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EFFECT OF THREE-BODY CLUSTERS IN THE GROUND-STATEPROPERTIES OF SPIN-POLARIZED LIQUID 3HeZ. Razavifar *, A. RajabiPhysis Department, Shahid Rajaee Teaher Training University16788, Lavizan, Tehran, IranReeived Marh 15, 2014The ground-state energy of polarized and unpolarized liquid 3He is alulated using the variational theory. Avariational wave funtion is onstrained to be normalized appropriately by inluding the three-body terms in theluster expansion of the two-body radial distribution funtion. The higher-order terms have been found to beimportant to obtain an equation of state whih is in agreement with experimental data. The saturation densityof unpolarized liquid 3He was found to be 0:267��3, whih dereases by enhaning the polarization. For allrelevant densities, the ground-state energy of the spin-polarized system is higher than that in the unpolarizedase.DOI: 10.7868/S00444510141000341. INTRODUCTIONLiquid 3He is an interesting system in whih ma-ny-body orrelations play an important role in deter-mining its properties [1℄. This system obeys Fermi�Di-ra statistis the same as neutron stars, whereas de-sribing 3He is easer than neutron stars beause of thesimpliity of inter-partile interation. Moreover, wehave aumulated a huge amount of experimental in-formation about 3He. Hene, for theoretiians, liquid3He an be onsidered an exellent laboratory to testmany-body theories applied to neutron stars.Experimentally, the zero-temperature equation ofstate of liquid 3He is known and the density of equilib-rium is �0 = 0:277��3 with � = 2:556Å [2℄. Theore-tially, most of the available many-body methods havebeen applied for investigating the properties of liquid3He, two suessful approahes are Fermi hypernet-ted-hain (FHNC) and quantum Monte Carlo (QMC)methods. Viviani et al. used a variational wave fun-tion whih inludes pair, triplet, bak�ow, and spindependent orrelations in the FHNC method to obtainan equation of state whih is in very lose agreementwith the experimental data [3℄. Casulleras and Boronatin 2000, using optimized bak�ow orrelations, appliedthe di�usion Monte Carlo (DMC) method and gene-rated an equation of state of liquid 3He whih is in*E-mail: Zahrarazavifar62�gmail.om

exellent agreement with experimental data from equi-librium up to freezing [4℄. In 2003, this omputationwas revisited by using exatly the same potential, wavefuntion, and number of partiles as used by Casullerasand Boronat, but their results were not on�rmed [5℄.In addition, in 1979 liquid 3He was polarized by arapid melting of a highly polarized solid 3He [6℄. Inthis state, nulear spins of 3He aligned and beause ofnulear magneti interation, the intrinsi relaxationtime of partially polarized 3He is long, whih allowsusing it for magneti resonane imaging [7℄. Mostof the theoretial investigations based on QMC pre-dit the fully polarized state with a lower energy thanfor the unpolarized state [8, 9℄. By onsidering bak-�ow and three-body wave funtions and twist-averagedboundary onditions in the QMC approah, it wasfound that the energy of the polarized state was higherthan the unpolarized one, but the obtained susepti-bility had disrepany with extrapolated experimentaldata [5, 10℄. Manosuki et al., by using the FHNC teh-nique, found that the energy of spin-polarized phasewas above that of the normal phase [11℄. They onludethat the three-body and bak�ow orrelations are veryimportant for their variational wave funtion. Theypredited that this system ould exhibit new phasetransitions to ferromagnetism, while no suh new phasehas been disovered so far.The lowest-order onstrained variational (LOCV)method is a many-body approah whih has been de-veloped to study the bulk properties of the quantum693



