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ATTRACTIVE HUBBARD MODEL WITH DISORDERAND THE GENERALIZED ANDERSON THEOREME. Z. Kuhinskii a*, N. A. Kuleeva a **, M. V. Sadovskii a;b ***aInstitute for Eletrophysis, Russian Aademy of Sienes, Ural Branh620016, Ekaterinburg, RussiabInstitute for Metal Physis, Russian Aademy of Sienes, Ural Branh620290, Ekaterinburg, RussiaReeived November 6, 2014Using the generalized DMFT+� approah, we study the in�uene of disorder on single-partile properties ofthe normal phase and the superonduting transition temperature in the attrative Hubbard model. A widerange of attrative potentials U is studied, from the weak oupling region, where both the instability of thenormal phase and superondutivity are well desribed by the BCS model, to the strong-oupling region, wherethe superonduting transition is due to Bose�Einstein ondensation (BEC) of ompat Cooper pairs, formedat temperatures muh higher than the superonduting transition temperature. We study two typial models ofthe ondution band with semi-ellipti and �at densities of states, respetively appropriate for three-dimensionaland two-dimensional systems. For the semi-ellipti density of states, the disorder in�uene on all single-partileproperties (e. g., density of states) is universal for an arbitrary strength of eletroni orrelations and disorderand is due to only the general disorder widening of the ondution band. In the ase of a �at density of states,universality is absent in the general ase, but still the disorder in�uene is mainly due to band widening, andthe universal behavior is restored for large enough disorder. Using the ombination of DMFT+� and Nozieres�Shmitt-Rink approximations, we study the disorder in�uene on the superonduting transition temperatureT for a range of harateristi values of U and disorder, inluding the BCS�BEC rossover region and thelimit of strong-oupling. Disorder an either suppress T (in the weak-oupling region) or signi�antly inreaseT (in the strong-oupling region). However, in all ases, the generalized Anderson theorem is valid and allhanges of the superonduting ritial temperature are essentially due to only the general disorder widening ofthe ondution band.DOI: 10.7868/S00444510150601661. INTRODUCTIONThe problem of strong-oupling superondutivityhas been studied for a long time, starting with the pio-neering papers by Eagles and Leggett [1, 2℄. Signi�antprogress here was ahieved by Nozieres and Shmitt-Rink [3℄, who suggested an e�etive method to studythe transition temperature rossover from weak-oup-ling BCS-like behavior to the Bose�Einstein ondensa-tion (BEC) senario in the strong-oupling region. Re-ent progress in experimental studies of quantum gasesin magneti and optial dipole traps, as well as in op-tial latties, with ontrollable parameters, suh as the*E-mail: kuhinsk�iep.uran.ru**E-mail: strigina�iep.uran.ru***E-mail: sadovski�iep.uran.ru

density and interation strength (see reviews [4, 5℄),has inreased the interest in superondutivity (super-�uidity of fermions) with strong pairing interation, in-luding the region of the BCS�BEC rossover. One ofthe simplest models allowing the study of the BCS�BEC rossover is the Hubbard model with an attra-tive on-site interation. The most suessive approahto the solution of the Hubbard model, both in the aseof repulsive interation and for the studies of BCS�BEC rossover in the ase of attration, is the dynam-ial mean �eld theory (DMFT) [6�8℄. The attrativeHubbard model was studied within the DMFT in anumber of reent papers [9�13℄. However, up to nowthere have been only a few studies of the disorder in-�uene on the properties of normal and superondut-ing phases in this model, espeially in the region ofthe BCS�BEC rossover. Disorder e�ets in this re-1220



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Attrative Hubbard model : : :gion were analyzed qualitatively in Ref. [14℄, where itwas argued that the Anderson theorem remains validin the BCS�BEC rossover region in the ase of s-wavepairing. A diagrammati approah to (weak) disordere�ets on the superonduting transition temperatureand the properties of the normal phase in the rossoverregion was developed reently in Ref. [15℄.In reent years, we have developed a generalizedDMFT+� approah to the Hubbard model [16�19℄,whih is very onvenient for the studies of di�erentexternal interations with respet to those taken intoaount in the DMFT, suh as pseudogap �utua-tions [16�19℄, disorder [20, 21℄, eletron�phonon inter-ation [22℄, et. This approah is also well suited tothe analysis of two-partile properties, suh as optial(dynami) ondutivity [20, 23℄. In Ref. [13℄, we usedthis approximation to alulate single-partile proper-ties of the normal phase and optial ondutivity inthe attrative Hubbard model. In a reent paper [24℄,the DMFT+� approah was used by us to study thedisorder in�uene on the superonduting transitiontemperature, whih was alulated in the Nozieres�Shmitt-Rink approximation. In that paper, for thesemi-ellipti density of states of the �bare� ondutionband, whih is adequate for three-dimensional systems,we numerially demonstrated the validity of the gener-alized Anderson theorem