprates, a dynamialoupling of eletrons with spin and harge �utuationsis introdued spei�ed by �tting parameters, while theinteration in Eq. (7) is determined by the hopping en-ergy tij �xed by the eletroni dispersion.2.2. Green's funtionsTo onsider the superonduting pairing in model(2), we introdue the two-time thermodynami GF [21℄expressed in terms of the four-omponent Nambu op-erators X̂i� and X̂yi� = (X2�i X ��0i X ��2i X0�i ):Gij�(t� t0) = �i�(t� t0)hfX̂i�(t); X̂yj�(t0)gi �� hhX̂i�(t)jX̂yj�(t0)ii; (10)

where fA;Bg = AB + BA, A(t) = eiHtAe�iHt, and�(x) = 1 for x > 0 and �(x) = 0 for x < 0. TheFourier representation in the (k; !)-spae is de�ned bythe relationsGij�(t� t0) = 12� 1Z�1 dt exp [�i(t� t0)℄Gij�(!); (11)Gij�(!) = 1N Xk exp[ik � (i� j)℄G�(k; !): (12)Green's funtion (12) an be onveniently written inthe matrix formG�(k; !) =  Ĝ�(k; !) F̂�(k; !)F̂ y�(k; !) �Ĝ��(�k;�!) ! ; (13)where the normal Ĝ�(k; !) and anomalous (pair)F̂�(k; !) GFs are 2� 2 matries for two Hubbard sub-bands: Ĝ�(k; !) = hh X�2kX0��k ! jX2�k X ��0k ii! ; (14)F̂�(k; !) = hh X�2kX0��k ! jX ��2�kX0��kii! : (15)To alulate GF (10), we use the equation-of-motionmethod by di�erentiating the GF with respet to thetimes t and t0. As desribed in detail in Refs. [18; 22℄,using the Mori-type projetion method [20℄, we derivean exat representation for GF (13) in the form of theDyson equationG�(k; !) = [!~�0 � E�(k) �Q��(k; !)℄�1Q; (16)where ~�0 is a 4�4 unit matrix. The eletron exitationspetrum in the generalized mean-�eld approximation(GMFA) is determined by the time-independent matrixof orrelation funtions:E�(k) = 1N Xk exp[ik � (i�j)℄hf[X̂i� ; H ℄; X̂yj�giQ�1 ==  "̂(k) �̂�(k)�̂��(k) �"̂��(k) ! ; (17)where "̂(k) and �̂�(k) are the normal and anoma-lous parts of the energy matrix. The parameter Q == hfX̂i�; X̂yi�gi = �̂0 � Q̂, where �̂0 is the unit 2 � 2matrix and Q̂ =  Q2 00 Q1 !633



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014desribes the redistribution of spetral weights withdoping the Hubbard subbandsQ2 = hX22i +X��i i = n=2; Q1 = hX00i +X ����i i = 1�Q2:The self-energy operator in Eq. (16),Q��(k; !) = hhẐ(ir)k� jẐ(ir)yk� ii(pp)! Q�1; (18)is determined by irreduible operatorsẐ(ir)i� = [X̂i� ; H ℄�Xl Eil�X̂l�and desribes proesses of inelasti sattering of ele-trons (holes) on spin and harge �utuations due tothe kinemati interation and the CI Vij (see Eq. (7)).Self-energy operator (18) an be written in the samematrix form as GF (13):Q��(k; !) = � M̂�(k; !) �̂�(k; !)�̂y�(k; !) � M̂��(k;�!)�Q�1 ; (19)where the matries M̂ and �̂ denote the respetivenormal and anomalous (pair) omponents of the self-energy operator.The system of equations for the 4 � 4 matrix GF(13) and the self-energy (19) an be redued to a systemof equations for Ĝ�(k; !) and F̂�(k; !), the respetivenormal and pair 2�2matrix omponents. Using repre-sentations for energy matrix (17) and self-energy (19),we derive the following system of matrix equations forthese omponents:Ĝ(k; !) = �ĜN (k; !)�1 ++ '̂�(k; !) ĜN (k;�!) '̂��(k; !)��1 Q̂; (20)F̂�(k; !) = �ĜN (k;�!) '̂�(k; !) Ĝ(k; !); (21)where we introdued the normal-state GFĜN (k; !) = �!�̂0 � "̂(k)� M̂(k; !)=Q̂��1; (22)and the superonduting-gap funtion'̂�(k; !) = �̂�(k) + �̂�(k; !)=Q̂: (23)Dyson equation (16) with the zeroth-order quasi-partile exitation energy (17) and self-energy (19)gives an exat representation for GF (10). To obtain alosed system of equations, the multipartile GF in self-energy operator (18) should be evaluated as disussedbelow.

