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The polarization effects in the one-meson radiative decay of a polarized 7 lepton, 7= — 7~ v, are investigated.
The inner bremsstrahlung and structural amplitudes are taken into account. The asymmetry of the differential
decay width caused by the 7-lepton polarization and the Stokes parameters of the emitted photon itself are
calculated depending on the polarization of the decaying 7 lepton. These physical quantities are estimated
numerically for an arbitrary direction of the 7 lepton polarization 3-vector in the rest frame. The vector and
axial-vector form factors describing the structure-dependent part of the decay amplitude are determined using

the chiral effective theory with resonances (RxT).
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1. INTRODUCTION

Ag is known, the 7 lepton is the only existing lep-
ton that, due to its large mass, can decay into final
states containing hadrons. The energy region of these
decays corresponds to the hadron dynamics described
by the nonperturbative QCD. Since the complete the-
ory of nonperturbative QCD is absent at present, the
phenomena in this energy region are described using
various phenomenological approaches. To test different
theoretical models, it is important to experimentally in-
vestigate the hadronization processes of weak currents.
The semileptonic 7-lepton decays are very suitable for
such investigations because the leptonic weak interac-
tion is well understood in the Standard Model (SM). A
review of the present status of 7 physics can be found
in Ref. [1].

In the last decade, experimental investigations of
the 7 lepton decays have been strongly extended due
to the construction of the B-factories (BaBar, Belle)
with a very high luminosity L ~ 103* cm™2 57" [2]. At
present, experiments at the B-factories led to the ac-
cumulation of the data sets of more than 10° 7-lepton
pairs [3]. Interesting results obtained at the B-factories
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revived the plans for constructing new facilities such as
SuperKEKB (Japan) and Super ¢-7 (Russia) [2, 4, 5].
These projects will use a new technique to collide the
electron—positron beams, which permits increasing the
existing luminosity by one or two orders of magnitude.
The designed luminosity is L ~ (1 —2)-10% em 2571
for the Super ¢ and L ~ 10%® cm=2 - 7! for the Su-
perKEKB [2]. Besides, the Super ¢-7 and SuperKEKB
factories can have a longitudinally polarized electron
beam with the polarization degree of more than 80 %,
which guarantees production of polarized 7 leptons.

This very high luminosity of the planned 7 factories
will allow performing precise measurements of various
decays of the 7 lepton and hence searching for the man-
ifestations of the new physics beyond the SM, such as
the lepton flavor violation, C'P/T violation in the lep-
ton sector, and so on.

The simplest semileptonic 7-lepton decay is 7= —
— 7 (K7 )v,, but in this case, the hadronization of
the weak currents is described by form factors at a
fixed value of the momentum transfer squared ¢ (the
difference of the 7~ and v, 4-momenta squared). The
dependence of the form factors on this variable can be
determined, in principle, in the transition W — 7(K)~,
where t is the squared invariant mass of the 7 (K )—y sys-
tem. This transition can be investigated in the 7-lepton
radiative decay 7= — 7 (K7 )v..
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The one-pseudoscalar-meson radiative T-lepton de-
cays have been investigated in a number of papers [4-9)].
The authors of Ref. [6] obtained an expression for the
double-differential decay rate for the 7= — v 77 de-
cay in terms of the vector v(t) and axial-vector a(t)
form factors. The numerical estimates were done for
real parameterizations of these form factors using the
vector-meson dominance approach. But the assump-
tion that the form factors are real functions is not gen-
erally true because these form factors are complex func-
tions in the time-like region of the momentum transfer
squared, which is the case for the considered decay.

The author of Ref. [7] has studied the radiative de-
cays 7~ — vy,m v and T — v,.p~ 7, obtained ana-
lytic formulas for the differential decay rates, and eval-
uated them assuming that the form factors are con-
stant. The authors of Ref. [8] have studied the de-
cays 7~ — v,m (K7)y. They obtained the photon
energy spectrum, the meson-photon invariant mass
distribution, and the integrated rates. The inner
bremsstrahlung contribution to the decay rate contains
infrared divergences and that is why the integrated de-
cay rates must depend on the photon energy cut-off
(or the meson—photon invariant mass cut-off). For the
photon energy cut-off 100 MeV, the integrated decay
rates R = (1 = v,my)/T(t — vym) = 1.4- 1072 [6]
and R = 1.0- 1072 [8] were obtained. We note that the
leptonic radiative decay of the 7 lepton 7= — p~v,v,y
was measured with the branching ratio 3.6 - 1073 [10].
Hence, we can expect that the one-pseudoscalar-meson
radiative 7-lepton decay 7~ — v,m "~ can also be mea-
sured experimentally, because theory predicts the value
for its branching ratio of the same order as for the
T= = p~v,vry decay.

Some polarization observables in the decay 7~ —
— vy~ y were considered in Ref. [9]. The general ex-
pressions for the Stokes parameters of the produced
photon have been calculated. The influence of the pos-
sible anomalous magnetic moment of the 7 lepton and
the existence of excited neutrinos on the matrix element
of this decay are briefly discussed. The authors showed
that a measurement of the dependence of the differen-
tial decay rate on the photon energy (at a fixed sum of
the photon and pion energies) allows determining the
moduli and phases of the form factors as functions of
the variable ¢.

The 7-lepton radiative decays 7= — v,7m~ (K~ )y
were also studied in Refs. [11,12] in the case of unpo-
larized particles. The light front quark model was used
to evaluate the form factors v(t) and a(t) describing the
structure-dependent contribution to these decays [11].
In the SM, the decay width was found to be
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T'=1.62-10"2(3.86- 10 *)T(r — v7)

for the photon energy cut-off 50 (400) MeV. The same
decays were studied in Ref. [12]. The photon energy
spectrum, the pion—photon invariant mass distribution,
and the integrated decay rate were calculated without
free parameters and the authors obtained the decay
width 1.46 - 1072(2.7 - 1073)['(r — vn) for the same
cut-off conditions.

The 7-lepton decay in the case of a virtual pho-
ton that converted into a lepton—antilepton pair was
investigated in Refs. [13,14]. This decay was not mea-
sured up to now, but the cross channel (namely, 7+ —
— eTveeTe™) has already been measured [15, 16]. This
decay and the decay 7 — wllv, probe the transition
W* — my*, where both bosons (W and the photon)
are virtual. These decays complement the decay we
consider in this paper, which can be a source of infor-
mation about the transition W* — 7. The vector and
axial-vector form factors are functions of two variables
(instead of one as in our case) due to the virtuality of
the photon, and a third form factor appears in this case.
The authors of [13, 14] calculated the branching ratios
and di-lepton invariant mass spectra. They predicted
that the process with [ = e~ should be measured soon
at B-factories.

Because the SuperKEKB and Super c—r factories
plan to have a longitudinally polarized electron beam
with the polarization degree about 80 %, it is worth-
while to investigate the effects caused by the polariza-
tion of the 7 lepton. In this paper, we investigate the
polarization effects in the one-meson radiative decay of
the 7 lepton, 7= — 7~ 7v,. The decay polarization
asymmetry and the Stokes parameters of the emitted
photon itself are calculated for a polarized 7 lepton.
These observables are estimated numerically for an ar-
bitrary polarization of the 7 lepton.

