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We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle
quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the
loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord.
When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

DOI: 10.7868,/50044451015010022
1. INTRODUCTION

The protocols of quantum dense coding [1], quan-
tum teleportation [2], and quantum key distribution
[3] are viewed as the beginning of discoveries of quan-
tum communication strategies. These protocols can be
effectively used to transmit classical or quantum in-
formation in a way that cannot be realized with their
classical counterparts. Thus, they have created a very
substantial change in the attitude to modern communi-
cation schemes. Such protocols are initially introduced
for a single sender and a single receiver, and have been
realized experimentally in several physical systems such
as photons, trapped ions, atoms in optical lattices, nu-
clear magnetic resonance, etc. [4-9]. However, fruit-
ful applications and commercialization of these proto-
cols require the implementations of these protocols in
a multipartite scenario [10]. For example, quantum
dense coding, which is used to transmit classical in-
formation, has already been introduced in multipartite
systems [11, 12].

Quantum correlations occupy a central position in
the quest for understanding and harnessing the power
of quantum mechanics. Previously, entanglement has
been successfully employed to interpret several phe-
nomena that cannot be understood within classical
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physics [13]. It has also been identified as the vital ele-
ment for the success of quantum communication proto-
cols [10] and the essential ingredient of quantum com-
putational tasks [14]. Therefore, entanglement is re-
garded as a unique quantum mechanics trait and con-
sidered synonymous with quantum correlations. Con-
versely, several recent studies have found that separable
(i.e., not entangled) states may retain some signatures
of quantumness with potential applications to quan-
tum technology [15-20]. Quantum discord [21, 22] is
one of these signatures. The dynamics of quantum dis-
cord [23-31] and its physical meaning [32, 33| are ex-
tensively studied. Experiments on quantum discord are
also implemented [34, 35]. Recently, generalization of
quantum discord to multipartite systems has received
much attention [36, 37, 38].

To answer the question of whether quantum discord
is merely a mathematical construct or has a definable
physical role in information processing, the link be-
tween quantum discord and actual quantum tasks has
been investigated [32, 33, 39-42]. An operational mean-
ing of geometric quantum discord is given in terms of
teleportation fidelity [40]. For three-qubit pure states,
a complementarity relation is established between the
capacity of multiport classical information transmission
via quantum states and multiparty quantum correla-
tion measures [41]. Inspired by the question, we relate
quantum discord to the quantum dense coding capacity
in this paper. Moreover, the understanding of quan-
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tum discord of multipartite systems, i.e., systems of
more than two particles, is still limited, due to their
structural complexity. Therefore, we consider the re-
lation between quantum discord and quantum dense
coding capacity for (n + 1)-particle quantum states.
In the scenario of a single sender and n receivers, we
establish a necessary condition of a vanishing discord
monogamy score based on the quantum dense coding
capacity. Furthermore, in the same and the contrary
scenarios, the relations between quantum discord and
the loss of quantum dense coding capacity due to de-
coherence are given. The contrary scenario means that
there are n senders and only a single receiver.

The paper is organized as follows. We begin with
reviews of quantum dense coding capacity and the def-
inition of quantum discord in Sec. 2. In Sec. 3, we
give a necessary condition for the vanishing discord
monogamy score. In Sec. 4, we establish the rela-
tion between quantum discord and the loss of quantum
dense coding capacity due to decoherence. We present
a conclusion in Sec. 5.

2. QUANTUM DENSE CODING CAPACITY
AND QUANTUM DISCORD

Quantum dense coding is a quantum communica-
tion protocol by which classical information can be
transmitted beyond the classical capacity of a quantum
channel. The quantum channel together with a shared
quantum state is the available resources for the trans-
mission. Let the sender, called Alice, and the receiver,
called Bob, share a bipartite quantum state psp. The
amount of classical information that the sender can
send to the receiver is given by [11,12,43-47]