Z. Razavifar, A. Rajabi ÆÝÒÔ, òîì 146, âûï. 4 (10), 2014�uids [12�14℄. In reent years, this method has been ap-plied to study homogeneous normal liquid 3He [15�18℄.In this variational approah, as we see in the next se-tion, we use a luster expansion to alulate the energyand other properties of system. Convergene of the ex-pansion and the e�et of higher-order luster terms inthe energy of unpolarized liquid 3He was studied andit has been shown that higher-order luster terms inthe normalization onstraint improve the equation ofstate [14℄. The LOCV method has several advantageswith respet to the other many body methods whih gobeyond the lowest order [14℄. Two of them are: (i) theLOCV method is fully self-onsistent, i. e., there are nofree parameters in this variational approah. (ii) It on-siders a partiular form for the long-range part of theorrelation funtion in order to perform an exat fun-tional minimization of the energy. It is shown that or-relation funtions obtained from the extended LOCV(ELOCV) lead to more aurate results for the mo-mentum distribution [19, 20℄, 3He droplets [21℄, and3He atoms in nanotube [22℄. In a series of papers, Bor-dbar et al. applied the LOCV method to the polar-ized ase and alulated some properties of this sys-tem [18; 23�25℄. In their reent work, they onsideredthe ground-state properties with the three-body lus-ter ontributions [26℄. But they did not onsider thee�et of three-body luster expansion of the two-bodyradial distribution funtion (ELOCV). We expet thatthe same as in QMC and FHNC methods, three-bodyorrelations are very important in spin-polarized sys-tems. Hene, in this paper, we intend to onsider thee�et of higher-order terms in the luster expansion ofthe radial distribution funtion and alulate the ener-gy by the extended LOCV approah with the three-bo-dy luster ontributions.2. SCHEME OF CALCULATIONS2.1. Cluster expansion of energyThe Hamiltonian of the normal liquid 3He onsistsof N atoms interating with eah other and is usuallywritten as H = NXi=1 p2i2m + 12Xi 6=j V (ij); (2.1)where V (ij) is the two-body inter-atomi potential. Inthis work, we use the Lennard�Jones potential. In theLOCV method, we use an ideal Fermi gas type wave

funtion (�) for single-partile states to �nd the varia-tional wave funtion of the interating system: v = F�; (2.2)where F is a orrelation funtion whih inorporatesthe orrelations indued by interations. To alulatethe energy expetation value, we use the variationalpriniple and a luster expansion developed in Ref. [27℄,E([f ℄) = 1N h v jH j vih v j vi = E1 +E2 +E3 + : : : (2.3)The one-body term E1 is just the familiar Fermi-gaskineti energy, i. e.,E1 = 1N NXi=1 �i ����~2k2i2m ���� i� : (2.4)The two-body energy E2 isE2 = 12N Xij hijjW (12)jijia (2.5)and the �e�etive interation operator� W (12) is givenby W (12) = ~2m (rf(12))2 + f2(12)V (12); (2.6)where f(12) and V (12) are the two-body orrelationand inter-atomi potential.Higher-order orrelations are onsidered in terms ofstatistially irreduible two-body orrelations. So, thethree-body energy is written asE3 = E3h +E3hh +E3t; (2.7)whereE3h = 1N Xijk [hijkjh(13)W (12)jijkia �� hikjh(13)jikiahijjW (12)jijia℄ ; (2.8)E3hh = 12N Xijk hijkjh(13)h(23)W (12)jijkia; (2.9)E3t = 12N ��Xijk �ijk ���� ~24mf2(31)r2h(12)r2h(23)���� ijk�a ;(2.10)and h(ij) = f2(ij)� 1: (2.11)694



ÆÝÒÔ, òîì 146, âûï. 4 (10), 2014 E�et of three-body lusters : : :We note that in Eq. (2.3), to ollet all ontributionswhih are onventionally assigned to the �rst order inthe smallness parameter, we have to ompute a spe-ial portion of the four-body terms, like the three-bodyluster terms [27℄:E4h = 14N Xijklhijjh(34)jkliahkljW (12)jijia: (2.12)In the LOCV formalism we onstrain the two-body or-relation funtion to normalize the wave funtion of thesystem. We hope this onstraint makes the luster ex-pansion onverge very rapidly.2.2. Spin polarized alulationsWe now speialize the above luster expansion tothe spin-polarized system inludingN atoms withN (+)spins up and N (�) spins down, with� = N
 = �(+) + �(�) (2.13)being the total number density and the spin asymmetryparameter � de�ned as� = N (+) �N (�)N : (2.14)By onsidering the single-partile states jii as planewaves, we an alulate the energy terms introdued inthe last setion. The one-body energy term E1 isE1 = 310 ~22m (3�2�)2=3[(1+�)5=3+(1��)5=3℄: (2.15)The two-body energy E2 introdued in Eq. (5) isE2 = 2�� Z r212dr12 �1� 14(1 + �)2`2(k(+)F r12) �� 14(1� �)2`2(k(�)F r12)�W (r12); (2.16)wherè (x) = 3j1(x)x = 3x3 (sin(x) � x os(x)) (2.17)is alled the statistial orrelation funtion or theSlater fator [28℄; k(+)F = (6�2�(+))1=3 and k(�)F == (6�2�(�))1=3 are the Fermi momenta of spin up andspin down states, respetively.The three-body luster energies in Eqs. (8), (9), and(10) areE3h = �38N �� Z dr1dr2dr3h(r13)W (r12)�1(r1; r2; r3); (2.18)