aording to whih all hangesin the ritial temperature are ontrolled only by thegeneral widening of the ondution band by disorder.In this paper, we present an analyti proof of suhuniversal in�uene of disorder (in the DMFT+� ap-proximation) on single-partile harateristis and thesuperonduting transition temperature for the semi-ellipti density of states and also investigate disordere�ets in the ase of the �bare� band with a �at densityof states, qualitatively appropriate for two-dimensionalsystems. We show that for the �at band model, theuniversal dependene of single-partile properties andthe superonduting transition temperature is also re-alized for the ase of su�iently strong disorder.2. DISORDERED HUBBARD MODEL WITHINTHE DMFT+� APPROACHWe onsider the disordered nonmagneti Hubbardmodel with attrative interation with the HamiltonianH = �tXhiji� ayi�aj� +Xi� �ini� � UXi ni"ni#; (1)where t > 0 is the transfer integral between nearestneighbors on the lattie, U represents Hubbard-like on

site attration, ai�(ayi�) is the annihilation (reation)operator of an eletron with spin �, ni� = ayi�ai� is thepartile number operator on a lattie site i, while loalon-site energies �i are assumed to be random variables(independent on the lattie sites). For the standard�impurity� diagram tehnique to be valid, we take theGaussian distribution of energy levels �i:P(�i) = 1p2�� exp�� �2i2�2� : (2)The parameter � is a measure of the disorder strength,while the Gaussian random �eld of random on-site en-ergy levels, whih are independent on di�erent sites(�white noise� orrelation) indues �impurity� satte-ring, whih is analyzed using the standard formalismof averaged Green's funtions [25℄.The generalized DMFT+� approah [16�19℄extends the standard dynamial mean �eld theory(DMFT) [6�8℄ taking into aount an additional�external� self-energy part �p(") (in the generalase, momentum dependent), whih is due to someadditional interation outside the DMFT, and givesan e�etive method to alulate both single-partileand two-partile properties [20, 23℄. The suess ofthis generalized approah is based on the hoie of thesingle-partile Green's funtion in the formG(";p) = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� eletron dispersion, while theomplete self-energy is assumed to be an additive sumof the loal DMFT self-energy and some �external�self-energy �p("), due to the neglet of the interfer-ene of Hubbard and �external� interations. This al-lows the onservation of the standard form of self-on-sistent equations of the standard DMFT [6�8℄. At thesame time, at eah step of DMFT iterations, we onsis-tently realulate the �external� self-energy �p(") usingan appropriate approximate sheme, orresponding tothe form of the additional interation, while the loalGreen's funtion is also �dressed� by �p(") at eah stepof the standard DMFT proedure.For the �external� self-energy entering theDMFT+� yle for the problem of random sat-tering by disorder, we use the simplest self-onsistentBorn approximation, negleting diagrams with rossing�impurity� lines, whih gives�p(")! ~�(") = �2Xp G(";p); (4)whereG(";p) is the single-eletron Green's funtion (3)and � is the amplitude of site disorder.1221



E. Z. Kuhinskii, N. A. Kuleeva, M. V. Sadovskii ÆÝÒÔ, òîì 147, âûï. 6, 2015To solve the e�etive single-Anderson-impurityproblem of DMFT, we use the numerial renormaliza-tion group approah (NRG) [26℄.In what follows, we onsider two models of the�bare� ondution band. The �rst is the band witha semi-ellipti density of states (per unit ell and singlespin projetion)N0(") = 2�D2pD2 � "2; (5)where D is the band half-width. This model is ap-propriate for a three-dimensional system. The seondmodel is the one with the �at density of states, appro-priate for the two-dimensional ase:N0(") =8><>: 12D j"j � D;0 j"j > D: (6)In priniple, for two-dimensional systems, we shouldtake the presene of the weak (logarithmi) Van Hovesingularity in the density of states into aount. How-ever, this singularity is already e�etively suppressedby rather small disorder, and hene the simple modelin Eq. (6) is quite su�ient for our aims.All alulations in this paper are done for a quarter-�lled band (the number of eletrons per lattie site isn = 0:5).The superonduting transition temperature in theattrative model was analyzed in a number of papers[9, 10, 12℄, both from the ondition of instability of thenormal phase [9℄ (divergene of the Cooper susepti-bility) and from the ondition of the superondutingorder parameter going to zero [10, 12℄. In reent paper[13℄, we determined the ritial temperature from theondition of instability of the normal phase, re�eted inthe instability of the DMFT iteration proedure. Theresults obtained in this way in fat oinide with thosein Refs. [9, 10, 12℄. Also, to alulate T in Ref. [13℄, weused the approah due to Nozieres and Shmitt-Rink[3℄, whih allows the orret (though approximate) de-sription of T in the BCS�BEC rossover region. In alater paper [24℄, we used the ombination of Nozieresand Shmitt-Rink and DMFT+� approximations fordetailed numerial studies of the disorder dependeneof T and the number of loal pairs in the model withthe semi-ellipti density of states.

