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We discuss the evolution of the newly proposed dark-energy model with a generalized event horizon (a general-
ized form of the holographic dark-energy model with a future event horizon) in the flat and nonflat universes.
We consider the interacting scenario of this model with cold dark matter. We use the well-known logarithmic
approach to evaluate the equation of state parameter and explore its present values. It is found that this pa-
rameter shows phantom crossing in some cases of the generalized event horizon parameters. The w—w’ plane is
also developed for three different cases of the generalized event horizon parameters. The corresponding phase
plane provides thawing and freezing regions. Finally, the validity of a generalized second law of thermodynamics
is explored which holds in certain ranges of constant parameters.
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1. INTRODUCTION

The prediction about the accelerated expansion of
the universe is a revolutionary change in modern cos-
mology. The debate on this topic has been extensive
in the last decade in both observational and nonob-
servational terms. The main focus of this discussion
remained on the unknown type of matter, which is as-
sumed to be the major factor of the accelerating uni-
verse. A consensus has been developed on dark energy
(DE), but its nature is still unclear. In order to resolve
this problem, a plethora of work has been done within
two main approaches: modification of the gravitational
part and of the matter part of the Einstein field equa-
tions.

The modification approach in the matter part has
led to different dynamical DE models such as the Chap-
lygin gas [1], holographic [2, 3|, agegraphic [4], new
agegraphic [5], and scalar field DE models [6-13]. The
holographic DE (HDE) model is one of the famous
models developed in the framework of quantum gravity.
The main motivation behind this model is to achieve
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consensus about the ambiguous nature of DE. The
holographic principle is the origin of this model, ac-
cording to which the number of degrees of freedom of
a physical system should scale with its bounding area
rather than its volume [14].

Later on, Cohen et al. [15] developed a relation be-
tween ultraviolet (UV) and infrared (IR) cutoffs using
the idea of black hole formation in quantum field the-
ory. They argued that the total energy of a system
of size L should not exceed the black hole mass of the
same size. Using this argument, Hsu [2] developed a
model for the density of HDE in the form

Py = 3/\2mZL_2,

where A is an arbitrary constant and m, is the re-
duced Planck mass. Different expressions for the IR
cutoff I have been proposed such as Hubble, event,
particle horizons [3], Ricci scalar [16] and its gener-
alized form [17]. However, the HDE model with an
event horizon has been discussed extensively in the ab-
sence [3, 18, 19] and presence [20-22] of interaction with
dark matter (DM). These models have also been tested
in the framework of different observational schemes and
used to develop reliable constraints on different cosmo-
logical parameters such as the equation-of-state (EoS)
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parameter, Hubble parameter, fractional energy densi-
ties, etc [23, 24].

Li [3] explored HDE with a future event horizon
using the logarithmic approach and found the present
value of the EoS parameter wy = —0.90. Huang and
Li [18] used this approach to examine the evolution of
the universe by checking all possible values of the HDE
parameter A and also found that a generalized second
law of thermodynamics (GSLT) is preserved for HDE
with a future event horizon in a flat as well as closed
universe for A < 1. They also revealed that HDE with
this horizon can cross the phantom region. Jamil et
al. [19] investigated the HDE scenario with a varying
gravitational constant (G) in both flat and nonflat uni-
verses by using the logarithmic approach. They found
corrections to the evolution of the EoS parameter in [3]
due to variation of G. Lu et al. [24] checked these re-
sults within observational schemes and argued that the
scenario of HDE with a varying G is compatible with
the present observations. They also found the present
values of different cosmological parameters in this sce-
nario within a 1o error range.

Recently, the holographic, agegraphic, and new age-
graphic DE models (with event and particle horizons)
have been extended to the most general class character-
ized by dimensionless constant parameters (m,n). The
behavior of these models in terms of the EoS parameter,
noninteracting and interacting with DM in a flat uni-
verse, was investigated in [25]. Cosmological behavior
of the universe for a general class of HDE with a par-
ticle horizon was explored in [26] within observational
schemes in a flat universe. In this paper, we choose an
(m,n) type DE model with a generalized cosmological
horizon (GCH) (a generalized form of the HDE model
with a future event horizon) in flat and nonflat uni-
verses. We use the logarithmic approach to evaluate
the EoS parameter in the context of interaction with
cold DM (CDM). We also discuss the wy-w}, plane and
the validity of the GSLT.