3. APPROXIMATE SYSTEM OF EQUATIONSIn this setion, we derive an approximate system ofequations for the GFs and the self-energy omponentsin Eqs. (20)�(23) for the two Hubbard subbands byadopting several approximations to make the systemof equations numerially tratable.3.1. Generalized mean-�eld approximationEnergy matrix (17) is alulated using ommutationrelations (6) for the HOs. The normal part of the en-ergy matrix "̂(k) after diagonalization determines thequasipartile spetrum in two Hubbard subbands in theGMFA (see [22℄ for the details):"1;2(k) = 12 [!2(k) + !1(k)℄� 12�(k); (24)!�(k) = 4t ��(k) + 4�� t00(k) + 4�� t0000(k) ++ !()� (k) + UÆ�;2 � �; (� = 1; 2); (25)where �(k) = f[!2(k)� !1(k)℄2 + 4W (k)2g1=2;W (k) = 4t�12(k) + 4t0�120(k) + 4t00�1200(k);the hopping parameter is de�ned bytij = 1N Xk exp[ik � (i� j)℄t(k); (26)t(k) = 4t(k) + 4t0 0(k) + 4t00 00(k); (27)the nearest-neighbor hopping is t, the diagonal hop-ping is t0, and the third-neighbor hopping is t00. Theorresponding k-dependent funtions are(k) = (1=2)(os kx+os ky); 0(k) = os kx os ky;00(k) = (1=2)(os 2kx + os 2ky)(the lattie onstants ax = ay are set equal to unity).The ontribution from the CI Vij in (25) is given by!()1(2)(k) = 1N Xq V (k� q)N1(2)(q); (28)where N1(q) = hX0��q X ��0q i=Q1 and N2(q) == hX�2q X2�q i=Q2 are oupation numbers in therespetive single-partile and two-partile subbands,and V (q) is the Fourier transform of Vij .634



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Kinemati spin-�utuation mehanism : : :The kinemati interation for the HOs results ina renormalization of spetrum (24) determined by theparameters�� = Q��1 + C1Q2� � ; �� = Q��1 + C2Q2� � ;�12 =pQ1Q2�1� C1Q1Q2� ;�12 =pQ1Q2�1� C2Q1Q2� :In addition to the onventional Hubbard-I renormaliza-tion given by the Q1 and Q2 parameters, an essentialrenormalization is aused by the AF spin orrelationfuntions for nearest-neighbors and next neighbors:C1 = hSiSi+a1i; C2 = hSiSi+a2i: (29)These funtions strongly depend on doping, resultingin a onsiderable variation of the eletroni spetrum,as is shown below and is disussed in detail in Ref. [22℄.The anomalous omponent �̂�(k) of matrix (17) de-termines the superonduting gap in the GMFA. Thediagonal matrix omponents in the oordinate repre-sentation are given by the equations�22ij�Q2 = ��t21ij hX02i Nji � VijhX�2i X ��2j i; (30)�11ij�Q1 = �t12ij hNjX02i i � VijhX0��i X0�j i; (31)where we introdued upper indexes for the hopping pa-rameter t12ij and t21ij to stress that the anomalous om-ponents hX02i Nji are indued by the interband hop-ping. Calulating the orrelation funtion hX02i Njifrom the equation of motion for the GF Lij(t � t0) == hhX02i (t)jNj(t0)ii yields a superonduting gap in thetwo-partile subband (see Ref. [23℄ for the details):�22ij� = (Jij � Vij) hX�2i X ��2j i=Q2; (32)where Jij = 4(t12ij )2=U is the AF exhange intera-tion. A similar equation holds for the gap in the single-partile subband:�11ij� = (Jij � Vij) hX0��i X0�j i=Q1:Therefore, the pairing in the Hubbard model in theGMFA is similar to superondutivity in the t�J modelmediated by the AF exhange interation Jij .