3. DISORDER INFLUENCE ONSINGLE-PARTICLE PROPERTIES FOR THESEMI-ELLIPTIC DENSITY OF STATESIn this setion, we analytially demonstrate that inthe DMFT+� approximation, the disorder in�ueneon single-partile properties of the disordered Hubbardmodel (both attrative or repulsive) with a semi-ellipti�bare� ondution band is ompletely desribed by ef-fets of general band widening by disorder sattering.In the system of self-onsistent DMFT+� equations[17, 19, 20℄, information on the �bare� band and disor-der sattering enter only at the stage of alulations ofthe loal Green's funtionGii =Xp G(";p); (7)where the full Green's funtion G(";p) is determinedby Eq. (3), while the self-energy due to disorder, inthe self-onsistent Born approximation, is de�ned byEq. (4). Then the loal Green's funtion takes the formGii = DZ�D d"0 N0("0)"+ �� "0 � �(")��2Gii == DZ�D d"0 N0("0)Et � "0 ; (8)where we introdue the notation Et = "+ � � �(") �� �2Gii. In the ase of semi-ellipti density ofstates (5), this integral is easily alulated in analytiform, and hene the loal Green's funtion is writtenas Gii = 2Et �pE2t �D2D2 : (9)It an be easily seen that Eq. (9) represents one of theroots of the quadrati equationG�1ii = Et � D24 Gii; (10)orresponding to the orret limit of Gii ! E�1t for anin�nitely narrow band (D ! 0). ThenG�1ii = "+ �� �(")��2Gii � D24 Gii == "+ �� �(")� D2eff4 Gii; (11)where we introdue Deff as the e�etive half-width ofthe band (in the absene of eletroni orrelations, i. e.,for U = 0) widened by disorder sattering:Deff = Dr1 + 4�2D2 : (12)1222



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Attrative Hubbard model : : :Equation (10) was obtained from (8), and hene om-paring (11) and (10), we obtain:Gii = DeffZ�Deff d"0 ~N0("0)"+ �� "0 � �(") ; (13)where ~N0(") = 2�D2effqD2eff � "2 (14)represents the density of states in the absene of theinteration U �dressed� by disorder. This density ofstates remains semi-ellipti in the presene of disorder,and therefore all e�ets of disorder sattering on single-partile properties of the disordered Hubbard model inthe DMFT+� approximation redue to only disorderwidening of the ondution band, i. e., to the replae-ment D ! Deff .4. DISORDER INFLUENCE ON THESUPERCONDUCTING TRANSITIONTEMPERATUREThe superonduting transition temperature T isnot a single-partile harateristi of the system. TheCooper instability determining T is related to the di-vergene of a two-partile loop in the Cooper hannel.In the weak-oupling limit, when superondutivity isdue to the appearane of Cooper pairs at T, disor-der only slightly in�uenes superondutivity with thes-wave pairing [27, 28℄. The so-alled Anderson theo-rem is valid and hanges of T are onneted only withthe relatively small hanges of the density of states bydisorder. The standard derivation of the Anderson the-orem [27, 28℄ uses the formalism of exat eigenstates ofan eletron in the random �eld of impurities. Here,we present another derivation of the Anderson theo-rem, using the exat Ward identity, whih allows us toderive the equation for T, whih is then used to alu-late T in the Nozieres�Shmitt-Rink approximation ina disordered system.In general, the Nozieres�Shmitt-Rink approah [3℄assumes that orretions due to strong pairing attra-tion signi�antly hange the hemial potential of thesystem, while possible orretions due to this inter-ation to the Cooper instability ondition an be ne-gleted, and we an therefore always use the weak-oupling (ladder) approximation. In that approxima-tion, the Cooper instability ondition in the disorderedHubbard model takes the form1 = U�0(q = 0; !m = 0); (15)

