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DYNAMICS OF EXCITED INSTANTONS IN THE SYSTEM OFFORCED GURSEY NONLINEAR DIFFERENTIAL EQUATIONSF. Aydogmus *Department of Physis, Faulty of Siene, Istanbul University34452, Istanbul, TurkeyReeived July 13, 2014The Gursey model is a 4D onformally invariant pure fermioni model with a nonlinear spinor self-oupled term.Gursey proposed his model as a possible basis for a unitary desription of elementary partiles following the�Heisenberg dream�. In this paper, we onsider the system of Gursey nonlinear di�erential equations (GNDEs)formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey in-stantons an be a�eted by exitations. For this, the regular and haoti numerial solutions of fored GNDEsare investigated by onstruting their Poinaré setions in phase spae. A hierarhial luster analysis methodfor investigating the fored GNDEs is also presented.DOI: 10.7868/S00444510150200541. INTRODUCTIONSolitons were disovered in the 19th entury asnondissipating surfae waves on water and were laterrealized to obey nonlinear wave equations [1℄. Duringthe past forty years, a rather omplete desription ofsolitons has been developed by the produtive ollabo-ration of mathematiians and physiists. In mathemat-ial physis, the amount of information on nonlinearwave phenomena obtained using solitons is quite high.Today it is known that solitons play an important rolein many areas, ranging from ondensed matter physisto osmology.There are four leading soliton types: instanton,monopole, vortex, and kink ones. Instantons have a�nite ation with zero energy, and they have been on-sidered as on�gurations of quantum �elds that pro-vide a tunnelling e�et between the vauums that havedi�erent topologies in spae�time. This property of in-stantons is espeially interpreted to overome the quarkon�nement problem. Before the instanton solutionswere disovered in 1975 by Belavin, Polyakov, Shwarz,and Tyupkin [2℄ in the Yang�Mills theory, this theory ofstrong interations appeared to have a symmetry thatdid not exist in nature; this was known as the axialU(1) problem and was solved by 't Hooft, who realized*E-mail: fatma.aydogmus�gmail.om

that it may even be the most important e�et of in-stanton solutions to break the unwanted symmetry [3℄.This was the �rst example of an extended lassial solu-tion having a physial onsequene in the �eld theoryof partile physis. In reent years, one of the mostpowerful uses of instantons is in the various topis ofboth QCD and eletroweak theory. Although they playan important role in the interfae region between par-toni and hadroni desription of strong interationstheoretially, diret experimental evidenes for instan-tons have being laking until now. However, a are-ful analysis of Large Hadron Collider (LHC) data atCERN might bring experimental on�rmation of suhproesses [4℄.After the suess of the Dira equation in the de-sription of eletron dynamis, the �rst work on mod-els inluding only spinors goes bak to Heisenberg [5℄.Heisenberg spent his years to formulate a �theory of ev-erything� using only fermions. A few deades later, asa possible basis for a unitary desription of elementarypartiles, Gursey proposed a new spinor wave equa-tion that is similar to Heisenberg's nonlinear generaliza-tion of the Dira equation but in addition exhibits in-variane with respet to onformal transformations [6℄.Gursey had to use a nonpolynomial form in order towrite a onformally invariant Lagrangian. Gursey'smodel possesses broader dynamial symmetries om-pared to Dira's and Heisenberg et al.'s works. Moreimportantly, Gursey's work is suitable for extensionsto other partiles with spin [6℄. In the same year, Ko-240



ÆÝÒÔ, òîì 147, âûï. 2, 2015 Dynamis of exited instantons in the system : : :rtel found some lassial solutions of Gursey's onfor-mal invariant spinor wave equation via the Heisenbergansatz [5; 7℄, whih muh later were shown to be in-stantons (Gursey instantons) by onsidering onformalsymmetry breaking, whih means that h0j  j0i 6= 0[8℄. The Gursey model is very important beause of thesimilarity of these solutions to solutions of pure Yang�Mills theories in four dimensions. As a possible passageto the quantum level, the Poisson braket struture ofthis model has also been proposed by the introdutionof auxiliary salar �elds and using the Dira methodfor onstrained systems [9℄. In Ref. [10℄, a Soler-typesoliton solution [11℄ of the Gursey model with a massterm was given and its phase spae behavior was inves-tigated [12℄.On the other hand, very reently, the stability be-havior of Gursey instantons around their bifurationpoints in phase spae has been investigated by usingthe system of Gursey nonlinear di�erential equations(GNDEs) in a Eulidean on�guration with the Heisen-berg ansatz. Moreover, the role of the oupling on-stant has been disussed [13; 14℄.In this paper, we again onsider the GNDEs us-ing the Heisenberg ansatz. We use this system to un-derstand how the behavior of Gursey instantons anbe a�eted by exitation. For this, we �rst look forthe stability haraterization of Gursey instantons andthen investigate the regular and haoti numerial so-lutions of fored GNDEs by onstruting their Poinarésetions in phase spae. We also built the bifurationdiagram of fored GNDEs to �nd the ritial value ofthe foring frequeny as the ontrol parameter. Besidesthis, a hierarhial luster analysis method of investi-gation is presented to reinfore our onlusions.2. GURSEY'S CONFORMAL INVARIANTSPINOR WAVE EQUATION ANDINSTANTONSThe Gursey wave equation [6℄ is desribed by theonformal invariant LagrangianL = i =� + g(  )4=3; (1)where the fermion �eld  has sale dimension 3/2 andg is a positive dimensionless oupling onstant. Theonformal invariant spinor wave equation that followsfrom the above Lagrangian isi��� + g(  )1=3 = 0: (2)In Ref. [15℄,   for spinor-type instanton solutionsare also related to spontaneous symmetry breaking of