The rest of the paper is arranged as follows. In
Sec. 2, we investigate the EoS parameter, wy—w}, and
the GSLT in a flat universe. Section 3 explores the EoS
parameter, wy-w}, and the GSLT in a nonflat universe.
In the Sec. 4, we summarize our results.

2. FLAT UNIVERSE

In this section, we elaborate a basic cosmological
scenario in a flat Friedman—Robertson—-Walker (FRW)
universe for DE with a GCH. The generalized form of
the cosmological horizon is defined as [25, 26]
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1
a™(t)

(1)

o ]
L=Reen = /am(f) dt,
t
where a(t) is the cosmic scale factor. We can re-
cover the original HDE with a future event horizon for
m = n = —1. The time derivative of the above relation
yields

n

RGC’H = -nHRqgcy —a™ , m <0,

(2)

where H is the Hubble parameter. The first FRW equa-
tion leads to

1
H2:—2(p19+p’n’L)7 919+Qm:17 (3)

3mg
where py and p,, are the respective DE and CDM den-
sities, while
_ Py
3m2ZH?’

Pm

Oy =
v 317112,1'{2

m =

are the corresponding fractional energy densities. The
continuity equations in the interacting case become

Pm +3Hppy = 3U2HP197 (4)

po + 3H (py + p9) = —3u’Hpy, (5)

where u?

is an interaction parameter.

Currently, there are no prior conditions imposed on
the possible interactions between DM and DE because
neither DE nor DM is understood fundamentally. How-
ever, without violating the observational constraints,
DE can interact with DM in various fashions by means
of energy transfer between each other. The interaction
between DE and DM yields a richer cosmological dy-
namics as compared to noninteracting models and it is
possible to solve the cosmic coincidence problem within
this framework. However, we cannot describe interac-
tion between these vague nature components from first
principles. Therefore, we have to take a specific inter-
action or set it from phenomenological requirements.

The DE density with a GCH is defined as

(6)

Py = 3/\2m12,RE%«H,
and its evolutionary form is given by
a™ "/ Qy

A

).

where the prime denotes differentiation with respect
to x = Ina. By taking the derivative of Eq. (3) with
respect to the cosmic time, we obtain

o= 20 <n+ (7)

2H

m—n()3/2
2H 2a Qﬁ/
2B

= -3+ (3(1 +u?) +2n)Qp + ;)

(8)
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Differentiating Qy with respect to z and using Eqs. (7)
and (8) yields

a0,
dx

Qo(1 — Q) x

2a™7"/Qy . 3u2919
A 1-Qyp

X <3+2n+

). 9)

We now evaluate the EoS parameter within the log-
arithmic approach. The DE density is obtained from
Eq. (5) in the form

2.1. Cosmological implications

73(1+w19+u2)

Py = Pvoa ) (10)

where pyo serves as the current value of the DE den-
sity. We use a Taylor series expansion for py about the
present, value of ag = 1 as follows:

dln py 1 d?1npy .
| =InpY = Ina)?
npo=Mmpyt dlna 2 d(lna)2(na) +
1 d®Inpy
= Ina)®+... (11
6 dnay @)+ (D)

The series is terminated at the second-order deriva-
tive because of the small-redshift approximation, i.e.,

Ina = —In(1 + 2) ~ —z, and it follows from (10)
and (11) that
Wy = wyo + W12, (12)
where
1 dln py 1 d?1npy
=-1-u?—-= = (1
oo Y T3 A YT 6 d(In a)? (13)

Here, the derivatives are taken at the present value of
ag. Expressing py in terms of fractional densities as
P9 = Qopm/Qm, after some calculations, we obtain

dln py 2ad™"
= Vv Q
dlna nt Vo
Inpy  al ™"/ Qo
dina)y — 5 {2(m—n)+(1—ﬂ,90) X (14)

3U2Q§0
1—-Qyo

X <3+2n+2a6"_”/\1\/(2190— )] .