The vector and axial-vector form factors (which are
of theoretical and experimental interest), describing the
structure-dependent part of the decay amplitude, are
determined in the framework of the chiral effective the-
ory with resonances (RxT) [17, 18]. The RxT is an
extension of the chiral perturbation theory to the re-
gion of energies around 1 GeV, which explicitly includes
the meson resonances. The corresponding Lagrangian
contains a few free parameters, or coupling constants,
and at the same time has a good predictive power. This
approach has further theoretical developments, e. g., in
Refs. [19, 20], and applications to various aspects of the
meson phenomenology (see, e.g., review [21]). Here,
we mention earlier studies of the e™e™ annihilation to
a pair of pseudoscalar mesons with final-state radia-

5*



G. I. Gakh, M. I. Konchatnij, A. Yu. Korchin, N. P. Merenkov

MITD, Tom 147, Bhm. 2, 2015

tion [22], radiative decays with light scalar mesons [23],
and two-photon form factors of the 7°, 1, and 1’ mesons
and three-pion of 7~ lepton [24].

This paper is organized as follows. In Sec. 2, the
matrix element of the decay 7~ — v,7~ 7 is considered,
the phase-space factor of the final particles is intro-
duced for an unpolarized and polarized 7 lepton, and
Stokes parameters and spin-correlation parameters of
the photon are defined. This is done with the help of
the current tensor T#” and two unit space-like orthog-
onal 4-vectors that describe polarization states of the
photon and which we express via particle 4-momenta.
In Sec. 3, the current tensor is calculated in terms of
the particle 4-momenta and the 7 lepton polarization
4-vector. In Sec. 4, we describe the chosen model for
the vector and axial-vector form factors that enter the
structural part of the decay amplitude. In Sec. 5, re-
sults of some analytic and numerical calculations are
presented and illustrated. Section 6 contains a discus-
sion and conclusion. In Appendix A, the RyT formal-
ism is briefly reviewed. In Appendix B, we consider a
polarization of the 7~ lepton in the annihilation process
ete™ — 7777 near the threshold for a longitudinally
polarized electron.

2. GENERAL FORMALISM

The main goal of our study is the investigation of
polarization effects in the radiative semileptonic decay
of a polarized 7 lepton,

(1)

T (p) = v (P) + 77 (a) + v ().

2.1. Amplitude and decay width

The corresponding Feynman diagrams for the decay
amplitude are shown in Fig. 1. Pole diagrams a and
b describe the inner bremsstrahlung (IB) by charged
particles in the point-like approximation; diagram ¢ de-
scribes the so-called structural radiation.

Thus, we have [8, 25]

MFY = MIB +MR.

The IB piece, in the case of a real photon (k? = 0),
coincides with its so-called “contact limit” value and is

given by
Mg = ZM?._L(pI)(]. -|-’)/5) X
]UWk

I::’y“
Xlzwm

Nelf
(kp)(kq)

k), (2)
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Fig.1. Feynman diagrams for the radiative 7= — 7~ +

+ v- + v decay. Diagrams a and b correspond to the

so-called structure-independent inner bremsstrahlung,

for which it is assumed that the pion is a point-like

particle. Diagram ¢ represents the contribution of the

structure-dependent part and is parameterized in terms
of the vector and axial-vector form factors

where the dimensional factor Z incorporates all con-
stants: Z eGpVyuaFr, M is the 7-lepton mass,
and ¢,(k) is the photon polarization 4-vector. Here,
e?/dr = a = 1/137, Gp = 1.166 - 107> GeV~? is the
Fermi constant of the weak interactions, V4 = 0.9742
is the corresponding element of the CKM-matrix [26],
and F; = 92.42 MeV is the constant that determines
the decay 7= — p~ 7,. The remaining notation is
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1
‘=5 [(pk)g" — (qk)p"], e = —1,

(61]{5) = 07

N? = 2(qp)(pk)(qk) — M?(qk)* — m?(pk)?,
where m is the pion mass.
The structure radiation in decay (1) arises due to
the possibility of the virtual radiative transition

W= =7 +1.

We write the corresponding amplitude in a standard
form in terms of two complex form factors, a vector
v(t) and an axial vector a(t) [12, 25],

iMp = %ﬂ(p’)(l + 75){i7a(aqu)v(t) -
- [v"(qk) - q“ff]a(t)}U(p)E
where t = (k + ¢)? and

(apkq) = €e**kyq,,

*

"

(k), (3)

0128 _ 4 g

b

75 = i7"y P,

We can see that both matrix elements, M;p and
Mp, satisfy the gauge invariance condition, and it is
valid for Mg for any choice of form factors.

The form factors play an important role in the low-
energy hadron phenomenology. However, the experi-
mental values of v(0) and a(0) have uncertainties in
both absolute values and signs [10]. Of course, this
complicates a search for the signals of the new physics
beyond the SM in future experiments with high statis-
tics at T-factories [27, 28].

To determine the vector and axial-vector form fac-
tors, we use the model based on the resonance chiral
theory [17]. A brief physical description of the theoret-
ical approach to this problem is given in Appendix A
and Sec. 4. In accordance with the results of the the-
oretical model used, we can write the form factors in
the form

Trysyy Pyt = —die”.

M? M?
V2mF,’ V2mF,’
where fa(t) and fy (t) are defined in Sec. 4.

We choose the normalization such that the differen-
tial width of decay (1), in terms of the matrix element
M., has the following form in the 7-lepton rest frame:
Tk g
2w 2e

a(t) = —fa(t) o(t) = —fv(t)

ar=—-

M. 2
iz

s, (4)
where w and € are the energies of the photon and 7 me-
son. When writing | M, |*, we have to use the respective

relations

u(p)a(p) = p+ M, u(p)i(p) = (p+ M)(1+759)
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for unpolarized and polarized 7-lepton decays. Here, S
is the 7-lepton polarization 4-vector.

2.2. Phase space factor

It is convenient to analyze events of 7 decay in its
rest frame. In this system, in the unpolarized case,
|M,|? depends only on the photon and pion energies w
and €. Then the phase space factor for the unpolarized
7 can be written as [9]

d*k d3q
— —9
2w 2e (5)
and the range of the energies is defined by the inequa-
lities

M? +m? —2Me

dd = (p'?) = m’dw de,

M? +m? —2Me

<w< ,
2(M—e+la)) = 7 2(M—e—lq])
2 2
m<e<M +m7

- 2M

2 2 2 2 (6)
M?+m +4w(w—]\/[)<6<]\/[ +m
2(M — 2w) =€="on
M? —m?
<w<
0<w< Wi

Because the 7 radiative decay amplitude depends on
the invariant variable t = (k + q)? = M (2¢ + 2w — M)
via the vector and axial-vector form factors in ampli-
tude (3), we can integrate the differential width with
respect to € (or w) at fixed values of ¢ to investigate
these form factors. This can be done noting that

1 1

and
2 2772 2 2
t° +m*M <6<M —l—m7
2Mt - = 2M (7)
t—m2< <M(t—m2) 2 p o2
w —=  m .
2M —  — 2t ’ - -

The integration regions for the variables (e,w), (e,t),
and (w,t) are shown in Fig. 2.