where�0(q = 0; !m = 0) = TXn Xpp0 �pp0("n) (16)represents the two-partile loop (suseptibility) in theCooper hannel �dressed� only by disorder sattering,and �pp0("n) is the averaged two-partile Green's fun-tion in the Cooper hannel (!m = 2�mT and "n == �T (2n + 1) are the usual boson and fermion Mat-subara frequenies).To obtain Ppp0 �pp0("n), we use the exat Wardidentity, derived by us in Ref. [23℄:G("n;p)�G(�"n;�p) = �Xp0 �pp0("n)�� (G�10 ("n;p0)�G�10 (�"n;�p0)): (17)Here, G("n;p) is the impurity-averaged single-partileGreen's funtion (not ontaining Hubbard inter-ation orretions!). Using the obvious symmetry"(p) = "(�p) and G("n;�p) = G("n;p), we obtainfrom the Ward identity (17) thatXpp0 �pp0("n) = �PpG("n;p)�PpG(�"n;p)2i"n ; (18)and hene for Cooper suseptibility (16) we have�0(q = 0; !m = 0) == �TXn PpG("n;p)�PpG(�"n;p)2i"n == �TXn PpG("n;p)i"n : (19)Performing the standard summation over Matsubarafrequenies [25℄, we obtain�0(q = 0; !m = 0) = � 14�i 1Z�1 d"�� PpGR(";p)�PpGA(";p)" th "2T == 1Z�1 d" ~N(")2" th "2T ; (20)where ~N(") is the density of states (U = 0) �dressed�by disorder sattering. In Eq. (20), the energy " is ref-erened to the hemial potential, and if we referene itto the enter of the ondution band, we have to replae"! "� �, suh that Cooper instability ondition (15)leads to the following equation for T:1223
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Fig. 1. Dependene of the density of states on disorderin the model with a semi-ellipti band, jU j=2D = 0:8,I=2D = 0:051 = U2 1Z�1 d" ~N0(") th(("� �)=2T)"� � ; (21)where ~N0(") is again the density of states (alulatedat U = 0) �dressed� by disorder sattering. At thesame time, the hemial potential of the system at dif-ferent values of U and � should be determined fromDMFT+� alulations, i. e., from the standard equa-tion for the number of eletrons (band �lling) deter-mined by the Green's funtion in Eq. (3), whih allowsus to �nd T for the wide range of model parameters,inluding the BCS-BEC rossover and strong-ouplingregions, as well as for di�erent levels of disorder. Thisre�ets the physial meaning of the Nozieres�Shmitt-Rink approximation: in the weak-oupling region, thetransition temperature is ontrolled by Cooper instabil-ity equation (21), while in the limit of strong-oupling,it is determined as the BEC temperature ontrolledby the hemial potential. Thus, the joint solution ofEq. (21) and the equation for the hemial potentialguarantees the orret interpolation for T through theBCS�BEC rossover region. This approah gives theresults for the ritial temperature that are quantita-tively lose to the exat results obtained by diret nu-merial DMFT alulations [13℄, but demands muhless numerial e�ort.We stress that we have used the exat Ward iden-tity, whih also allows using Eq. (21) in the region ofstrong disorder, when the e�ets of Anderson loal-ization may beome relevant. Equation (21) demon-strates that the ritial temperature depends on disor-

der only through the disorder dependene of the den-sity of states ~N("), whih is the main statement of theAnderson theorem. In the framework of the Nozieres�Shmitt-Rink approah, Eq. (21) is also preserved inthe strong-oupling region, when the ritial tempera-ture is determined by the BEC ondition for ompatCooper pairs. In this ase, the hemial potential �entering Eq. (21) may signi�antly depend on disorder.However, in the DMFT+� approximation, this depen-dene of the hemial potential (as well as of any othersingle-partile harateristi) in the model with a semi-ellipti density of states is only due to disorder wideningof the ondution band. Thus, in both the BCS�BECrossover and strong-oupling regions, the generalizedAnderson theorem atually remains valid. Aordingly,in the model of a semi-ellipti band, Eq. (21) leadsto a universal dependene of T on disorder, due tothe hange D ! Deff . Suh universality is fully on-�rmed by numerial alulations of T in this model,performed in Ref. [24℄ (f. also the results presentedbelow). 5. MAIN RESULTSWe now disuss the main results of our numerialalulations, expliitly demonstrating the universal be-havior of single-partile properties and the superon-duting transition temperature with disorder. We seebelow that all disorder e�ets are e�etively ontrolled,in fat, only by the growth of the half-width of ondu-tion band, whih for a semi-ellipti density of states isgiven by Eq. (12). In the ase of the band with a �atdensity of states, the growth of disorder hanges theshape of the density of states, making it semi-elliptiin the limit of su�iently strong disorder, while thee�etive half-width of the band is given by (f. Ap-pendix A)DeffD =r1 + �2D2 ++ 12 �2D2 ln p1 +�2=D2 + 1p1 +�2=D2 � 1! : (22)As an example of the most important single-partileproperty, we take the density of states. In Fig. 1, weshow the evolution of the density of states with disor-der in the model of a semi-ellipti band [13℄. We ansee that the growth of disorder smears the density ofstates and widens the band. This smearing somehowmasks the peuliarities of the density of states due toorrelation e�ets. In partiular, both the quasipar-tile peak and the lower and upper Hubbard bands,1224