3.2. Self-energy operatorThe self-energy matrix (19) due to the kine-mati interation, as shown in Eq. (7), is de-termined by the multipartile GFs suh ashhX̂l�0 (t)Bi��0 (t)jX̂yl0�00 Byj��00ii. We alulate theself-energy matrix in the SCBA using the mode-o-upling approximation for the multipartile GFs. Inthis approximation, the propagation of exitationsdesribed by Fermi-like operators X̂l� and Bose-likeoperators Bi��0 for l 6= i is assumed to be indepen-dent. Therefore, the orresponding time-dependentmultipartile orrelation funtions an be writtenas produts of fermioni and bosoni orrelationfuntions,hX2�00l0 Byj��00 jBi��0 (t)X�02l (t)i == Æ�0;�00hX2�0l0 X�02l (t)ihByj��0 jBi��0 (t)i; (33)hX ��002l0 Bj����00 jBi��0 (t)X�02l (t)i == Æ�0;�00hX ��02l0 X�02l (t)i hBj����0Bi��0 (t)i: (34)The time-dependent single-partile orrelation fun-tions are alulated self-onsistently using the orre-sponding GFs. This approximation results in a self-onsistent system of equations for self-energy (19) andGFs (20) and (21) similar to the strong-oupling Eliash-berg theory [24℄ (see Ref. [18℄ and Ch. A in Ref. [2℄ forthe details).In this approximation, the normal-state GF (22) fortwo subbands takes the form [22℄G11(22)N (k; !) = [1� b(k)℄G1(2)(k; !) ++ b(k)G2(1)(k; !); (35)G1(2)(k; !) = 1! � "1(2)(k) � �(k; !) ; (36)with the hybridization parameter b(k) = ["2(k)�!2(k)℄==["2(k) � "1(k)℄. The self-energy �(k; !) an beapproximated by the same funtion for two sub-bands. In the imaginary frequeny representation,i!n = i�T (2n+ 1), n = 0;�1;�2; : : : it is given by�(k; !n) = � TN Xq Xm �(+)(q;k� qj!n � !m)�� [G1(q; !m) +G2(q; !m)℄ �� i!n [1� Z(k; !n)℄ +X(k; !n): (37)The normal GF (36) for the two subbands takes theform635



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014fG1(2)(k; !n)g�1 = i!n � "1(2)(k)� �(k; !n) == i!nZ(k; !n)� ["1(2)(k) +X(k; !n)℄ : (38)To alulate T, we an use a linear approximation forthe pair GF in (21). In partiular, Eq. (23) for thetwo-partile subband gap '(k; !) = �'2;�(k; !) an bewritten as'(k; !n) = TN Xq Xm f J(k� q)� V (k� q) ++ �(�)(q;k� qj!n � !m)g �� [1� b(q)℄2 '(q; !m)[!mZ(q; !m)℄2 + ["2(q) +Xq; !m)℄2 : (39)The interation funtions in (37) and (39) in the imag-inary frequeny representation are given by�(�)(q;k � qj�n) = �jt(q)j2 �sf (k� q; �n)�� fjV (k� q)j2 + jt(q)j2=4g�f(k� q; �n): (40)The spetral densities of bosoni exitations are deter-mined by the dynami suseptibility for spin (sf) andnumber (harge) (f) �utuations�sf (q; !) = �hhSqjS�qii! ; (41)�f (q; !) = �hhÆNqjÆN�qii! (42)written in terms of the ommutator GFs [21℄ for thespin Sq and number ÆNq = Nq � hNqi operators.Thus, we have derived a self-onsistent system ofequations for the normal GF (38), self-energy (37), andgap funtion (39). In the SCBA, vertex orretions tothe kinemati interation t(q) of eletrons with spin-and harge-�utuations (41) and (42) indued by theintraband hopping are negleted. It is assumed that thesystem is far away from a harge instability or a stripeformation and harge �utuations give a small ontri-bution to the pairing. The largest ontribution fromspin �utuations omes from wave vetors lose the AFwave vetor Q = (�; �), where their energy !s(Q) ismuh smaller than the Fermi energy, !s(Q)=� � 1(see, e. g., [25℄). Therefore, vertex orretions to thekinemati interation should be small as in the Eliash-berg theory [24℄ for eletron interation with phonons,where !ph(q)=�� 1. Consequently, the SCBA for theself-energy and the GFs alulated self-onsistently isquite reliable and allows onsidering the strong ou-pling regime, whih is essential in the study of renor-malization of the quasipartile spetrum and the su-peronduting pairing, as shown in Refs. [18; 22℄ and isdisussed below.