In the polarized case, we have an additional inde-
pendent, 4-vector S. In the r-lepton rest frame, S =
= (0,n). We define a coordinate system with the z axis
directed along the vector n and the pion 3-momentum
lying in the 2z plane, as shown in Fig. 3. If we use
the d-function §(p'?) to eliminate integration over the
azimuthal angle o, phase space (5) can be rewritten in
the form

s deydesdwde

dd =
2 K ’

(8)

K = sysa|sing|y/1 — ¢ — 2 — 2y + 2c1 0019,
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Fig.2. The ranges for the radiative 7~ decay for dif-
ferent sets of kinematical variables. w and ¢ — the
energies of the photon and the pion, ¢ — the invariant
variable. The line equations are defined by inequalities

(6) and (7)

where ¢q(s1) = cosf(sinfy), ca(s2) = cosby(sinbs),
and c1o = cos by, and 61, 05, and #,» are the respective
angles between n and q, n and k, and q and k. In this
case, we can study the spin-dependent effects caused by
only those terms in the matrix element squared that are
independent of the azimuthal angle, namely, (Sk) and
(Sq). The contribution of the term containing (Spqk)
vanishes when we integrate over ¢ in the whole region
(0,2m).

The ranges of ¢; and ¢y are defined by the condi-
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—-0.5

—1.0
C1
1.0

\
0.5

—-0.5

—-1.0

Fig.3. Definition of the angles for a polarized radia-

tive 7 decay at rest (a); the limits of variation of c1

at w = 0.4 GeV and ¢z = 150° (b), 30° (¢): the solid
(dashed) line corresponds to ci+ (c1-)

tion of positivity of the expression in the radicand in
Eq. (8); they are shown in Fig. 3. A simple calculation
gives

C1 <Cl §01+, —1<C2 <].,
€14+ = CaC12 T 52519,
where s15 = sinfy5. Besides, the integration in the

above limits gives
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dCl _ d62 _
K / K" o)
c1dey cades
/ K = TC2C12, / T = TC1C12.

If |M,|? has no angular dependence, it corresponds to
the unpolarized case.

2.3. Decay asymmetry and Stokes parameters

To determine moduli and phases of the form fac-
tors, it is necessary to measure some polarization ob-
servables. The simplest of such observables are the so-
called single-spin quantities: the asymmetries caused
by the 7-lepton polarization and the photon Stokes
parameters. We also consider the double-spin quan-
tities: the dependence of the Stokes parameters on the
T-lepton polarization.

Generally, the polarization properties of a photon
are described by its Stokes parameters. At this point,
we have to clarify the terminology used. The measur-
able Stokes parameters &;, i = 1,2, 3, define the covari-
ant spin-density matrix of the photon in terms of the
& and two independent polarization 4-vectors e1, and
€2y [29]

1 _
Puv = 5 [el,uelu + €2,,€20 + 61 (el,ue2u + 611/62,u) -

—i&(e1pean — e1veay) + E3(erpery — eapeny)],  (10)

(kel) = (k62) =0.

If the parameters &; are measured, the matrix element
squared can be written as a contraction of the current
tensor 7" and the p,, matrix

| M [* =T pyy,

— p2 —
el = ey = —1,

(11)

where the current tensor T#¥ obeys the evident condi-
tions due to the electromagnetic current conservation:

k, " = T*k, =0,

The polarization states of a real photon are de-
scribed by two independent purely spatial polarization
vectors 1; and lp, which are both perpendicular to the
photon 3-momentum k. In our case, in the rest frame
of the decaying 7~ lepton, it is convenient to take 1y
in the decay plane and 1, to be perpendicular to this
plane. We can determine two covariant polarization
4-vectors that in the rest frame coincide with 1; and 1.
These vectors are

B L a2 (qk) n
= ok — (Nqu)
2 — 2 — N )
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where e}’ and N are defined after Eq. (2).
It is easy to verify that in the rest frame,

lp = (Oall)a 2 = (0a12)a l1 = 1% =1,
~ k(k .
=KD e, k= E
q®> - (k-q)

L -k=1-k=0.

Therefore, the set of the unit 3-vectors 1y, l», and k
forms a right-hand system of rectangular coordinates.
Due to the electromagnetic current conservation, we
can replace €1, by ey, in calculations of any observable.
Thus, in Eq. (10), we use polarization 4-vectors in form
(12). Then the matrix element squared becomes

Lsysdl,

|]Mw|2 ) (13)

where

174 14
Y =T" (eipervtes eny), X1 =T" (er e +eiver,),

e alliZ
Yo = —iTH (61Me2u - elue2,u)7
v
Yy =TH (eluellj - €2ue2u)~

It is obvious that the parameters &; depend on the prop-
erties of detectors that analyze the polarization states
of the photon and are independent of the production
mechanism. But the quantities ¥ and X; are defined
only by the decay amplitude and thus determine polar-
ization properties of the photon itself in decay (1) [29].
To study predictions of different theoretical models for
these quantities, we can write

M =S+ 5

instead of expression (13).
For a polarized 7 lepton, the current tensor is given
by

TS

0
TMV = T;u/ + %

where Tlf,, depends on the polarization 4-vector of the
7 lepton and TSV is independent of it. In this case, we
can write

y=x04%5 ¥, =x04%5
and define the physical quantities

s S5d®
~ S04e”

20dd
S0de”

_ T5de
T

&= & (14)
which completely describe the polarization effects in

the considered decay.
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The quantity A5 represents the polarization asym-
metry of the differential decay width caused by the
7-lepton polarization. The &; are the Stokes param-
eters of the photon itself if the 7 lepton is unpolarized,
and the ¢ are correlation parameters describing the
influence of 7-lepton polarization on the photon Stokes
parameters.

Thus, to analyze the polarization phenomena in
process (1), we have to study both the spin-indepen-
dent and spin-dependent parts of the differential width.
In accordance with Eq. (4), these are

o _ oo 40§ _ o5 dl

4o _ _ — g%
@ 95 e TR e TR
ar? 1
il I, S
av 77 YT M@y

We note that by partial integration in the numerators
and denominator in relations (14), we can also define
and study the corresponding reduced polarization pa-
rameters.

If we record the photon and pion energies, the pa-
rameters & (w,€) and &3(w, €) describe linear polariza-
tions of the photon and the parameter & (w, €) describes
the circular one. The last parameter does not depend
on the choice of two polarization vectors defined by re-
lations (12) in this paper. On the contrary, each of the
parameters & (w,e€) and &3(w,€) depends on the axes
relative to which it is defined, and only the quantity
V& (w,€)? + &(w, €)? remains invariant. In principle,
we can choose the polarization vectors e} and e, such
that, for example, & (w, €) vanishes; then

& (w,€) = V€ (W, €)% + &(w,€)?

(and vice versa).

This statement can be verified by a simple rotation
of the 4-vectors e; and es in the plane perpendicular to
the direction k [29],

€1y = €1, Cos 3 — ey sin 3, (15)
e'2u = ey, s8in f + ey, cos

and hence in terms of e and e}, using definitions (13)
and (14), we have

€1(w,€) = &1 (w, €) c0s 2B + & (w, €) sin 25,
&3(w,€) = =61 (w, €)sin 2B + &3(w, €) cos 28,
&(w,e) = &(w,e).
For example, taking,

fl (w,e)

26 = ,
o ﬂ \/51(w7€)2+£3(w7€)2

53(0')76)
VEa(w,€)? + & (w, )

sin 23 =
we easy obtain

fi (wv 6) = \/61 (w76)2 + 63(0')76)27 fé(wv 6) =0.