C(A,B) = Clpap) =logy da+5(pp)=S(pan), (1)
where d4 is the dimension of Alice’s Hilbert space,
pe = Tra(pap), and S(p) = —Trplog, p is the von
Neumann entropy of its argument. The conditional
entropy S(pajp) = S(pan) — S(ps) in the equation
can have any sign. In the case where the conditional
entropy is negative, the sender can transmit classical
information beyond the “classical limit”, i.e., log, d4,
bits to the receiver. For example, when a maximally
entangled state is shared between Alice and Bob, the
capacity C(A, B) reaches the maximal value. On the
contrary, in the case where the conditional entropy is
positive, the sender must use a noiseless quantum chan-
nel without using a shared quantum state, which is usu-
ally referred to as the “classical protocol”, to transfer
log, d4 bits of classical information.
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We now pass to a brief review of the definition of
quantum discord. Quantum discord, defined as the
minimum difference between two expressions of mutual
information extended from a classical to a quantum
system, is introduced to characterize all the nonclassi-
cal correlations presented in a bipartite system [21, 22].
The von Neumann mutual information Z for a bipartite
system is given as

Z(A,B) = Z(pag) = S(pa) + S(pB) — S(pap). (2)

The mutual information is used to quantify the total
correlations.

Conditioned on a complete set of von Neumann
measurement IT7 (or, more generally, positive-operator
valued measures (POVMs)) performed on subsystem
B, the alternative version of quantum mutual informa-
tion is

J(A,B) = J(pag) = S(pa) — g{HiB}(pAlB) =
= S(pa) — {IrnliBfl}’piS(pA\i). (3)

In the equation, the probability of outcome i is

pi=Trap(Ia @ MPpapls @ P),

and the corresponding post-measurement state for the
subsystem A is

paji =Tep(Ia @ TP papls @ IP) /p;

with I4 being the identity operator on the Hilbert space
of subsystem A. Generally, 7 (A, B) is used to measure
the classical correlations in bipartite systems.

Even though the two definitions of mutual informa-
tion are equivalent for classical systems, their quantum
generalizations Z and 7 do not coincide in general, and
quantum discord is defined as their discrepancy

D(A,B) =D(pa) = L(pas) — T (paB).  (4)

Quantum discord measures the quantum nature of cor-
relations between two subsystems, and it is always non-
negative. Moreover, quantum discord is in general
asymmetric with respect to A and B.

In the subsequent sections, we use S(A, B) to de-
note S(pap), and similarly for other quantities.

3. NECESSARY CONDITION FOR THE
VANISHING DISCORD MONOGAMY
SCORE

In multipartite quantum states, the sharing of
quantum correlations among subsystems is often con-
strained by the concept of monogamy. More precisely,
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a bipartite quantum correlation measure Q is said to
be monogamous for a (n + 1)-particle state pag, B,..B,
if

Q(pa|BiBs...B,) > Qpan,) +

+ Q(paB,) + ...+ Qpam,). (5)

Here, A is used as the “nodal observer”,

Q(pap,) = Q(Trp,. B, (pABBs...B,))

denotes the quantum correlation (with respect to the
measure Q) between the subsystems A and B, and
similarly for others, and Q(pa|p,B,..B,) measures
quantum correlation of the state in the A|ByBs ... B,
bipartite split. When entanglement is quantified by
concurrence, such a relation is indeed satisfied, which
indicates that two parties cannot have a large amount
of entanglement shared with the third party if they are
highly entangled [48-51]. As regards quantum discord,
Bai et al. [52] proved that the monogamy relation is
only satisfied for three-qubit pure states.

The concept of quantum monogamy score, which
is independent of whether the given bipartite quantum
correlation measure is monogamous, is defined as

60 = Q(A|BBs...B,) — Q(A, By) —
— Q(A,By) —...— Q(A, By).

For quantum discord, the discord monogamy score is
given as

6p = D(A|B\Bs...By,) — D(A, By) —

—D(A,By) —...—D(A,B,). (6)

Now, we present a condition for a vanishing discord
monogamy score based on the quantum dense coding
capacity. We consider a pure or mixed (n 4 1)-particle
state pap, B,...B, in which the particles can have arbi-
trary dimensions; a necessary condition for the discord
monogamy score to vanish is

D(A|B1Bs ... By) + J(A, By) +
+J(A,Bo) + ...+ J(A,By) <

< C(A,B))+C(A,By) +...+ C(A,B,). (7)