4. RESULTS AND DISCUSSIONIn numerial omputations, we have used modelsfor the CIs and the suseptibility in (41) and (42). Forthe intersite CI Vij ; we onsider a model for repulsionof two eletrons (holes) on neighboring lattie sites,V (q) = 2V (os qx + os qy); (43)with the values V = 0; 0:5 t; 1:0t, 2:0t. For the on-siteCI, we onsider U = 8t; 16t, 32t. The AF exhange in-teration for neighboring sites is desribed by the fun-tion J(q) = 2J(os qx + os qy). We note that in theGMFA, the CIs Vij give no ontribution to the exhangeinteration Jij , and it is therefore assumed to be thesame for all values of V (f. Refs. [15, 16℄). In mostof the alulations, we take J = 0:4t, but to study therole of the spin-�utuation interation in the superon-duting pairing, we also onsider other values of theinteration, J = 0:2t; 0:6t, 1:0t.Due to a large energy sale of harge �utuations,of the order of several t, in omparison with the spinexitation energy of the order of J , the harge �utua-tion ontributions an be onsidered in the stati limitfor suseptibility (42):�f (k) = �(1)f (k) + �(2)f (k);�(�)f (k) = � 1N Xq N (�)(q+ k)�N (�)(q)"�(q+ k)� "�(q) ; (44)where the oupation numbers N (�)(q) are de�ned asN (1)(k) = [Q1 + (n� 1)b(k)℄N1(k);N (2)(k) = [Q2 � (n� 1)b(k)℄N2(k);N�(k) = 12 + TXm G�(k; !m): (45)For the dynamial spin suseptibility �sf (q; !)in (41), we used a model suggested in Ref. [26℄Im�sf (q; ! + i0+) = �sf (q)�00sf (!) == �Q1 + �2[1 + (q)℄ th !2T 11 + (!=!s)2 : (46)This type of the spin-exitation spetrum was found inthe mirosopi theory for the t�J model in Ref. [25℄.The model is determined by two parameters: the AForrelation length � and the ut-o� energy of spin ex-itations of the order of the exhange energy !s � J .The strength of the spin-�utuation interation givenby the stati suseptibility �Q = �sf (Q) at the AFwave vetor Q = (�; �),�Q = 3(1� Æ)2!s ( 1N Xq 11 + �2[1 + (q)℄)�1 ; (47)636
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Fig. 1. Eletron dispersion "2(k) in the GMFA for (a and ) V = 0 and (b and d) V = 2 at (a and b) U = 8 and ( and d)U = 16 along the symmetry diretions �(0; 0)!M(�; �)! X(�; 0)! �(0; 0) and X(�; 0)! Y (0; �) for Æ = 0:05 (solidline), Æ = 0:10 (dashed line), and Æ = 0:25 (dash-dotted line). The Fermi energy for hole doping is at ! = 0is de�ned by the normalization ondition1N Xq 1Z0 d!� h !2T Im�sf (q; !) = hS2i i = 34(1� Æ):Spin orrelation funtions (29) in single-partile ex-itation spetrum (24) are alulated using the samemodel (46):C1 = 1N Xq Cq(q); C2 = 1N Xq Cq 0(q);where Cq = !s2 �Q1 + �2[1 + (q) :We use t = 0:4 eV as an energy unit, and taket0 = �0:2t and t00 = 0:1t for the hopping parameters.

Below, we present numerial results for the hole-dopedase of the two-hole subband.4.1. Eletroni spetrum in the normal stateWe �rst onsider the results in the GMFA foreletroni spetrum (24). The doping dependene ofthe eletron dispersion for the two-hole subband "2(k)along the symmetry diretions in the 2D Brillouin zone(BZ) is shown in Figs. 1a and 1b for U = 8 and inFigs. 1 and 1d for U = 16 for V = 0 and for V = 2.The orresponding Fermi surfaes determined by theequation "2(kF) = 0 are plotted in Fig. 2. For smalldoping, Æ = 0:05, the energies at the M(�; �) and�(0; 0) points are nearly equal, as in the AF phase.Only small hole-like Fermi-surfae pokets lose to the637
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Fig. 2. Fermi surfae for (a and ) V = 0 and (b and d) V = 2 at (a and b) U = 8 and ( and d) U = 16 in the quarter ofthe BZ in the GMFA at the hole doping Æ = 0:05 (solid line), Æ = 0:10 (dashed line), and Æ = 0:25 (dash-dotted line)(��=2;��=2) points emerge at this doping, as shownin Fig. 2. With inreasing doping, the AF orrela-tion length dereases, whih results in an inrease inthe eletron energy at the M(�; �) point, and a largeFermi surfae appears at some ritial doping Æ � 0:12.At the same time, the renormalized two-hole subbandwidth inreases with doping, for example, for U = 8and V = 0, from fW � 2t at Æ = 0:05 to fW � 3t atÆ = 0:25, whih, however, remains less than the �bare�Hubbard subband width W = 4t (1 + Æ) where short-range AF orrelations are disregarded. With inreas-ing the CI U and V , the subband width shrinks, asan be seen from the omparison of panels a and b for