If the experimental setup allows fixing the decay
plane, the Stokes parameter {5 defines the probability
of the photon linear polarization along two orthogonal
directions: 1; and . If & = 1 (§&3 = —1), the pho-
ton is fully polarized along the direction 1; (l3), and its
polarization vector lies in the decay plane (is perpen-
dicular to it). In general, the probability of the linear
polarization in the decay plane is (1+ &3)/2 and in the
plane perpendicular to it, (1 —&3)/2.

The parameter & determines the probability of lin-
ear polarization in the planes rotated through the angle
¢ = £45° around the k-direction relative to the decay
one. The full linear polarization at ¢ = +45° (—45°)
occurs at & = 1 (—1). The corresponding probabili-
ties, in the general case, are (1 +&;)/2 and (1 —¢&)/2.
Thus, we can say that the circular polarization degree
of a photon equals & (w,€) (§&2(w,€) = 1 or —1 corre-
sponds to full right or left circular polarization), and
the linear one equals /&1 (w,€)2 + &3(w, €)2. Neverthe-
less, both parameters & (w, €) and &;(w, €) are measur-
able and carry different information about the decay
mechanism. But to define them separately, we have to
determine the plane (q,k) in every event. The same
also applies to the reduced photon polarization param-
eters, for example, &;(w), and so on.

2.4. Polarization of 7 lepton

Before proceeding, we briefly discuss the possible
polarization states of a 7 lepton created at T-factories in
the electron—positron annihilation process with a lon-
gitudinally polarized electron beam:

e +et =71 71T,

Simple calculations in the lowest approximation of
QED show that polarization of 7 arises if at least one
of the colliding beams is polarized. For example, in the
case of a longitudinally polarized electron beam, the 7~
lepton has longitudinal and transverse polarizations in
the reaction plane relative to the 7 lepton momentum
direction (see Appendix B for the details)

_ 2Xcosf pT _ 4\M sin 6

2

PL

4M
Q=1+cos’6 + sin? 6,
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where \ is the beam polarization degree, # is the c.m.s.
angle between 3-momenta of the electron and 7~ lep-
ton, and s is the total c.m.s. energy squared. If
we select and analyze the events with a longitudinally
(transversally) polarized 7, then the 3-vector n in the
rest frame (see Fig. 3) lies in the annihilation reac-
tion plane and is directed along (perpendicular to) the
c.m.s. 3-momentum of 77 .

3. CALCULATION OF THE CURRENT
TENSOR T*”

The current tensor T contains three contribu-
tions: the IB, the resonance ones, and the interference
between the IB and resonance amplitudes. We divide
every contribution into symmetric and antisymmetric
parts with respect to the Lorentz indices. The sym-
metric part contributes to X, ¥, and X3, whereas the
antisymmetric one, to Y5 only.

Below, in the formulas for the different parts of the
current tensor, we omit the terms proportional to the
4-vectors k, and k, because they do not contribute to
the observables.

3.1. Inner bremsstrahlung contribution

For the IB contribution, we have
TV, = 472> M*? [S% + z'A%],

where the symmetric part is

Sip = (qk()p;)(fk) [(pk) + M (kS)]g"" +
N2 2 _ m2 ! euey
+Ww +2M(p'S)]ef e} +

L NM
(pk)?(qk)

and antisymmetric one is

[(erlp)™ — (exlg)*™], (17)

(pk) — (gk)

AR —
B (pk)?

(M (jrkS) — (urph)] +
R (k)
- %[e’f(w’k& el (kS)). (18)

Here, we use the notation

[eres]™ —

I8 = (pk)S* — (kS)p", I8 = (qk)S" — (kS)q",

(ab)*” = a*b” + a”b", [ab]*” = a"b” — a” D,

(klp) = (klq) = 0.

We note that the antisymmetric part can be written
in different equivalent forms. Indeed, we can derive
another form using the well-known relation

9P (uvAp) = g**(BvAp) + g (uBAp) +
+ 9N Bp) + g** (v AB).

3.2. Resonance contribution

As concern the resonance contribution to the cur-
rent tensor T#”, we write it in the form

87?2
e
where both the symmetric and antisymmetric parts in-
clude four independent pieces. They are proportional
to |a(t)|?, [v(t)]?, Re(a(t)v*(t)), and Im(a(t)v*(t)). De-
noting the respective symmetric pieces as Sgrq, SRu,
Srr, and Sg;, and the antisymmetrical ones as Agr,,
ARy, Agr, and Ag;, we have

T = L[S ik,

Sta = la®)]{(¢k)*[M (p'S) — (pp")] 9" +
+2N%elel + NM(eilg)"}, (19)

Al = a(t) ] (ak){ (ap") (pvpk) — (qp) (uwp'k) —
— M[(qp")(uvSk) — (¢5)(uvp'k)]},  (20)

Sk = (®)P{[M©'S)—(pp")] (qk)*g"* +2N"e5 el —
— NM [ef (vqkS) + 5 (ugkS)] },  (21)

Al = |o(t)]* (uvak) { (¢k)[(pq) — (pk)] — m?(pk) —
- M[(qp)(kS) — (p'k)(¢S)]}, (22)

Sk = 2Re{a*(t)v(t)}g"" (qk) { (ak) [(pk) — (pq)] +
+m?(pk) — M [(kp')(Sq) — (SK)(P'9)]},  (23)
At = 2Refa 000} { (ah)ow!) — M'S)]
x (uvqk) — N?[ejea]™” + %NM(e‘f(zquS) -

~ o (ughS) + [ezlq]“”)} 1)

St =2Im{a*(t)v(t)} {%NM[— (ealg)™ +

T e (vghS) + ¥ (uqkS)] — N2(6162)‘“’} . (25)
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A =, (26)

The interference between the vector and axial-
vector contributions of the resonance amplitudes is sen-
sitive to the relative sign of the axial-vector and vector
couplings and its separation can be used to fix the sign

of the ratio fv(0)/f4(0).

3.3. IB-resonance interference

The interference between the IB and resonance am-
plitudes is more sensitive to all the resonance param-
eters because a(t) and v(t) enter it linearly. It is very
important to find such a polarization observable where
the interference contribution would be enhanced rel-
ative to the background created by the pure IB and
resonance contributions. For the current tensor caused
by the IB-resonance interference, we set

w872

R = 100k [STR +iATR].