The condition can be obtained easily. Based on the
definition of quantum discord

D(A,B;) =Z(A,B;) — J(A, B;) =
S(A) + S(B;) — S(A,B;) — J(A, By),
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a vanishing discord monogamy score implies that

D(A|B1Bs...B,) + J(A,By) +
+J(A,By) +...+ J(A,B,) =
= S(A)+ S(By) — S(A,By) + S(A) + S(Bs) —
—S(A,By) + ...+ S(A)+ S(B,) — S(A,B,), (8)

where we note that S(A) < log, da, and substitute it
into the above equation. From the expression for quan-
tum dense coding capacity in Eq. (1), we then obtain
the required condition.

This result is not only a necessary condition for the
vanishing discord monogamy score but also indicates
that the quantum discord between a single sender and
the whole n receivers together with the total classical
correlations between the sender and each receiver are
bounded above by the sum of quantum dense coding
capacities between the sender and each receiver.

Because the definitions of quantum discord and
quantum dense coding capacity are suitable for bipar-
tite states in arbitrary dimensions, it is worth noting
that the condition of a vanishing discord monogamy
score in Eq. (7) is independent of the dimensions of the
particles involved. Actually, the results that we obtain
here and in the subsequent sections work for particles
of arbitrary dimensions.

In the particular case of three-particle states
PAB, B,, the condition reduces to

D(A|B132) + j(A,Bl) + j(A,B2) S 210g2 dA. (9)

To obtain the result, we note that

C(A,B1)+ C(A, Bs) =2logy, da + S(By) —
— S(A,B1) + S(B2) — S(A, By)
and
S(B1) —S(A,B1)+ S(B2) — S(A,B>) <0

according to the strong subadditivity of von Neumann
entropy [53]. Equation (9) is the necessary condition of
a vanishing discord monogamy score for three-particle
quantum states. Moreover, the complementarity re-
lation established above clearly indicates that much
more total classical correlations between the sender and
each receiver decrease the quantum discord between the
sender and all the receivers.

4. QUANTUM DISCORD BEING A LOWER
BOUND OF THE LOSS OF QUANTUM
DENSE CODING CAPACITY

In practice, implementation of a quantum informa-
tion protocol is inevitably affected by loss and noise,
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and we consider the case where decoherence occurs only
at the receiver’s end. Physically, the environmental de-
coherence could be emulated by a particular quantum
operation for which there is a unitary coupling between
the receiver’s qubit B; and an ancillary environment
system R;, and then R; is traced out.

First of all, the size of the Hilbert space should be
expanded in order to model quantum measurement, (or
an other quantum operation) by coupling to the ancil-
lary subsystem and then discarding it. The ancilla R;
is initially assumed in a pure state |0);, while there is
a unitary interaction U; between B; and R;. We let
primes denote the state of the system after U; is ap-
plied. Because R; acts on a product state with AB;,
we have S(A,B;) = S(A',BIR}) and Z(A, B;R;) =
=TI(A', B/R}). Because the mutual information cannot
increase by discarding the ancillary system, we obtain
that Z(A', B}) < Z(A', BIR}).

We now consider quantum dense coding with a sin-
gle sender and n receivers in an (n + 1)-particle state
in the presence of the R;. The yield of quantum dense
coding on system ABj...B, is the same as that of
quantum dense coding on system AB; ... B,R; ... Ry,
in which B; interacts coherently with R; through a
unitary interaction U;. Here, each environment R; is
initially prepared in a pure state. Discarding the an-
cillary system leads to Z(A', Bl) < Z(A', BIR}). At
the same time, Z(A', BIR}) = Z(A, B;R;) = Z(A, B;).
Hence, Z(A',B]) < ZI(A,B;), which indicates that
S(A'|B)) > S(A|By).

With and without decoherence, the quantum dense
coding capacity between the sender and the ith receiver
is respectively expressed as C(A, B;) and C(A’, B}).
The difference between them is

D(A,B;) =C(A,B;) —C(A",B]) =
— S(By) - S(A, B;) — (S(B) - S(A', B})) =
— S(A'|B)) - S(A[B,).

Obviously, D quantifies the loss of quantum dense cod-
ing capacity due to environmental decoherence.