eletroni spetra in Fig. 1 and the Fermi surfaes inFig. 2.To study self-energy e�ets in the eletroni spe-trum, the strong-oupling theory should be used as aself-onsistent solution of the system of equations forthe normal GF (36) and self-energy (37). Beausethe detailed investigation of the normal state eletronispetrum in the strong-oupling theory was performedfor the onventional Hubbard model in Ref. [22℄ andfor the extended Hubbard model in Ref. [18℄, we herepresent results only for the U and V dependene of therenormalization parameter Z(q) at the Fermi energy,638



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Kinemati spin-�utuation mehanism : : :Z(q) = Z(q; ! = 0) = 1 + �(q) == 1� [dRe�(q; !)=d!℄j!=0: (48)We found that Z(q) weakly depends on Æ forÆ . 0:15 (also see Ref. [18℄). Therefore, in Fig. 3, wedemonstrate the U dependene of Z(q) at Æ = 0:10 forV = 0 and V = 1. It appears that the renormaliza-tion parameter Z(q) is quite large in the whole BZ,Z(q) � 4�6, whih results in a strong suppression ofthe quasipartile weight proportional to 1=Z(q).4.2. Superonduting TFor a omparison of various ontributions to super-onduting gap equation (39), we approximate inter-ation funtion (40) by its value lose to the Fermienergy. As a result, the stati suseptibility �(q) == Re�(q; ! = 0) appears in the gap equation insteadof dynamial suseptibility (41), (42). It brings us to aBCS-type equation for gap funtion (39) at the Fermienergy '(k) = '(k; ! = 0):'(k) = 1N Xq [1� b(q)℄2'(q)[Z(q)℄22e"(q) th e"(q)2T �J(k� q)�� V (k�q)+�(1=4)jt(q)j2+jV (k�q)j2��f (k�q)�� jt(q)j2�sf (k� q)�(!s � je"(q)j)	; (49)where e"(q) = "2(q)=Z(q) is the renormalized energy.Although there are no retardation e�ets for the ex-hange interation and CI and the pairing ours forall eletrons in the two-partile subband, the spin-�utuation ontributions are restrited to the range ofenergies �!s near the Fermi surfae, as determined bythe �-funtion.To estimate various ontributions to gap equa-tion (49), we onsider the model d-wave gap fun-tion '(k) = (�=2)�(k), where �(k) = os kx � os ky.Then the gap equation an be written in the form (seeRef. [18℄ for the details):1 = 1N Xq [1�b(q)℄2[�(q)℄2[Z(q)℄22e"(q) th e"(q)2T �J�V+bVf ++ (1=4) jt(q)j2b�f � jt(q)j2 b�sf�(!s � je"(q)j)	: (50)In this equation, only l = 2 omponents of the statisuseptibility and the CI give ontributions,