Again, we have four symmetric and antisymmetric
terms, which are given by

St = Re(a(t)) {<qk>[<pk><5p'> — (kS)(pp') -
— MR + fq—]Z)[M T+ (Sp)letel +

(ellq)u

Y+ N(ellp)‘“’} . (27)

Al = Re(a(t){ [(45) (2(0k) — (ak) + (b)) -

—M(qk)](uvpk) [(pq) (2(pk) — (qk) + (pq)) —
m? + (qk))] (uvkS) +

M2
+ M[(gk) = M(gS)] (k) },  (28)

Al pia = Im(a(t)) x

x N {[elzp]w - (1 + ((’;’;)) ) [ellq]‘“’] . (30)

where

Q" = N(e29)q" — (qk)(Spap),

Sk = Re(u(t)) {@'k) [M(qh) + (pa)(kS) —

N
(qk)

) (L, PN
N et (5 + ) (@)™ +

+ %(e‘;(Vka) + 65(upk5))] } , (31)

— (pk)(qS)]g"" + 2—=(qS)el'el +

A= Re(u(t)) { (M WE) + (o) (kS) —

— (pk) (') (k) — %[M + (@)eren]” +
+N[(q ) [ealg]™ + [e20p] ]} (32)

v

Tm(o(1)) { SO WS (ere)” +

<5 ((_) el (vgkS) + e (ugksS)) —

—2(e2(2l —1,)" } (33)

Ry =TIm(v ! m_2 erly]"”
AP (t))N{(2 + (qk)> [e1l,]
_ % ferlg] " + 3[4 (vpkS) — 8 (uphS)] -

[ gkS) — ek (uqkS)] } e

In the above formulas, we omit terms proportional
to the 4-vectors k, and k, because they do not con-
tribute to any observables.

The expression for the current tensor T+ allows us
to derive all the polarization observables in a Lorentz-
invariant form by contracting this tensor with an ap-
propriate combination of the 4-vectors e; and e;. The
set of needed formulas is

ef=e3=—1, (e1e2) =0,
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(ellp) =
- %{(Sq)(pk)2 + (Sk) [M?(gk) — (pg)(pk)] }

(eslp) = (expkS) = L2 (k).

—(eapkS) =

(e1ly) = —(e2qkS) = %{ (Sq)(pk) (k) +
+ (SK) [(pa) (ak) — m?(pk)] },
(eale) = (erak) = P (spgy) (33)
(ere2gk) = —(qk), (elezpk) = —(pk),
(e1e2Sk) = —(Sk),
(€10) = m?(pk) ;V(pq)(qk) (Spak).
(0@ = D (15) [(pg)? — 212m?] +

In the presence of a polarized 7 lepton, the struc-
ture of the differential width and the Stokes parame-
ters of the photon are much richer. As we saw above,
in a polarized electron—positron annihilation, the cre-
ated 7 leptons have essential longitudinal or transverse
polarizations. In both cases, in the rest frame of 7,
its polarization 4-vector is S* = (0,n), and choosing a
coordinate system as shown in Fig. 3, we have

(¢S) = (kS) = (36)

—l|aler, —we,

(Spqk) = M (n[qk]) =

= sign(sin @)M|q|w\/1 —ct—c3

2
— (s + 26162612,

where sin ¢ defines the y-component of the 3-vector k,
namely £, = wsinfs sin ¢.

If we sum events with all possible values of the azi-
muthal angle ¢, the spin correlation (Spgk), which is
perpendicular to the plane (q,k ), does not contribute.
On the other hand, spin correlations in the plane (q,k ),
caused by the (Sq) and (Sk) terms, being integrated
over ¢; (or over c¢z), are always proportional to ¢a (or
1), as follows from relations (9) and (36).

4. AXTAL-VECTOR AND VECTOR FORM
FACTORS IN THE RxT

From the Lagrangians in Appendix A, we can ob-
tain the photon coupling to the pseudoscalar mesons P
in the form
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Lypp =ieB"Tr (Q,[®,0,P]) =

=ieB"(nt 5,: T+ KT 5,: K7), (37)
PRGN —
Ou=0, — 0, .

The axial transition W* — 7% (K¥*) is described
by

ﬁwp = —%TI‘ (Wuaué) =
gF
T2
The vertex with an additional photon, W* —
— vyt (K7), is generated from

WJ(Vudﬁ’%F + VusOFK ™) + Hie.  (38)

Lwp, = —%egFB“Tr ([Q, B]W,,) =

i _ .
= 5egFB Wi (Vaar™ + VasK7) + He. (39)

To evaluate the resonance contribution to the
axial-vector form factor, we need the vertex of the
W* = of (KT) transition

1
Lwa= ——QFATY(WMVAW) =
QFA

- O W, (Vyaa, " + Vs K[ M) + Hee. (40)
The transition ai (KF) — yr (K%) is described

by

eFA

— F®

2F

The transition W+ — 7550 is generated from the

Lagrangian

Lapy = —i (™ ale—l—ls I(LV)—}—H.C. (41)

gGV
L =— VW, 0,9]) +
L T Tr (V* W, )
QFV
VA W, ®]) (42
i TV Wi, ) (42)
with the notation
W W R o L (43)
Wi =0, Wi B, WiE.

Keeping the contribution from the neutral vector
mesons in Eq. (42), we obtain

Gv
\/_

+ VasOy K~ <¢ -

Lwpv = —V2V,ad,m pOH 4

) |
Lo LAY
NV

F
IV — V2War PO+ Vi K x

W+
"WAF

N

X (¢ - %po - %w) W} +He. (44)
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Finally, we need the term describing a transition of
the neutral vector mesons to a photon,

. eFy
Lyy = —i S Py (V,, Q) =
Vy \/ﬁF ( u Q)
(1 5 1 1
=eFy F* <§puu + gwuu - 3—\/§¢uu> (45)
with F# = gtBY — 0¥ B*.

Collecting the vertices for the transition W~ —
— a; — 7 v from (40) and (41), and the vertices for
the transition W~ — 7 p° — 7~ from (44) and (45),
we obtain the axial-vector form factor

_ \/imﬂ'ﬂ: %
F7T
Fi
m2 —t —im,Lu(t)

fa(t)

d

where T, (¢) is the decay width of the as-meson.
We note that the axial-vector form factor in Eq. (46)
is normalized at ¢ = 0 as

_ \/Emﬂ'j: Fi
- F, |m2

Fy(2Gy — F
, Fr2Gy — Fy)

2
my,

| a0

Fy(2Gy — Fy)

2
my,

fa(0)

| an

which is consistent with the chiral expansion in the or-
der O(p*) (see also Refs. [30,31]) in terms of the low-
energy constants,

4/2m+
fa(0) = —%——(Lo + Luo),
T 48
[ Y ) T
T 2m3 "’ 107 dme2 4m?’

The expressions for Lg and Lig follow from the reso-
nance saturation of the low-energy constants [17, 18].

The masses of the p(770) and a4 (1260) mesons in
Eq. (46) are m, = 0.7755 GeV and m, = 1.230 GeV.
The width of the a1(1260) meson in Eq. (46) is taken

from Ref. [32]:
Lu(t) = Tog(t)/g(m3),
) <
x O(t — (m, +mz)?) +
+4.1(t — 9m2)*[1.0 — 3.3(t — 9Im2) +

923 0.5
+5.8(t —9m2)?]10(t — Im2)0((m, +mx)? — t).

-l—t2

g(t) = (1.62375 +10.38 —
(49)

It is implied in this equation that ¢ is in GeV?Z, the
masses are in GeV (my = my4), and all numbers are
in appropriate powers of GeV.

The values of the coupling constants F4, Fy, and
Gy are presented in Table. The constants Fy and Gy
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Table. Two sets of the coupling constants. Values for

set 1 are calculated from the p — ete™, p = ntn™

decay widths and f(0)eap. Values for set 2 are chosen
according to Ref. [18], and F: = 0.0924 GeV

Fa Fy Gy
Set 1 | 0.1368 GeV | 0.1564 GeV | 0.06514 GeV
Set 2 F, V2F, F./V?2

are obtained from the experimental information [10]
on the p = ete™ and p — 7wF7~ decay widths:
L(p—ete ) =7.04+0.06 keV and T'(p = nf7m ) =
= 146.2+0.7 MeV. To find Fy and Gy, we can use the
tree-level relations

4 172
e F;
C(p—ete”)=—L
(p—ere”) 2’
G2m3 4m2 3/2
Tpontn)=—L2L(1-—= .
(b= ™77) = Rrs m?