Using Eqs. (12)-(14), we obtain the EoS parameter as
follows:

1
wy =—-1—u%— 3 <2n + 2a6"_”)\*1\/0190) +

am—n /9190
6

X <3 +2n 4+ 2a™ A7 Qo —

+ {Z(m—n)—l—(l—ﬂgo) X
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Fig.1. Plots of wy versus z with «? =0, 0.058 in the

flat case forn = -1, m = =2 (a), n =0, m = —1

(b), and n =1, m =0 (c). We use the present value

of the fractional DE density Qg0 ~ 0.73 and choose
A=0.91

Using the observational dataset from WMAP-+
+SNIa+BAO-+ Hy, the best-fit values for the coupling
parameter u? were presented in [27]. It was also com-
mented there that positive values of this parameter al-
leviate the cosmological coincidence problem. Here, we
take u? = 0.058 [27] for the interacting case and plot
the EoS parameter versus z in the noninteracting case
as well (Fig. 1). We choose three different well-settled
pairs of the values of m and n by using well-known ob-



M. Sharif, A. Jawad

XKIT®, Tom 146, Boin. 4 (10), 2014

servational data [26]. It is found that for a given n,
the models with n —m = 1 are most suitable for dis-
cussing the cosmological parameters. For this purpose,
we take n = —1, 0, 1, which yield n = -1, m = -2
(Fig. 1a), n =0, m = —1 (Fig. 1b),and n =1, m =0
(Fig. 1¢). In addition, the case (n = 0, m -1)
is the most favorable model, also compatible with the
ACDM model. In Fig. 1la, the present values of the
EoS parameter are —0.80 and —0.86 in the noninteract-
ing and interacting cases. The EoS parameter remains
in the quintessence region for the near past as well as
later time in the noninteracting case, while phantom
crossing is observed in the interacting case. In Fig. 15,
the present values of the EoS parameter are approxi-
mately —1.46 (in the noninteracting case) and —1.53
(in the interacting case). The universe then exhibits
phantom-like behavior in the near past, present, and
future cosmic time. However, the large-phantom be-
havior is observed in the near past compared to the
present and later time. In Fig. 1¢, we see that the EoS
parameter attains the present values in the range —2.14
and —2.20 in the noninteracting and interacting cases.
In Fig. 1¢, the EoS parameter also exhibits phantom
behavior in three different epochs.

2.2. wy—w) analysis

A phenomenon called wy-wj, for analyzing the be-
havior of quintessence DE models and the correspond-
ing constraints for these models in the wy—w} plane
were proposed in [28]. Tt was pointed out there that
the area of this phase plane can be divided into thaw-
ing and freezing regions for these models. These regions
can be characterized by the values of w), with respect
to wy, i.e., wy > 0, wy < 0 for a thawing region and
wly < 0, wy < 0 for a freezing region. Many authors
explored the nature of different DE models (a general-
ized form of quintessence [29], the phantom [30], quin-
tom [31], polytropic DE [32], and PDE [33, 34] models)
using this phenomenon. Here, we analyze the behavior
of the DE model with a GCH in a flat universe. The
evolution of the EoS parameter turns out to be

agn_”v 0190
6

X <3 +2n + Qa?_”)\*lvﬁﬂg —

{Z(m —n)+ (1 —Qyo) x

) e

The plots of wj), versus wy for three different va-
lues of m and n are shown in Fig. 2. The Fig. 2a
shows that both curves do not meet the ACDM limit
(wy = 0 at wy = —1). However, the present values