E3hh = �32N Z dr1dr2dr3h(r13)��W (r12)h(r23)�2(r1; r2; r3); (2.19)E3t = �32N Z dr1dr2dr3 ~24m �� f2(r31)r2h(r12)r2h(r23)�2(r1; r2; r3): (2.20)Here, the three-body energy terms �1(r1; r2; r3) and�2(r1; r2; r3) are de�ned as follows:�1(r1; r2; r3) == (1 + �)3`(k(+)F r12)`(k(+)F r23)`(k(+)F r31) ++ (1� �)3`(k(�)F r12)`(k(�)F r23)`(k(�)F r31)�� [(1 + �)3 + (1 + �)2(1� �)℄`2(k(+)F r23)�� [(1� �)3 + (1� �)2(1 + �)℄`2(k(�)F r23) (2.21)and�2(r1; r2; r3) = 1� 18 [(1 + �)3 + (1 + �)2(1� �)℄�� [`2(k(+)F r12) + 2`2(k(+)F r23)℄��18[(1��)3+(1��)2(1+�)℄[`2(k(�)F r12)+2`2(k(�)F r23)℄++ 14(1 + �)3`(k(+)F r12)`(k(+)F r23)`(k(+)F r31) ++ 14(1� �)3`(k(�)F r12)`(k(�)F r23)`(k(�)F r31): (2.22)And �nally,E4h = 132N �4 Z dr1dr2dr3dr4h(r34)W (r12)�� f(1 + �)4[`2(k(+)F r13)`2(k(+)F r24)� `(k(+)F r31)�� `(k(+)F r23)`(k(+)F r14)`(k(+)F r24)℄ ++ (1� �)4[`2(k(�)F r13)`2(k(�)F r24)� (`(k(�)F r31)�� `(k(�)F r23)`(k(�)F r14)`(k(�)F r24)℄g: (2.23)The above terms an be simpli�ed by putting partile1 at the origin and replaing � R dr1 = N .2.3. Normalization onstraint and theEuler�Lagrange equationNow, we minimize the energy with respet to f(r),whereas in LOCV formalism we are interested in ob-taining a more physial orrelation funtion that sa-tis�es the normalization onstraint h v j vi = 1. In695



Z. Razavifar, A. Rajabi ÆÝÒÔ, òîì 146, âûï. 4 (10), 2014the lowest-order approximation, this onstraint is givenby [28℄ � Z (g2(r12)� 1) d3r12 = �1; (2.24)where g2(r12) is the two-body radial distribution fun-tion, whih has the luster expansiong2(r12) = f2(r12) NXn=2[�g(r12)℄n: (2.25)The �rst two terms of above expansion are[�g(r12)℄2 = gF (r12) (2.26)and[�g(r12)℄3 = 14� Z d3r3h(r13)�1(r1; r2; r3) ++ � Z d3r3h(r13)h(r23)g3F (r1; r2; r3); (2.27)where gF (r12) and g3F (r1; r2; r3) are the two- andthree-body radial orrelation funtions of the nonin-terating Fermi gas ground state,gF (r12) = 1� 14(1 + �)2`2(k+F r)�� 14(1� �)2`2(k�F r); (2.28)g3F (r1; r2; r3) = �2(r1; r2; r3):In most of the previous alulations, based on theLOCV method, only the n = 2 term was inluded inthe two-body distribution funtion, Eq. (2.25). Butin the extended version of the lowest-order onstrainedvariational formalism (ELOCV) applied in this work,we extend the above luster expansion to the n = 3term. In other words, the ELOCV formalism leads toa more aurate variational wave funtion, so that thenormalization onstraint is satis�ed more properly. So,we expet our obtained wave funtion and the pair ra-dial distribution funtion to be more physial.The normalization onstraint, Eq. (2.24), intro-dues another parameter into our formalism, i. e., theLagrange multiplier �. By using the Euler�Lagrangeequation, we minimize the funtional L(r; f; �f) == r2fE+�h v j vig with respet to f(r) and we hoose� suh that the above normalization onstraint is sa-tis�ed, i. e., �L�r � ��r �L�f 0(r) = 0: (2.29)