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(U=2D � 1), disorder slightly suppresses T (urves1 ). At intermediate ouplings (U=2D � 1), weak dis-order inreases T, while the further inrease in disor-der suppresses the ritial temperature (urves 3 ). Inthe strong-oupling region (U=2D � 1), the growthof disorder leads to a signi�ant inrease in the rit-ial temperature (urves 5 ). However, we an easilysee that suh a ompliated dependene of T on dis-order is ompletely determined by the disorder widen-ing of the �bare� (U = 0) ondution band, demon-strating the validity of the generalized Anderson the-orem for all values of U . In Fig. 4, the urve withotagons shows the dependene of the ritial temper-ature T=2D on the oupling strength U=2D in the ab-sene of disorder (� = 0) for both models of �bare� on-dution bands, semi-ellipti (Fig. 4a) and �at (Fig. 4b ).We an see that in both models, in the weak-ouplingregion, the superonduting transition temperature iswell desribed by the BCS model (in Fig. 4a), thedashed urve represents the result of the BCS model,with T de�ned by Eq. (21), with the hemial poten-tial independent of U and determined by the quarter-�lling of the �bare� band), while in the strong-ouplingregion, the ritial temperature is determined by theBEC ondition for Cooper pairs and dereases as t2=Uas U inreases (inversely proportional to the e�etivemass of the pair), passing through the maximum atU=2Deff � 1. The other symbols in Fig. 4a show10 ÆÝÒÔ, âûï. 6 1225
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ÆÝÒÔ, òîì 147, âûï. 6, 2015 Attrative Hubbard model : : :6. CONCLUSIONIn this paper, in the framework of the DMFT+�generalization of dynamial mean �eld theory, we havestudied the disorder in�uene on single-partile proper-ties (e. g., the density of states) and the superondut-ing transition temperature in the attrative Hubbardmodel. Calulations were done for a wide range of at-trative interations U , from the weak-oupling regionU=2Deff � 1, where both instability of the normalphase and superondutivity are well desribed by theBCS model, to the strong-oupling limit U=2Deff � 1,where the superonduting transition is determined byBose�Einstein ondensation of ompat Cooper pairsforming at temperatures muh higher than the super-onduting transition temperature. We have shown an-alytially that for the ondution band with a semi-ellipti density of states, whih is a good approxima-tion in the three-dimensional ase, disorder in�uenesall single-partile properties in a universal way: allhanges of these properties are only due to the disorderwidening of the band. In the model of the ondutionband with a �at density of states, whih is appropriatefor two-dimensional systems, there is no universality inthe region of weak disorder. However, the main e�etsare again due to the general widening of the band andomplete universality is restored for high enough dis-order, when the density of states e�etively beomessemi-ellipti.To study the superonduting transition tempera-ture, we have used the ombination of the DMFT+�approah and the Nozieres�Shmitt-Rink approxima-tion. For both models of the ondution band, disorder-ing the density of states may either suppress the riti-al temperature T (in the region of weak oupling) orsigni�antly inrease it (in the strong-oupling region).However, in all these ases, we have atually provedthe validity of the generalized Anderson theorem, andhene all hanges of the transition temperature are infat ontrolled only by the e�ets of general disorderwidening of the ondution band. In the ase of theinitial semi-ellipti band, the disorder in�uene on Tis ompletely universal, while in the ase of the initial�at band, suh universality is absent at weak disorder,but is ompletely restored for high enough disorder lev-els.Finally, we present some additional ommentson the methods and approximations used. Both theDMFT+� and Nozieres�Shmitt-Rink approahesrepresent etrain approximate interpolation shemes,stritly valid only in the orresponding limit ases(e. g., small disorder or small (large) U). However,