Table. Charge-�utuation ontribution bVf=t for seve-ral values of the on-site CI U and the intersite CI V forthe hole onentration Æ = 0:10U V = 1 V = 2 V = 38 0:10 0:29 0:5316 0:24 0:76 1:9532 0:43 1:47 1:71bVf = 1N Xk jV (k)j2�f (k) os kx; (51)b�f = 1N Xk �f (k) os kx; (52)b�sf = 1N Xk �sf (k) os kx: (53)The ontribution from the harge �utuations b�fin (52) weakly depends on U and V and is verysmall: b�f � 10�3(1=t)�10�2(1=t) for hole onen-trations Æ = 0:05�0.10. For the vertex jt(q)j2 == (1=N)Pq jt(q)j2 � 4t2 averaged over the BZ, theontribution indued by the kinemati interation isequal to jt(q)j2 b�f . 0:04t and an be negleted. Theharge �utuation ontribution bVf in (51) from the in-tersite CI, Eq. (43), for the hole onentration Æ = 0:05is also small, bVf . 5 � 10�2t for V � 2 and inreasesto 0:17t for V = 4. For larger hole onentrations,bVf inreases as shown in Table for Æ = 0:10. How-ever, bVf � V < 0 for all values of U and V , and henethe d-wave pairing indued only by harge �utuationsannot our.The spin-�utuation ontribution b�sf in (53) is al-ulated for the model �sf (q) in Eq. (46). Sine thespin suseptibility has a maximum at the AF wave ve-tor Q = (�; �), the integral over k in (53) results ina negative value of b�sf that strongly depends on thehole doping. Our previous alulations gave the values�b�sf � t � 1:3, 1.0, 0.6 for the respetive hole onen-trations Æ = 0:05, 0.10, 0.25 (see Ref. [18℄). Using thevertex jt(q)j2 � 4t2 averaged over the BZ, we an es-timate the e�etive spin-�utuation oupling onstantas gsf � �4t2b�sf = 5:2, 4.0, 2.4. Thus, the spin-�utuation ontribution to the pairing in Eq. (50) withthe oupling onstant gsf = 2�1 eV for Æ = 0:05�0.25appears to be the largest.The results of alulating T with Eq. (50) areshown in Fig. 4 for U = 8, 16 and V = 0, 0.5, 1.0,2.0. A similar doping dependene for T is observed forU = 32. The maximum T at the optimal doping as639
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Fig. 4. T(Æ) for (a) U = 8 and (b) U = 16 with V = 0 (solid line), V = 0:5 (dashed line), V = 1:0 (dash-dotted line),and V = 2:0 (dotted line)a funtion of U and V is shown in Fig. 5. Inreasingthe intersite Coulomb repulsion V suppresses T, whihbeomes small only for high values V = 2t�3t ompa-rable with the spin-�utuation oupling gsf and muhlarger than the exhange interation J = 0:4t. At thesame time, inreasing U enhanes T. This is due tothe narrowing of the eletroni band as seen in Fig. 1and the orresponding inrease in the density of state.To prove an important role of the spin-�utuation
interation both in the normal state and in superon-duting pairing, we alulate the funtion Z(q) in (48)and T for several values of the parameter !s for thestati suseptibility in model (46): !s = 0:2, 0.4, 0.6,1.0 for U = 8. Figure 6 shows the T dependene on theparameter !s that determines the spin-�utuation on-tribution b�sf in Eq. (50) in two ases: for Z(q) givenby Eq. (48) and Z(q) = 1. Beause the spin-�utuationinteration is determined by �Q / 1=!s in (47), it640
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Fig. 5. Maximum T(Æ) as a funtion of U for V = 0(solid line), V = 0:5 (dashed line), and V = 1:0 (dash-dotted line)inreases as the ut-o� frequeny !s dereases. Thisresults in an inrease in the superonduting pairingontribution b�sf , but at the same time enhanes thenormal state renormalization Z(q) as shown in Fig. 7.Therefore, in ase for Z(q) given by Eq. (48), T, beingroughly proportional to b�sf=Z2(q), dereases due tosuppression of the quasipartile weight 1=Z(q), whilein ase for Z(q) = 1, inreasing the pairing strengthresults in a T inrease. We also note that T in Fig. 6balulated in the mean-�eld approximation (MFA) withZ(q) = 1 is an order of magnitude larger than its valuewith a proper onsideration of the eletroni spetrumrenormalization.In the urrent approah, we an also onsider thes-wave pairing. For the extended s-wave gap funtion's(k) = (�=2)�s(k), where �s(k) = os kx + os ky, anequation for T similar to (49) an be derived. Solv-ing this equation reveals a �nite and quite high T.However, s-wave pairing symmetry violates the kine-mati restrition of no double oupany for the Hub-bard model in the two-subband regime. As was pointedout in Refs. [27; 28℄, the single-site orrelation funtionshould obey the onditionhX ��2i X�2i i = 1N Xq hX ��2�qX�2q i = 0; (54)aused by the multipliation rule for the Hubbard op-erators, X��i XÆi = Æ�X�Æi . In the quasipartile ap-proximation used in Eq. (49), we obtain the relation