We solve this equation to �nd orrelation funtions andthe ground-state energy of spin polarized liquid 3He.Note that in LOCV formalism, in ontrast to othervariational approahes, we set the orrelation funtionequal to the Pauli funtion instead of 1 [15℄.3. RESULTS AND DISCUSSIONThe obtained two-body orrelation funtions forfully polarized (� = 1 situation) and unpolarized (� = 0situation) liquid 3He are shown in Fig. 1. This �gureshows that the orrelation funtion for the fully po-larized ase, espeially the orrelation funtion of theELOCV formalism, tends to the Pauli funtion morerapidly than unpolarized one. So, when atom spinsare aligned with eah other, they have a shorter or-relation length than in a misaligned state. The alu-lated two-body radial distribution funtions introduedin Eq. (2.25) are plotted in Fig. 2 for fully polarized andunpolarized liquid 3He. It is lear that inluding then = 3 term leads to better results.We have plotted the equation of state results ofLOCV and ELOCV alulations for unpolarized liq-
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Fig. 1. ELOCV (solid lines) and LOCV (dashed lines)orrelation funtions of unpolarized (� = 0) and fullypolarized (� = 1) liquid 3He at � = 0:277��3696
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Fig. 2. Comparison of our ELOCV (solid lines) andLOCV (dashed lines) two-body radial distribution fun-tions with the FHNC method (irles) [11℄ for unpolar-ized (� = 0) and fully polarized (� = 1) liquid 3He at� = 0:277��3uid 3He (� = 0 situation) as a funtion of the den-sity in Fig. 3. To see the e�et of the three-body en-ergy, Eq. (2.7), we present results with and without thethree-body luster energy. The experimental data [2℄are also given for omparison. As we see, the ELOCVresults are loser than the LOCV ones to the exper-imental data. In both ases, the three-body energyimproves the results. As we explained in the preedingsetion, in the ELOCV alulation, we insert the ra-dial distribution funtion, Eq. (2.25), in the normaliza-tion onstraint, Eq. (2.24), up to the three-body lusterterm.Our binding energies E0 at the equilibrium density�0 obtained from the LOCV and ELOCV approaheswith the three-body luster energy are tabulated in theTable. In omparison with experimental values, there isgood agreement between the ELOCV and experiment.In Fig. 3, we also show the energy of fully polar-ized (� = 1) liquid 3He as a funtion of liquid densi-ties for the LOCV and ELOCV approahes separately.This �gure indiates that as polarization inreases, the
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Fig. 4. Polarization energy versus spin polarizationof liquid 3He at the experimental equilibrium density.QMC [5, 10℄ and experimental [29℄ urves are a �t ofdata using a quadrati polynomialrization parameter, the same as ELOCV results.To investigate the e�et of spin polarization onthe polarization energy, in Fig. 4 we plot our om-puted energy at the experimental equilibrium den-sity �0 = 0:277��3 versus polarization of 3He. Wehave shown the extrapolations of experimental [29℄and QMC [5, 10℄ method data obtained by assumingE = E0 + �2=(2�=C) for the relation between energyand the spin polarization parameter. This �gure showsthat the ontribution of the three-body energy makesthe urve of the LOCV formalism loser to the experi-mental urve.In onlusion, in this paper, we have extendedLOCV alulations to inlude the three-body on-tributions. We �nd that the three-body orrelationsimprove the radial distribution funtion, the equationof state, and the polarization energy of liquid 3He.It is found that as the polarization of liquid 3Heinreases, the two-body orrelation length beomesshorter. The obtained results show that the internalenergy of liquid 3He inreases with inreasing the spinasymmetry parameter with no rossing point betweenpolarized and unpolarized energy urves. It is also seen