the full onformal group and   is then haraterizedby being invariant under the transformations of a spe-ial subgroup [16℄, whih in turn re�ets the �nal sym-metry properties of the ground state of the system asR�(  ) � ia �a2�x22 ��+(x�+2d)x�� (  ) = 0; (3)where R� = 12 �aP� + 1aD�� ; (4)and a is a parameter with the dimensions of length,P� is the momentum operator, and D� is a onfor-mal sale-invariant operator in the four-dimensionalEulidean spae�time. We then �nd that  = � ag(a2 + x2)for a solution related to the speial ase (instan-ton) [15℄ of a Eulidean on�guration of the Heisenbergansatz [5℄  = [ix���(s) + '(s)℄ ; (5)where  is an arbitrary spinor onstant and �(s) and'(s) are real funtions of s = x2� = r2 + t2 (x1 = x,x2 = y, x3 = z, x4 = t) in the Eulidean spae�time,i. e., r2 = x21 + x22 + x23. Substituting Eq. (5) in Eq. (2)withi=� = i��� == ��4�(s)� 2sd�(s)ds + 2ix�� d'(s)ds � ; (6)and (  )1=3 = �s�(s)2 + '(s)2� ()1=3; (7)we obtain the system of nonlinear di�erential equations4�(s) + 2sd�(s)ds � g()1=3 �� �s�(s)2 + '(s)2�1=3 '(s) = 0; (8a)2d'(s)ds + g()1=3 �s�(s)2 + '(s)2�1=3 �(s) = 0; (8b)where we write � = g(CC)1=3 for brevity. Substituting� = As��F (u) and ' = Bs��G(u), with u = ln s and� = � + 1=2, � = 3=4, and A2 = B2 [7℄, we obtain thedimensionless form of the system of nonlinear ordinaryoupled di�erential equations (8) as2dF (u)du + 32F (u)� �(AB)1=3 �� �F (u)2 +G(u)2�1=3G(u) = 0; (9a)4 ÆÝÒÔ, âûï. 2 241