We now minimize D over all environmental opera-
tions by performing measurements [39, 42]. Based on
the measurement model of quantum operations [54],
the state pap, changes to pyp. = Zj pjpa); ©IL; under
measurement of subsystem B;, where {II;} are orthog-
onal projectors resulting from a Neumark extension of
the POVM elements [55]. Therefore, we can obtain
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S(AI,BI) S(pAB ZpJpA\J ®H =
= H(p;) + ijS(PA\j) (10)
and
S(B)) = ij Hipy), (1)

where H(p;) —>_;pjlogypj. In obtaining the
above equation, we note that the unconditioned post-
measurement, states of A and B; are respectively given

by
pa=> pipay and py = p;ll;
7 7
0) and (11
Zp] PA\J

Subsequently, D(A, B;) reduces to D(A, B;), which is
the quantum discord of system AB;, by minimizing
over all POVMs. Therefore, we can conclude that
quantum discord quantifies the minimal loss in quan-
tum dense coding due to decoherence, and we have

Combining Eqgs. (1 ), we obtain

S(A'|BY) (12)

Applying the above equation to an quantum dense
coding protocol with an (n + 1)-particle quantum state
PAByB,...B,, With one sender and n receivers, we ob-
tain the relation between quantum discord and dense

coding capacity
Y C(AB) - CA,
2 K3

The above equation indicates that due to the decoher-
ence at the receivers’ end, the loss of the sum of quan-
tum dense coding capacities is not less than the sum
of quantum discords between the sender and each re-
ceiver.

B) >3 D(4,B). (14)

We consider a special case of a three-particle quan-
tum state. We then obtain a much simpler result:

C(A,By)+C(A,By) > C(A',B]) + C(A',B}) +

+D(A,By) + D(A, By).

Because C(A, By) + C(A, B2) < 2log, da [53], we ob-
tain

< 2log,da. (15)
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The complementarity relation indicates that a much
more total quantum discord between the sender and
each receiver decreases the sum of quantum dense cod-
ing capacities after the effect of decoherence.

Similarly, in the opposite case where there are n re-
ceivers and a single sender in an (n + 1)-particle quan-
tum state pa, 4,...4, B, according to the same procedure
as that used in obtaining Eq. (14), we can obtain

> C(A;,B) = > C(A}j,B) > > D(A;,B), (16)

where we still assume that particle B distributed to
the receiver is affected by the environment. From the
equation, we note again that the loss of the sum of
quantum dense coding capacities is bounded below by
the sum of quantum discord between each sender and
the single receiver. In particular, for the three-particle
quantum state pa, 4,8, in which 4; and A» belong to
the senders and B belongs to receiver, the above rela-
tion can be simplified to

C(A},B") +C(A},B") + D(A1,B) + D(A42,B) <
< C(A1,B)+C(A2,B) < C(A1 Ay : B), (17)

where C'(A1 A : B) denotes the quantum dense coding
capacity of A;As to B, and

C(A1A2 : B) = IOgQ(dAldAQ) + S(B) — S(Al,AQ).

The strong subadditivity of the von Neumann entropy

S(B) — S(A1,B) + S(B) — S(43,B) <
< §(B) — S(A142, B)

should be used to obtain the second inequality.

5. CONCLUSION

Summarizing, we have established the relations be-
tween quantum discord and quantum dense coding ca-
pacity in (n + 1)-particle quantum states, independent
of the dimensions of the particles. Especially, a nec-
essary condition for the vanishing discord monogamy
score is given. When the result is restricted to three-
particle quantum states, a complementarity relation
between quantum discord and classical correlation is
established. We also find that the loss of the sum of
quantum dense coding capacities between the sender
and every receiver is always bounded below by the
sum of quantum discord in a distributed dense coding
protocol with a single sender and n receivers. For the
particular three-particle quantum states, the result is
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reduced to a complementarity relation between quan-
tum discord and the quantum dense coding capacity
involving decoherence. A similar result can also be
obtained in a distributed dense coding protocol with n
senders and a single receiver. In other words, between
every sender and a single receiver, the sum of quantum
discords is a lower bound of the loss of the sum of
quantum dense coding capacities.
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