hX ��2i X�2i i = 1N Xq '(q)[Z(q)℄22e"(q) th e"(q)2T = 0: (55)For the d-wave pairing 'd(q) = (�=2)(os qx � os qy),this ondition is ful�lled in the tetragonal phase for anydoping (pairing in the orthorhombi pase is onsideredin Ref. [29℄). For the s-wave pairing, this ondition isviolated, 1N Xqx;qy os qx[Z(q)℄22e"(q) th e"(q)2T 6= 0; (56)for an arbitrary doping exept a partiular hoie of thehemial potential suh that the ontribution from theintegral over 0 � qx � � is ompensated by the integralover � � qx � 2�. The same ondition holds for theone-partile subband, hX0��i X0�i i = 0. The obtainedresults an be derived for the general representation ofthe orrelation funtionhX ��2�qX�2q i = � 1�Q2N ��Xq 1Z�1 dzez=T + 1 ImF 22� (q; z);sine the symmetry of the anomalous GF F 22� (q; z) isdetermined by the s- or d-wave symmetry of the gapfuntion. Therefore, we onlude that s-wave pairing isprohibited for the Hubbard model in the limit of strongorrelations.4.3. Comparison with previous theoretialstudiesAs disussed in Se. 1, the intersite Coulomb re-pulsion V is detrimental to the pairing indued by theon-site CI U in the Hubbard model or higher-order on-tributions from V in the weak orrelation limit. Here,we omment on several studies of this problem in thestrong orrelation limit and ompare them with ouranalyti results for the d-wave pairing.Following the original idea of Anderson [3℄, it isommonly believed that the exhange interation J == 4t2=U indued by the interband hopping in theHubbard model plays a major role in the d-wave su-peronduting pairing. Beause the exitation en-ergy of eletrons in the interband hopping U is muhlarger than their intraband kineti energy W , the ex-hange pairing has no retardation e�ets, ontrary tothe ase of eletron�phonon pairing, where a largeBogoliubov�Tolmahev logarithm [30℄ diminishes theCoulomb repulsion as V ! V=[1+� ln(�=!ph)℄, where15 ÆÝÒÔ, âûï. 3 (9) 641



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014

0.1 0.2
δ

0

0.005

0.010

0.1

0.2
TcTc

a b

0.20.1
δ

0Fig. 6. T(Æ) dependene on the spin-�utuation ontribution �̂sf in Eq. (50) for !s = 0:2 (dash-dotted line), !s = 0:4(solid line), !s = 0:6 (dotted line), and !s = 1:0 (dashed line) alulated for (a) �nite Z(q) and (b) Z(q) = 1

Γ ΓM X

3

6

9

12

15
Z(q)

Fig. 7. Z(q) dependene on spin-�utuation ontribu-tion �̂sf in Eq. (48) for !s = 0:2 (dash-dotted line),!s = 0:4 (solid line), !s = 0:6 (dotted line), and!s = 1:0 (dashed line) at Æ = 0:10� = N(0)V and !ph is the phonon energy. Conse-quently, without the retardation e�ets, the Coulombrepulsion V should destroy the exhange pairing forV > J .To overome this problem, it was suggested inRef. [16℄ that in the limit of strong orrelations, theintersite Coulomb repulsion V dereases the interbandexitation energy, whih results in an enhanement of

the exhange interation, eJ(V ) = 4t2=(U � V ), aswas found from luster alulations. If we onsiderthe pairing indued only by the exhange interationeJ(V ) and take the Coulomb repulsion V into aount,then the ondition eJ(V ) � V > 0 should be ful�lledfor the existene of pairing. The ondition is satis�edfor 0 < V < V1, where V1 = (U=2)[1�p1� (4t=U)2℄for 0 � V < U . For U > 4t, we have V1 � U , e. g.,V1 = 0:067U for U = 8 and V1 = 0:004U for U = 32.Therefore, we see that the pure exhange superondut-ing pairing an our in the region of weak Coulombrepulsion. Contrary to this, in Ref. [16℄, using the el-lular dynamial mean-�eld theory (CDMFT) [14℄, thed-wave pairing was found in the strong-oupling regionup to V . U=2 (e. g., as shown in Fig. 3, V 6 3t(8t)for U = 8t(16t), respetively). At the same time, inthe limit of weak orrelations U = 4t, the pairing issuppressed at the smaller value V � 1:5t. Thus, webelieve that the �resiliene of d-wave superondutivityto nearest-neighbor repulsion� is not due to the renor-malization of the exhange interation eJ(V ) but dueto another mehanism of pairing not expliitly seen inCDMFT alulations. As we have shown, in the strongorrelation limit, the emerging kinemati interationin the two-subband regime is responsible for the spin-�utuation pairing at large values of V , up to V . 4t.Our onlusion about the importane of the kine-mati mehanism of pairing is supported by the studiesin Ref. [15℄. Using the variational Monte Carlo teh-nique, the superonduting d-wave gap was alulated642