Wy

3U2Qk0
1—Qyo
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Fig.2. Plots of w} versus wy forn = —1, m = -2 (a),

n=0 m=-1(b),andn=1, m=0 (c). Also, the
solid and dashed curves correspond to u> = 0, 0.058

of wy are approximately equal to —0.15 and —0.20 in
the noninteracting and interacting cases with respect
to present values of wy (as mentioned in Sec. 2.1). Tt
is also observed that the thawing and freezing regions
exist in this plane for both noninteracting and interact-
ing cases. In Fig. 2b, we are able to achieve the ACDM
limit in the noninteracting case only. In this case, the
present values are wj 0.8,—0.12 for u?> = 0, 0.058
according to the present values of wy. The curve cor-
responding to u? = 0 characterizes the thawing region
initially, then the freezing region, and finally the thaw-
ing region of the wj), — wy plane. However, in the inter-
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acting case, the curve starts from the thawing region
and then goes toward the freezing region. In Fig. 2¢,
the ACDM limit cannot be achieved in both cases of
u?, and the present values of w), with respect to wy are
—0.02 and —0.04 for the respective values u> = 0 and
0.058. In this case, both the curves provide thawing as
well as freezing regions.

2.3. Generalized second law of
thermodynamics

In general relativity, a pioneering relation between
thermodynamic quantities and the Einstein field equa-
tions has been developed by Jacobson [35]. It is con-
structed from the entropy—horizon-area proportional-
ity relation by using the first law of thermodynamics
dQ = T dS, where d@Q, T, and dS represent the ex-
change in energy, temperature, and the entropy change
of a given system. Later on, it was argued in [36] that
for any spherically symmetric spacetime, the field equa-
tions can be written in the form

TdS = pdV + dE, (17)

where T', S, E, and p are the basic entities of a thermo-
dynamical system: the temperature, entropy, internal
energy, and pressure.

The GSLT is originated from the black hole me-
chanics, where the second law states that the total area
of the outer boundary of a family of black holes can-
not decrease even as they swallow or collide with each
other. In the case of a thermodynamical system, the
entropy plays the role of area and the GSLT states that
the sum of the entropy of surrounding constituents of
matter and the entropy of the black hole itself would
increase [37]. Here, we are interested in discussing the
GSLT for a system containing the interaction of DE
and CDM on the GCH. For this purpose, we need the
quantities

_ Al 1

e
4dr L3 (18)
E = 3P Sy =nL?

The time rate of Eq. (17) for DE and CDM yields

_ pﬁV—l—Eg

PV + En
T ’ ’

Sy Sm =" (19)
We check the GSLT for a system in equilibrium. Using
Eqs. (4), (5), (18), and (19), we can obtain the final

form of the GSLT:

. 3\2 (n+1)A
TStotal = — 55— (1 Q mmng
St tal 2919 ( +wy 19) < \/Q_ﬁ +a )

~ <;—§;\_,9 + am—”> . (20)

At present time, this expression becomes

o
2090

1 2 m—n
X {l-l- {—1—u2—§ (Qn-l- aO/\ \/Q,go> ng] } X

Tstotal =

Vs ° Vs ")

Here, T" does not violate the validity of the GSLT. We
analyze the validity of the GSLT by plotting TSotar in
the well-established range 0.3 < A < 1 at the present
cosmic time in Fig. 3. Also, we use observationally
settled values of m, n, and u2. In Fig. 3a, we can ob-
serve that the GSLT violates its validity in the range
0.3 < X\ < 0.88 and preserves its validity for 0.88 <
< A < 1. In Fig. 3b, the GSLT does not remain valid
for both noninteracting and interacting cases. It is ob-
served that the GSLT remains valid for 0.82 < A <1
in the noninteracting case and for 0.78 < A < 1 in the
interacting case (Fig. 3¢).

3. NONFLAT UNIVERSE

In this section, we repeat the above analysis for a
nonflat universe. We define the corresponding general-
ized form of the cosmological horizon as

L=a"siny, y=a"Rgcmu, (22)

whose time derivative takes the form
L=-nHL—-a™ "cosy. (23)
The first FRW equation in a nonflat universe becomes

k
H*+—

=— Qo+Q =140, (24
a?  3m? ot e, (24)

(Pm+po9),

where Q) = k/a?H? is the fractional energy density.
The derivative of Eq. (24) with respect to the cosmic
time yields

2H
T =3 e+ (301 +u?) +2n)Qy +
2 man3/2
a4 3 U cosy. (25)
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Fig.3. Plots of T'Sy0a; versus ), at the present time,

forn=-1,m=-2(a),n=0 m=—1(b), and

n=1,m =0 (c). Also, the solid and dashed curves
correspond to u® = 0, 0.058

The corresponding evolution of the DE density turns
out to be

(26)

m—n /Q
Py = 2py (n + afﬁ cosy) .