The constant F is then calculated from Eq. (47) using
the average value f4(0)ezp = 0.0119£0.0001 measured
in the radiative pion decays [10]. The constants Fy,
Gv, and F calculated for central values of the data
are hereafter called “set 1”7 and are shown in Table.

As another option, we choose theoretically moti-
vated values of the constants from Ref. [18]. In partic-
ular, the relations Fy = 2Gy and Fy Gy = F2 are sug-
gested there. The corresponding parameters are called
“set 2” and are also given in Table.

In the calculation of the vector form factor fy (),
we need the transition W* — p* — 7F5, which in-
volves an odd-intrinsic-parity vertex. For this last, we
use the vector (or Proca) representation for spin-one
fields. As shown in Ref. [33] (see also Ref. [19]), the use
of the vector field V# instead of the antisymmetric ten-
sor field V#¥ in the description of spin-one resonances
ensures the correct behavior of the Green’s functions
to the order O(p®), while the tensor formulation would
require additional local terms (see also the discussion
in Appendix F of Ref. [22]).

Thus, we choose the Lagrangian [19, 33]

ﬁVPv = _hVeuuaB Tr (Vu{uu7 fiﬁ}) =

4\/56 hV
3F;

- €uvapd*BP gt R (50)
with the coupling constant hy .

For the W* — p* (K*%) vertex, in the vector for-
mulation, we have
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1 Fy Ly
‘CWV— 4gmpTr(W”V8 V )_

3
- _9rv W, (Vuad"p™ "+ Vs 0 K* V) +H.c.  (51)

n 4m,

Using (50) and (51), and adding vertex (A.12), we ob-
tain the vector form factor

_ \/Emﬂ'i «
= i

4/2hy Fy
3m,

fv(t)
|

The width of the off-mass-shell p meson can be
calculated from the interaction Lagrangian LF, in
Eqs. (A.9). Tt is written in the form

t
m2 —t —im,L (1)

Y ] . (52)

G2 mt 4m?2 32
L,(t) = 4§/7er4 (1 - T) O(t — 4m?) +
1 4 2’ 3/2
+3 (1 - %) ot —am2) |, (53)

where my = 0.4937 GeV is the mass of the K+ meson.
Other contributions to the width, coming, for example,
from the four-pion decay of the p, are neglected in (53).

The coupling constant hy can be fixed from the de-
cay width T'(p* — 7Fy) = 68 + 7 keV [10]. From the

equation
3
(-%5)

we then obtain hy = 0.036. Alternatively, hy can be
constrained from the high-energy behavior of the vec-
tor form factor. Such constraints have been used in
Refs. [8,12]. According to the asymptotic predictions
of the perturbative QCD [34], at ¢ — —oo the form
factor behaves as fy (t) ~ const/t. Imposing this con-
dition on fy(t) in Eq. (52), we obtain

2

_ Mz
2

m,

2,372
e“m;,hi,

(™ = 7ty) = 5

Nem,
=< Pr 54
V' 32122F, (54)
This yields hy = 0.033 (0.040) for Fy from set 1 (set 2)
in Table. These values are close to hy = 0.036 derived
from the p — 7y decay width, and that value is used
in our calculations.
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5. CALCULATION OF DIFFERENTIAL DECAY
WIDTH, STOKES PARAMETERS,
POLARIZATION ASYMMETRY AND
SPIN-CORRELATION PARAMETERS

5.1. The t-dependence in the case of an
unpolarized 7~

Because the vector and axial-vector form factors
depend on the invariant mass of the 7—y system, we
can integrate the double differential width (both spin-
independent and spin-dependent) at fixed values of the
variable ¢, using restrictions (7). For the decay width
dly, we have

% = P[Io(t) + (Ja(t)]> + [v(t)]*) Ao (t) +
+Re(a(t))Bo(t) + Re(v(t))Co(t)], (55)
Z2
P= s

where Iy(t) is the contribution of the inner bremsstrah-

lung

+ 2MP(MP +t—m?) —m* — t2]L},

M? — ¢
t

_aM
T t—m?2

Io(t) [(t+m?)” —4M>t] +

M2
L:IDT

As we can see from Eq. (55), the structure-
dependent (resonance) contribution to dI'y/dt does not
contain vector—axial-vector interference, but it includes
a sum of the squared moduli of the vector and axial-
vector form factors. This sum is multiplied by the func-
tion
_(t—m?)}(M? —t)*(M? + 2t)

3M>E2

The interference of the IB and structural amplitudes

includes only real parts of the form factors and

Ap(t)

Bo(t) = 4(t]\_47;n)

x [(2t + M? —m?)(M? — t) + t(m® — 2M> — t)L],

X

o = 57

As regards the quantity dI'y /dt connected with the
Stokes parameter & (see Eq. (14) and formulas just
below), it is given by

dry
dt

where

ok (t — M? +tL).

P[Im(a(t)"v(t))A1 () + Im(v(t))C1 ()], (56)

(t —m?)*(M? —t)?
3M>¢? ’

Ay(t) = -2
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Fig.4. The t-distribution of the differential decay width, in GeV™!, is shown in the upper row. The first (second) figure

corresponds to set 1 (set 2) of the resonance parameters given in Table; the solid curve represents the inner bremsstrahlung

contribution, the dashed curve, the resonance contribution, and the dotted curve, their interference. The third figure shows

the sum of all contributions: the solid (dashed) curve corresponds to set 1 (set 2). The quantities &; (see Eq. (14)) in the
lower row are calculated including all the contributions for two sets of the parameters

4(t —m?)
Mt
This quantity, in the case of an unpolarized T, is
the only one that includes the imaginary parts of the
vector—axial-vector interference and the imaginary part
of the vector form factor. Because it does not contain
the pure IB contribution, it may be useful in studying
the resonance contribution.

We also have

Oy (t) (£ — M* +2M?t L).

T2 — PlIa(t) + Re(a(t)"v(t) As() +
+ Re(a(t)) Bz (t) + Re(v(t))Ca(t)],  (57)
where
L(t) = _ (3t +m?)(M? —t) —t(t + m® +2M?)L],
Ay = =2A(t), Ba(t) =—Co(t), Ca2t) =—DBo(t)

for the part corresponding to the circular polarization
of the gamma quantum (the parameter &) and

T = PII (1) + (la)” ~ () As(0) +
+Re(a(t)Bs(t)],  (58)
I(t) = w@(t — M?)+ (M? +t)L),

t —m?2
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1

As(t) = 5

Ar(t), Bs(t) = —Ci(t)

for the part connected with the parameter 3.

The obtained results are illustrated in Fig. 4, where
we show the quantities d[(t)/dt and &;(t) defined as

ety = Ma0/de

= /7 ,=1,2,3.
aro@yjar b3

5.2. The t-dependence for a polarized 7~

If 7= is polarized in decay (1), we can also write
analytic expressions for the quantities

drs
C2 d02 dt7

drs

S
C2 d02 dt

1,2,3.