F. Aydogmus ÆÝÒÔ, òîì 147, âûï. 2, 20152dG(u)du � 32G(u) + �(AB)1=3 �� �F (u)2 +G(u)2�1=3 F (u) = 0; (9b)where F and G are dimensionless funtions of u, andA and B are onstants [7℄. We all these equations theGursey nonlinear di�erential equations (GNDEs) andthe solutions of GNDEs with �(AB)1=3 = 1 are the�Gursey instantons� given in [8℄. It is di�ult to obtainthese exat solutions diretly, and therefore numerialsimulations were performed [13℄. Moreover, the role ofthe oupling onstant in the evolution of 4D spinor-type Gursey instantons in phase spae has been inves-tigated elsewhere via the Heisenberg ansatz [13; 14℄.For the stability haraterization of Gursey instan-tons, we �nd the �xed points of GNDEs as funtions of�(AB)1=3. They are � 3p3=28[�(AB)=3℄3=2 ;� 3p3=28[�(AB)=3℄3=2! : (10)The eigenvalues belonging to these �xed points are�� = �14 �9� 16�(AB)1=3FG(F 2 +G2)2=3 �� 803 �2(AB)2=3(F 2 +G2)2=3�1=2 : (11)Substituting the above �x points gives purely imag-inary eigenvalues for all �(AB)1=3 > 0. Hene, theequilibrium points are ellipti in harater. An ellip-ti �xed point has a losed orbit around it [13; 14℄. Asan be seen from Fig. 1 (plotted for �(AB)1=3 = 1),the phase-spae dynamis of Gursey instantons has anundamped Du�ng-type stability harateristi. Thisbehavior does not depend on the values of the ouplingonstant [13; 14℄.3. REGULAR AND CHAOTIC SOLUTIONS OFFORCED GNDEsThe main aim of this paper is to investigatethe harateristis of fored GNDEs by reporting thePoinaré setions on the dimensionless phase spae(F (u), G(u)) and the bifuration diagram to see howthe stable behavior of Gursey instantons an be a�etedby external foring.We rede�ne fored GNDEs by using a new onstant� � �(AB)1=3 as2dF (u)du + 32F (u)�� � �F (u)2 +G(u)2�1=3G(u) = 0; (12a)
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0.5 1.5 2.0 2.5 3.0 3.5Fig. 2. Bifuration diagram of fored GNDEs forF (0) = 1:29904, G(0) = 1:29904, H(0) = 0, anda = 1Its divergene is seen to vanish, and therefore the �owis onserved.It is known that bifuration means a fundamentalhange in the nature of a solution and the bifurationdiagram provides a useful way to show how the behav-ior of a nonlinear system hanges with the ontrol pa-rameter. For this, we build the bifuration diagram offored GNDEs with F (0) = 1:29904, G(0) = 1:29904,and a = 1 as the initial onditions (Fig. 2). At ! val-ues smaller than 1.8, the exited Gursey instantons ev-idently lose their stability and show haoti behavior.The end of haos is visible in the viinity of ! � 1:82(the ritial value).As is well known, the main traditional way for de-teting haos is the onstrution of a Poinaré se-tion that provides regular and haoti behavior re-gions. A regular Poinaré setion onsists of a few num-bers of points or losed orbits that respetively denotethe periodi or quasiperiodi trajetories. Numerousonfused points falling on the Poinaré setion meanhaos [17℄. In Fig. 3, the Poinaré setions for di�erent! values with the initial onditions F (0) = 1:29904,G(0) = 1:29904, a = 1 and � = 1 are shown. Thetransition from haos to regular behavior is seen at! � 1:821, in harmony with Fig. 2. Hene, we an on-lude that external foring having ertain frequeniesmay hange the stability harateristis of spinor-typeGursey instantons in phase spae for the same initialonditions. When the foring frequeny is low enough,the Gursey instanton annot maintain its stability forthe above initial onditions.Next, in Fig. 4, we illustrate the regular and haoti

behaviors of fored GNDEs for some random possibleinitial values keeping ! = 1:8 and � = 1. It is inter-esting that the obtained phase-spae display is typialfor Kolmogorov�Arnold�Moser-like (KAM) dynamis,i. e., some originally periodi solutions remain regularwhile others start to behave haotially [18℄. In Fig. 4,we show Poinaré setions for a = 0:2, a = 0:5, a = 1,and a = 1:325. For the weak driving in Fig. 4a, thesystem shows regular behavior. As we inrease thedriving, Fig. 4b shows that the haoti orbits appearin the region near the enter of the phase spae. Withthe driving inreased further, Figs. 4, d exhibit morehaoti regions.It is well known that haoti systems sensitivelydepend on the initial onditions, and the transitionsfrom regular states to haos are aused by insigni�anthanges in the initial onditions. To see this extremesensitivity of fored GNDEs to initial onditions, inFig. 5, we show the Poinaré setions orresponding toregular and haoti behaviors for the �xed parameters! = 0:8, a = 0:5, and � = 1 with two di�erent verylose initial onditions. As is seen from Fig. 5a, the�ow is a losed orbit, and hene the behavior is regularfor F (0) = 1:7 and G(0) = 3:67 (in fat, quasiperiodione). If we take another initial ondition whih is verylose to the �rst one (F (0) = 1:75 and G(0) = 3:7), weobserve haoti orbits in Fig. 5b.4. CLUSTER ANALYSIS OF FORCED GNDEsAs additional information, we study fored GNDEsusing the hierarhial luster analysis method. Hier-arhial methods usually produe a graphial outputknown as a dendrogram graph, whih shows the hier-arhial lustering struture [19℄. In Fig. 6, the den-drogram graphs belonging to hierarhial lustering oftime series for solutions of fored GNDEs are shown forthe �xed parameters a = 1 and � = 1 and the initialonditions F (0) = 1:29904 and G(0) = 1:29904 withseveral driving fore frequenies, ! = 1, 1.8, and 2. Inthese graphs, the x axis represents the similarity or or-relation perentages (0%�100%) belonging to our data,F (u) and G(u), and inreases to the right. Along the yaxis, the fusion of lusters due to similarities of F (u),G(u) data is reorded. For eah ! value, we plot thedendrogram graphs for all data values and give only thetrunated dendrogram graphs that are the summary ofthe �rst 20 mergers having the same similarity per-entage. For all ! values, lustering is gathered in twodi�erent main groups from the hierarhial standpoint.However, for ! = 1, there are �ve di�erent luster-243 4*
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