Equations (25) and (26) yield

a9,
dr

X [Zn(l—ﬂk)+u(l—ﬁk) cosy+3 —

= Qup(1 —Qy + Q) X

_ 3u2919 . ZQk
1—Qp+ Q 1— QA +Q |’ (27)

dQ .
—k = —Q l—l—ﬂk+(3(1—l—u2)+2n)ﬂﬁ +

dr
+ 72(17”7“0139/2 cos ]
) Il

In the nonflat universe, the derivatives required for
the EoS parameter at the present time take the form

dln py 2
=2 —/0
dlna n+/\ V0

PInpy Qo
d(lna)? A

Q
+ 3 <1—Q§0+%> +2)\_1\/ Qoo (1—Qp0) | +

+2(0.0123)% + QoA 2.

{Zm — 2000 — 3u>Nyo +
(28)

Here, we have used the current values

WO
siny = \/W? =0.0123,
Qgo — A2Q
cosy = W =0.999 ~ 1,

while the values of other constant parameters are the
same as in the preceding section. Inserting the above
derivatives in Eq. (13), we obtain the EoS parameter
as

wy = —1— é(Qn—l— 2/\_1\/9—190) —
- [\/9—190(6/\)’1(2171 —2n — 3u%Qgo +
4+ 3(1 = Qoo + 371Q%) + 2271/ Qp (1 — Q) +
+ 2(0.013)2919@—2] 2 (29)

The plot of the above parameter is shown in Fig. 4
versus the same parameters as in Sec. 2. The present
values wyq are approximately equal to —0.82 and —0.88
in the noninteracting and interacting cases, as shown
in Fig. 4a. In the interacting case, the EoS parameter
lies in the quintessence for the near past, present, and
later epoch. However, the EoS parameter behaves like
a phantom in the near past; after a short interval of
time, it crosses the vacuum era and then goes toward
the quintessence region in the noninteracting case. In



MKIT®, Tom 146, Boin. 4 (10), 2014 Dark energy model with generalized cosmological horizon

: ——u¥=0
r — — u?=0.058
~10[
1.0 05 .
zZ
Wy
—1.40 b
—145 |
—1.50 | ~ o ]
L ~ Q ]
—155f — u?*=0 ~ o E
L — — w?=0.058 S ]
—1.60 [ >~ ]
- <~
-I 1 n n 1 T ‘I:
-1.0 —05 0 0.5 1.0
wy z
—2.10

—2.12 \ ¢ ]
—2.14 ' \'
F~ ]
216 F T~ _ ;
~
~
~
~
~
=~ ~

—2.18 [ ~ .

L Py ~ ]
220 — v = 0 ]
_9.99 — — u° =0.058

:| RS ST RS R .\l:

—-1.0 -0.5 0 0.5 1.0
z

Fig.5. Plots of w} versus wy in a nonflat universe for

n=-1,m=-2(a),n=0 m=-1(b), and

n=1,m =0 (c). Also, the solid and dashed curves
correspond to u? = 0, 0.058

Fig.4. Plots of wy versus z with u? =0, 0.058 in the

nonflat case forn = -1, m= -2 (a), n=0,m = —1

(b), and n =1, m =0 (c). We use the present value

of the fractional DE density Qg0 ~ 0.73 and choose
A=091

For wy—w}, we differentiate Eq. (29) as

o —1 _ _ 2
Fig. 4b, the present values of the EoS parameter are Wo = {V Q90 (6A)™" (2m — 2n — 3u” Qo3 +

—1.48 and —1.54 corresponding to the noninteracting

and interacting cases. However, the universe behaves + (1= Qoo +3710) + 207" x

like a phantom in this model in all epochs. In Fig. 4c,

the present values of wy correspond to —2.13 and —2.19 x v/ Qo(1 = Qy)) +2(0.013)>QoA"2| . (30)
for the noninteracting and interacting cases. However,

the universe also remains in the phantom region but The wy—w}, plane is shown in Fig. 5 with the same
attains more negative values as compared to preceding constant parameters. The present values of w), are
case. —0.15 and —0.20 (Fig. 5a), —0.9 and —0.14 (Fig. 5b),
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and —0.03 and —0.05 (Fig. 5¢) for the noninteracting
and interacting cases, respectively. The ACDM limit
is only attained in the noninteracting case in Fig. 5b.
In addition, thawing and freezing regions exist in all
cases.