They can be obtained from the corresponding fully dif-
ferential distributions by integrating with respect to ¢y
(using relations (9)) and w at fixed ¢. We recall that
in the rest frame of 77, its polarization 3-vector is di-
rected along the z axis and in this subsection, we con-
sider effects caused by the component of this 3-vector
that belongs to the decay plane (q, k).

The quantity that defines the polarization asymme-
try of the decay is
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arg Pros )2 )2 drsg Pros 2 2\ 48
i = SIS0 + (e + O A5 (0 + o = SO+ (P — pOP) 450 +
+Re(a(t)"v(t))B; (t) + Re(a(t))Cy () + +Re(a(t))C3 (1) + Re(v(t)) D3 (1)],  (62)
+ Re(v(t) )D )], (59)
8M
where I3 (t) = ———[ = (M? = t)(t + 2m> 4+ 3M*
2 (1) =y J(E+2m” +3M7) +
= Mmoo (M 4+ 30+ mi (¢ + ML,
0 (t —m?2) t
_ 4 2 2 2 1
6M* +2m~t + 3M~t + 3t + Ag(t)=—§A1(t), C3(t) = —D¥ (1),
+ [(m? + M2 + (M? +t)? + 4 M>*t|L|,
I S ] D§(1) = ~CF 1)
< (t—m2)® - \ v s ) It is easy to see that all the quantities dI'§ and dI'?,
Ag(t) = 3Mo2 [M —6Mt+3M 7t +2t°+6 M7t L], vanish under the integration over the full angular re-
o3 gion because they are proportional to cs des.
Bg(t) — M (M2 —t— tL), In Fig. 5, we show the quantities dFOS/02 des dt,
Mt which is a part of the differential decay width that de-
pends on the 7~ polarization, the ratio
Sipy _ Am? —1t) 2 2
Co (1) = Tt[(t—M )(M? +m® + 4t) + A5(1) = 2dT5 [ (ca des dt) (63)
+t(m® +4M? +t)L], dlo/ dt
< A(m2—t) about which we can say that co A(t) is the decay po-
Dg(t) = Mt [(M2—t)(m2+3t)—t(m2+2M2+t)L]. larization asymmetry at fixed values of ¢o and ¢, and

The quantities dI‘f, 1 =1,2,3, describe correlations
between the polarization states of 7~ and the photon.
For them, we have

drs p .
s di = 3 Lm(a®) ) BY() +
+ Im(a(t)CF (1) + Im(e(t) DY (1)), (60)
Bf(t) = Al(t)a
CY(t) = W_Tmz)[z(w —t) — (M? +t)L],
DY (t) = 4(%?2) [(t—DM?)(5t+M?)+2t(2M>+t)L];
S
O = DI + ()P + P(OP) A5 (1) +
+ Re(a(t)"v(8))BS (t) + Re(a(t) C5 (1) +
+ Re(v(t )D (t)], (61)
50 =L D3,
ase = 2 vy, B = 2450,
C5()) = -D§(1),  DS(t) = ~CF (1)
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the parameters

2dr§/(02 d02 dt)

s .
C(t) = , 1=1,2,3, 64
which characterize different correlations between the
polarization states of 7~ and the 7 quantum in pro-

cess (1).

5.3. Dependence on the photon energy

The photon energy distribution involves integration
over the pion energy in the limits defined by inequality
(6). This integration cannot be performed analytically
because of the nontrivial dependence of the vector and
axial-vector form factors on the pion energy. In this
section, we illustrate the results of our numerical calcu-
lations for both the unpolarized (Fig. 6) and polarized
(Fig. 7) 7 lepton.

In the polarized case, we define the quantities 4°(w)
and &7 (w) in full analogy with relations (63) and (64)
for AS(t) and &7 (t).

6. DISCUSSION

To determine the moduli and phases of the form fac-
tors, a procedure was suggested in Ref. [9] (see Eq. (66))
that does not require polarization measurements. To
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Fig.5. The notation for the curves in the upper and lower rows is the same as in Fig. 4. The figure in the middle row shows
the quantity defined in accordance with Eq. (63) for two sets of the parameters. The & are defined in Eq. (64)
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Fig.6. The photon spectrum in decay (1) and the Stokes parameters versus the photon energy. The notation for the curves

is the same as in Fig. 4
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10" dUg /eadezdw 10" dT'§ /eadeadw 10" d'§ /eadeadw
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Fig.7. The spin-dependent part of the photon spectrum, the decay polarization asymmetry, and the spin-correlation pa-
rameters as functions of the photon energy. The notation for the curves is the same as in Fig. 5

separate the contributions of different form factor com-
binations, it was suggested to measure the photon en-
ergy dependence of the differential probability dT"/dw dt
at a fixed t value (i. e., at a fixed value of the sum of the
photon and pion energies). The obtained expression
(in the zero-pion-mass approximation) for this quan-
tity is a sum of terms multiplied by the photon energy
to negative and positive powers. Measuring this distri-
bution, in principle, permits finding the coefficients of
this power series. The combinations of the form fac-
tors Rewv(t), Real(t), |[v(t)]? + |v(t)|* and Rea(t)v*(t)
can be determined from these coefficients. We note
that our calculations are performed with the pion mass
taken into account. This is important for the decay
— K~ vv, where it is necessary to take the kaon
mass into account.

7_,

Equation (56) shows that the Stokes parameter &,
as a function of the variable ¢, is determined by the
imaginary parts of the vector and axial-vector form fac-
tors. But it follows from the unitarity condition that
Imwv(t) # 0 for t > 4m? and Ima(t) # 0 for t > 9m?>.
Hence, this parameter must be zero for t < 4m?2. Thus,
the value of & (t) is completely determined by the res-
onance contribution to the matrix element. Measuring

6 ZKOT®, Beim. 2

this parameter in the region ¢+ > 4m? can test the va-
lidity of this mechanism for the description of decay
(1). Of particular interest is the region of high values
of t, where it may be necessary to include the contri-
bution of the additional resonances beyond the p and
a1 mesons that are included in this paper. We can see
from Fig. 4 that the & (t) parameter is sensitive to the
choice of the parameters describing the resonance con-
tribution. In the region 1 GeV? < t < 1.5 GeV?2, the
parameter & (t) has opposite signs for the parameter
sets 1 and 2. The same conclusions are valid for the
spin correlation coefficient & (f) (the Stokes parameter
&1(t) that depends on the 7 lepton polarization vec-
tor), as is seen from Fig. 5. The Stokes parameters
&1 (w) and & (w), as functions of the photon energy, are
also sensitive to the choice of the parameter sets, but
in the region ¢t > 1.5 GeV2. In this case, the signs of
the parameters & (w) and & (w) are the same for both
parameter sets.

The Stokes parameter &3(t) contains the contribu-
tions of the IB, the interference between the IB and
resonance terms (which is determined by Rea(t)), and
a resonance term that depends on the combination
la(t)|? — |v(t)|?. Therefore, this parameter is less sensi-
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tive to the choice of the parameter sets than the Stokes
parameter & (t). Nevertheless, a sizeable sensitivity
exists in the region 0.5 GeV2 < t < 1 GeV2. The
Stokes parameter £5(t) is appreciably less sensitive to
the choice of the parameter sets than &(t) (Fig. 5).
The Stokes parameter &3(w) (&5 (w)), as a function of
the photon energy, is also less sensitive than the pa-
vameter & (w) (€(w)).