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Kinemati spin-�utuation mehanism : : :for the extended Hubbard model with the weak ex-hange interation J = 0:2t and a repulsion V � 3tin the wide range 0 � U � 32. It was found thatthe gap dereases with inreasing V at all U and anbe suppressed for V > J for small U . But for largeU & U � 6t, the gap beomes robust and exists up tolarge values V � 10J = 2t, whih was explained by ane�etive enhanement of J as in Ref. [16℄. At the sametime, the gap does not show notable variation with Ufor large U = 10�30, although it should depend onthe onventional exhange interation in the Hubbardmodel as J = 4t2=U (or J = 4t2=(U � V )). We ansuggest another explanation of these results by point-ing out that at large U & U, onomitant derease ofthe bandwidth (as shown in Fig. 3b in Ref. [15℄) resultsin the splitting of the Hubbard band into the upper andlower subbands and the emerging kinemati interationindues the d-wave pairing in one Hubbard subband.In that ase, the seond subband gives a small ontri-bution for large U , whih results in a U -independentpairing. It an be suppressed only by the repulsion Vlarger than the kinemati interation, V & 4t.In Ref. [17℄, the extended Hubbard model is on-sidered in the weak or intermediate orrelation lim-its as in Ref. [6℄ and in the strong orrelation limitwithin the slave-boson representation in the MFA. Inthe strong orrelation limit, the small value V = Jwas found, whih suppresses the d-wave superondut-ing gap. However, in the MFA, the kineti energy termdesribed by the projeted eletron operators,t̂yi� ̂j� = tyi�(1� ni��)j�(1� nj��) � tX�0i X0�jis approximated by the onventional fermion (spinon)operators tÆfyi�fj� , and the most important ontribu-tion from the kinemati interation is lost in the re-sulting BCS-type gap equation (13) in Ref. [17℄. Asshown in our equation for the gap, Eq. (50), the kine-mati interation given by b�sf in (53) provides strongspin-�utuation pairing and high T.To analyze the pairing mehanisms in the limit ofstrong orrelations, analyti methods should be used.A ompliated dynamis of projeted eletron opera-tors an be rigorously taken into aount using theHO tehnique. The algebra of the HOs rigorously pre-serves the restrition of no double oupany of quan-tum states, whih is violated in the ommonly usedMFA in the slave-partile theory. As disussed inSe. 2.1, the ommutation relations for the HOs re-sult in a kinemati interation that is responsible forthe strong spin-�utuation eletron interation. Thesuperonduting pairing indued by the kinemati in-teration for the HOs was �rst proposed by Zaitsev

and Ivanov [31℄, who studied the two-partile vertexequation by applying the diagram tehnique for HOs.The momentum-independent s-wave superondutinggap was found, whih, however, violates the HO kine-matis, as was shown in Refs. [27; 28℄. Beause theintersite Coulomb repulsion V > J destroys the su-perondutivity indued by the AF exhange intera-tion, the spin-�utuation pairing in the seond order ofthe kinemati interation beyond the GMFA should betaken into aount as disussed in detail in Se. 4.2 andonsidered in Refs. [32, 33℄ for the t�J model.5. CONCLUSIONWe have studied e�ets of the strong intersiteCoulomb repulsion V on the d-wave superondutingpairing within the extended Hubbard model (1) in thelimit of strong eletron orrelations, U � t. Usingthe Mori-type projetion tehnique, we obtained a self-onsistent system of equations for normal and anoma-lous (pair) GFs and for the self-energy alulated in theSCBA.It was found that the kinemati spin-�utuation in-teration gsf indued by eletron hopping in one Hub-bard subband is muh stronger than the onventionalexhange interation J resulting from the interbandhopping. Consequently, the d-wave pairing an be sup-pressed only for large values V > gsf where gsf is ofthe order of the kineti energy, gsf � W � 4t. Sinein uprates, the Coulomb repulsion V is of the sameorder as the exhange interation, V & J � 0:4t, andtherefore the kinemati spin-�utuation pairing meh-anism plays the major role in ahieving HTSC. It isalso shown that the kinemati spin-�utuation intera-tion results in a strong renormalization of the eletronispetra.It is important to note that the superondutingpairing indued by the AF exhange interationand the spin-�utuation kinemati interation isharateristi of systems with strong eletron orrela-tions. These mehanisms of superonduting pairingare absent in the fermioni models and are generifor uprates. Therefore, we believe that the spin-�utuation kinemati mehanism of superondutingpairing in the Hubbard model in the limit of strongorrelations is the relevant mehanism of HTSC inopper-oxide materials.The authors thank A. S. Alexandrov, V. V. Ka-banov, A.-M. S. Tremblay, and M. Yu. Kagan for thevaluable disussions. Partial �nanial support by theHeisenberg�Landau Program of JINR is aknowledged.643 15*
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