In this context, the expression of the GSLT turns
out to be
3\2

2Qy

(n+1)A
A

-

We plot it at the present state versus A in Fig. 6.
We observe that the GSLT is valid for 0.86 < A <1
(Fig. 6a in the noninteracting and interacting cases),
0.80 < A <1 (Fig. 6b in the noninteracting case), and
0.76 < A <1 (Fig. 6¢ in the interacting case).

T Stotal = — (14 Qp + wefly) X

+a™ " cos y) —

+am " cosy) . (31)

4. CONCLUDING REMARKS

The purpose of this work is to study the cosmic ac-
celeration within the interacting DE model with CDM
in flat and nonflat universes. We have explored the EoS
parameter in terms of different cosmological and con-
stant parameters in the logarithmic approach with the
Taylor series expansion up to the second order. The
reason is that we would like to make corrections in the
behavior of the EoS parameter and reduce the deficien-
cies. In the discussion of this parameter, three constant
parameters play the crucial role, i.e., GCH parame-
ters (m,n) and the interaction parameter u?. We have
observed the behavior of the EoS parameter with re-
spect to m, n, u? and obtained some constraints on the
present values of wy. We have chosen the observation-
ally settled values of constant parameter like m, n [26],
and u? [27].

In the flat case (Fig. 1), the approximated present
values of wy in the respective noninteracting and inter-
acting cases are —0.80, —0.86 (Fig. 1a), —1.46, —1.53
(Fig. 1), and —2.14, —2.20 (Fig. 1¢). We note that the
phantom behavior cannot be achieved in the noninter-
acting case in the left plot. However, phantom crossing
was observed in the interacting case, i.e., the EoS pa-
rameter starts from the phantom region in the near
past and goes toward the quintessence region by evolv-
ing the vacuum region. In Fig. 1b,c¢, totally phantom-
like behavior has been observed, but a greater phan-
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Fig.6. Plots of T Siotar Versus \, at the present time,

forn=-1,m=-2(a),n=0 m=—1(b), and

n =1, m =0 (c) in a nonflat universe. Also, the solid
and dashed curves correspond to u* = 0, 0.058

tom effect has been observed in Fig. 1¢. In the nonflat
case, the approximated present values of the EoS pa-
rameter in the noninteracting and interacting cases are
wgo = —0.82 and —0.88, wyg = —1.48 and —1.54, and
wyo = —2.13 and —2.19, as shown in Fig. 4a,b and ec.
However, the behavior of the EoS parameter is similar
to that in the flat case.

By taking different combination of observational
schemes, Ade et al. [38] have put the following con-
straints on the EoS parameter:
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wy = —1.131021 (Planck+WP-+BAO),

wy =—1.09+0.17 (Planck+WP+Union 2.1),
wy = —1.13701%  (Planck+WP-+SNLS),

wy = —1.24701% (Planck-+WP-+Hy),

at 95 % confidence level. It can be seen from the a and
b panels in Figs. 1 and 4 that the EoS parameter ap-
proximately represents the above values for all cases of
the interaction parameter, which shows consistency of
our results. We also observe that as n increases, this
parameter deviates from —1 for chosen pairs of (n,m).

We have also explored wy—w} in both flat and non-
flat universes and found coincidence of the DE model
with the ACDM model. The ACDM limit is achieved
only in the noninteracting scenario for n = 0, m = —1
in flat as well as nonflat universes (Figs. 2b and 5b).
The present values of w}, with respect to wy are also
obtained. Finally, we have explored the GSLT in this
scenario at the present epoch with respect to A for
three different choices of n and m by setting the well-
established values of the remaining constant parame-
ters. It is found that the GSLT remains valid in the
specific ranges of \.
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