that there is a bound state for polarized liquid 3He.Our results indiate that in the framework of lusterexpansion, the role of the normalization onstraintis very important in many-body alulations, andhigher-order normalization leads to more physialresults. In the QMC [5, 10℄ and FHNC [11℄ methods,besides the three-body e�et, the bak�ow e�et isalso inluded. In (E)LOCV, it is possible to onsiderthis e�et by hoosing the momentum-dependentorrelation funtion and obtain new equations forenergy terms. We expet that the bak�ow e�et hassome e�ets in both polarized and unpolarized ases,but we leave it for future work.This work was supported by Shahid Rajaee TeaherTraining University under ontrat number 10548.REFERENCES1. E. R. Dobbs, Helium Three, Oxford Univ. Press, Ox-ford (2000).2. R. De Bruyn Ouboter and C. N. Yang, Physia B 144,127 (1987).3. M. Viviani, E. Buendia, S. Fantoni, and S. Rosati,Phys. Rev. B 38, 4523 (1988).4. J. Casulleras and J. Boronat, Phys. Rev. Lett. 84, 3121(2000).5. F. H. Zong, D. M. Ceperley, S. Moroni, and S. Fantoni,Moleular Physis 101, 1705 (2003).6. B. Castaing and P. Nozieres, J. de Phys. 40, 257(1979).7. H. Middleton, R. Blak, B. Saam, G. Cates, G. Cofer,R. Guenther, W. Happer, L. Hedlund, G. A. Johnson,K. Juvan, and J. Swartz, Magn. Reson. Med. 33, 271(1995).8. D. Levesque, Phys. Rev. B 21, 5159 (1980).9. C. Lhuillier and D. Levesque, Phys. Rev. B 23, 2203(1981).10. M. Holzmann, B. Bernu, and D. M. Ceperley, Phys.Rev. B 74, 104510 (2006).11. E. Manousakis, S. Fantoni, V. R. Pandharipande, andQ. N. Usmani, Phys. Rev. B 28, 3770 (1983).12. J. C. Owen, R. F. Bishop, and J. M. Irvine, Ann. Phys.102, 170 (1976).13. G. H. Bordbar and M. Modarres, Phys. Rev. C 57, 714(1998).698



ÆÝÒÔ, òîì 146, âûï. 4 (10), 2014 E�et of three-body lusters : : :14. M. Modarres, A. Rajabi, and H. R. Moshfegh, Phys.Rev. C 76, 064311 (2007).15. M. Modarres, H. R. Moshfegh, and K. Fallahi, Eur.Phys. J. B 36, 485 (2003).16. M. Modarres, Mod. Phys. Lett. B 19, 1793 (2005).17. M. Modarres, J. Low Temp. Phys. 139, 387 (2005).18. G. H. Bordbar, M. J. Karimi, and A. Poostforush, Eur.Phys. J. B 73, 85 (2010).19. M. Modarres and A. Rajabi, Europ. Phys. J. B 71, 7(2009).20. A. Rajabi and M. Modarres, J. Low Temp. Phys. 162,182 (2011).21. M. Modarres, S. Motahari, and A. Rajabi, J. Comput.Theor. Nanosi. 10, 1278 (2013).

22. M. Modarres, S. Motahari, and A. Rajabi, J. Comput.Theor. Nanosi. 10, 1080 (2013).23. G. H. Bordbar, S. M. Zebarjad, M. R. Vahdani, andM. Bigdeli, Int. J. Mod. Phys. B 19, 3379 (2005).24. G. H. Bordbar, M. J. Karimi, and J. Vahedi, Int. J.Mod. Phys. B 23, 113 (2009).25. G. H. Bordbar and M. J. Karimi, Int. J. Mod. Phys.B 23, 2373 (2009).26. G. H. Bordbar, S. Mohsenipour, and M. J. Karrimi,Int. J. Mod. Phys. B 25, 2355 (2011).27. J. W. Clark, Progr. Part. Nul. Phys. 2, 89 (1979).28. E. Feenberg, Theory of Quantum Fluids, AademiPress, New York (1969).29. H. Ramm, P. Pedroni, J. R. Thompson, and H. Meyer,J. Low Temp. Phys. 2, 539 (1970).

699