both shemes demonstrate their e�etiveness also inthe ase of intermediate values of U and intermediate(or even strong) disorder. Atually, the e�etiveness ofthe Nozieres�Shmitt-Rink approximation (negletingU orretions in the Cooper hannel) was veri�ed byomparison with the diret DMFT alulations [13℄.The use of DMFT+� to analyze the disorder ef-fets in the repulsive Hubbard model was shown toprodue reasonable results for the phase diagram,ompared to exat numerial simulations of disorderin DMFT, inluding the region of large disorder(the Anderson loalized phase) [19�21℄. However,the role of the approximations made in DMFT+�,suh as the neglet of the interferene of disorder sat-tering and orrelation e�ets, deserves further studies.This paper is supported by the RSF grantNo. 14-12-00502. APPENDIX AFor the band with a �at density of states (at U = 0and � = 0), disorder leads both to widening of theband and to a hange of the form of the density ofstates. Taking the density of states in the form givenby Esq. (6), we alulate the loal Green's funtion asGii = 12D DZ�D d"0 1"� "0 ��2Gii == 12D ln�"��2Gii +D"��2Gii �D� ; (A.1)where the energy " is referened to the middle ofthe �bare� band. We introdue the auxiliary notationGii = R� iI . At the band edges, I ! 0, and thereforeexpanding the r.h.s. of Eq. (A.1) up to linear terms inI , we obtainR� iI � 12D ln�"��2R+D"��2R�D��� iI �2("��2R)2 �D2 : (A.2)Equating the real parts in (A.2), we obtainR = 12D ln�"��2R+D"��2R�D� :Similarly, equating the imaginary parts at the bandedges, we obtain "��2R = �pD2 +�2, and substi-tuting this expression into the logarithm in the preed-ing expression, we �nd R and the band edge positionsat1227 10*



E. Z. Kuhinskii, N. A. Kuleeva, M. V. Sadovskii ÆÝÒÔ, òîì 147, âûï. 6, 2015" = � pD2 +�2 ++ �22D ln pD2 +�2 +DpD2 +�2 �D!! : (A.3)Thus, the half-width of the band Deff widened by dis-order in this model is determined by Eq. (22) usedabove.We note that although the Born approximation fordisorder sattering that we use is formally valid onlyfor small disorder � � D, the e�ets of Anderson lo-alization at large disorder � � D do not qualitativelyhange the density of states [27℄, and hene the Bornapproximation gives qualitatively orret results alsoin the region of large disorder. Atually, this approx-imation neglets only the appearane of exponentiallysmall �tails� in the density of states, outside the �mean�eld� band edges [27℄ and gives more or less orretresults inside suh a band.At large enough disorder, almost any �bare� bandwidth 2D and an arbitrary density of states N0(") a-quires a semi-ellipti density of states. In the limit ofvery large disorder �� D, almost in the whole band,widened by disorder, we have j"��2Rj � D and in theexpression for the loal Green's funtion we an negletthe "0-dependene in the denominator of the integrand:R� iI = Gii = 1Z�1 d"0 N0("0)"� "0 ��2Gii �� 1"��2R+ i�2I : (A.4)Then we immediately obtain"��2R = "2 ; I = 12�2p4�2 � "2 (A.5)whene the density of states �dressed� by disorderN(") = � 1� ImGii = I� = 2�(2�)2p(2�)2�"2 (A.6)beomes semi-ellipti, Eq. (5), with the half-widthDeff = 2�. Thus, at strong enough disorder, any�bare� band beomes semi-ellipti, restoring the uni-versal dependene of single-partile properties on dis-order disussed above. In this sense, the model of the�bare� band with a semi-ellipti density of states is mostappropriate for the studies of the e�ets of strong dis-order. REFERENCES1. D. M. Eagles, Phys. Rev. 186, 456 (1969).
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