We recall that the meaning of the parameters & and
&3 requires knowing the photon polarization vectors e;
and e>. But that requires knowing the photon and pion
momenta. As regards the parameter &, in this case it
suffices to know only the photon momentum.

The Stokes parameter &(t) contains the contribu-
tions of the IB, the interference between the IB and
resonance terms (which is determined by the Rea(t)
and Rewv(t)), and a resonance term that depends on
Re(a(t)v*(t)). From Fig. 4, we can see that this param-
eter is sensitive to the choice of the parameter sets in
the region of high values of the variable t (¢t > 1 GeV?).
The Stokes parameter &5(t) is weakly sensitive to that
choice. The corresponding parameters, as functions of
the photon energy, show a greater sensitivity to this
choice in comparison with the same parameters as func-
tions of the ¢ variable.

The photon energy has to be large enough to study
the sensitivity to the choice of the model parameters.
Although the number of events in this region is an or-
der of magnitude smaller than in the region of low pho-
ton energies, where the IB-contribution dominates, we
can expect the high-statistics precision measurements
at the Super c—r and SuperKEKB factories to improve
some model resonance parameters used in this paper
and a number of other papers.

We also note that in Refs. [9,35], the authors sug-
gested studying the resonance mechanism in the radia-
tive 7 decay by selecting events (in the rest frame) at
the maximal possible pion energy ¢ = (M2 +m?)/2M,
where the IB contribution to the decay width vanishes
due to the radiative zeros of electromagnetic ampli-
tudes for point-like particles [36]. But the correspond-
ing number of events decreases due to the essential de-
crease of the kinematic region. On the other hand, one
can be sure that at a chosen direction of the axes, the
IB contribution to the Stokes parameter (¢, w) van-
ishes in the whole kinematic region.

Most of the analytic calculations presented in this
paper can also be used for analysis of the decay 7= —
— v, K~v. All the results in Secs. 2 and 3 will
then remain the same, apart from trivial changes of
the masses, form factors, and CKM matrix elements.
Moreover, the t-distributions obtained in Sec. 5 will
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retain their form, but will be expressed in terms
of the kaon mass and the corresponding vector and
axial-vector form factors. The latter can be derived
in the RYT framework following the procedure in
Sec. 4. We plan to perform calculations for the decay
77 — v K7 in the future.

7. CONCLUSION

We have investigated the radiative one-meson de-
cay of the 7 lepton, 7= — 7~ 7v,. The photon energy
spectrum and the ¢-distribution (¢ is the square of the
invariant mass of the pion—photon system) of the unpo-
larized 7-lepton decay were calculated. We also studied
the polarization effects in this decay. The following po-
larization observables have been calculated: the asym-
metry caused by the 7-lepton polarization, the Stokes
parameters of the emitted photon, and spin correlation
coefficients that describe the influence of the 7-lepton
polarization on the photon Stokes parameters.

The amplitude of the r-lepton decay 7= — 7 yv,
has two contributions: the inner bremsstrahlung, which
does not contain any free parameters, and a structure-
dependent term, which is parameterized in terms of the
vector and axial-vector form factors. We note that in
our case, these form factors are functions of the ¢ vari-
able and ¢t > 0, i. e., we are in the time-like region. The
form factors in this region are complex functions, and
finding not only their moduli but also their phases is
non-trivial in this case. This requires performing po-
larization measurements.

We calculated the wunpolarized and polarized
observables for two sets of the parameters describing
the vector and axial-vector form factors. A numerical
estimation shows that some polarization observables
(the asymmetry and the Stokes parameters, especially
&1) can be effectively used for the discrimination
between two parameter sets because these observables
have opposite signs in some regions of the variable ¢ or
the photon energy.

This work was supported by the National Academy
of Sciences of Ukraine under PICS No. 5419.

APPENDIX A

Interactions in the framework of chiral theory
with resonances

In this Appendix, we outline the framework for
the calculation of the form factors for the decay
77 — vy y. We use the formalism of chiral theory
with resonances (RxT) suggested in Refs. [17, 18]. The
corresponding Lagrangian can be written as
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Lryr

where the SU(3),
order O(p?) is

=LP + Lg, (A.1)
® SU(3) g chiral Lagrangian in the

2
£ = T w4 ), (A2)
e = i[ul (O — i )u —u(8, — il )ul], (A.3)
X+ = uTXMr + uxTu, X = 230(8 + ip), .
7™ /V2 +ns/V6
b = T
K~

The masses of the pseudoscalar mesons enter
Eq. (A.2) via the quark mass matrix M:

X =2BoM+ ..., M =diag(my, mq, ms), (A.5)

and the constant By is expressed through the quark
condensate (dq) as

B l1a) _ M. _ Mg _
0 F2 m,+mg Mg+ ms
M2 3M2
= K 1 . (A6)
My + Mg My + Mg + 4m

The condensate value is (gg) ~ (—240 + 10 MeV)3
(at the energy scale p = 1 GeV). In the limit of ex-
act isospin symmetry, Y = diag(m2,m2,2m3- —m2) in
terms of the m- and K-meson masses m, and mpg.
The interaction of the pseudoscalar mesons with the
WMjE and Z,, bosons and the electromagnetic field B,
can be included via the external fields r, and [, as

sin? Oy

=—eQB, 7
" °Q +gcos9 @z,

W, +
2f

g (Qsin29W+6 —Q) Z,

cos Oy

uw = _eQBu (A7)

Here, the quark charge matrix is

2 1 1
:d. —_— —_—— ——
Q 1ag <37 3’ 3> )

e = V4ra is the positron charge, g = e/sinfy is the

where (...) denotes the trace in the flavor space and F’
is the pion weak decay constant in the chiral limit.

The octet of pseudoscalar mesons P with JF = 0~
is included in the matrix

(@) = e ( 1P ) n 1P H2 n
U =exp|——) = —_— =+ ...,
P V2F V2F  4AF?
where
|
rt Kt
—7%/V2 4+ s/ V6 KO° (A.4)
I{’O —2778/\/6

SU(2)1, coupling constant, and €y is the weak angle.
We also introduce the notation

Wu=WiTy +W, T, (A8)

where WHjE = (W1 + W3), is the field of the charged
weak bosons, and the matrices T and T are defined
as

0 Vud Vus
T.=(o o o |, =17,
0 O 0

with Vi,q and Vs being the CKM-matrix elements [26].

The lowest-order even-intrinsic-parity Lagrangian
Lg, describing the coupling of the resonance fields to
the pseudoscalars, has been suggested in Ref. [17]. It
is linear in the resonance fields. In this Lagrangian, we
keep the contributions from the vector and axial-vector
mesons relevant for the process of 7 decay to 7 and ~:

‘Ckzn _%X
> < ARau V, RV — M’%R RVH
X A\ AL v iqn V>7
R=V,A 2 (A.9)
Fy iGy
Lk Vi ) + —= (Vuru”) +
int — 2\/—< > ﬁ(#uu>
iF A v
F o (A ).

where Fy, Gy, and Fy4 are the coupling constants, and
the antisymmetric tensor representation for the spin-1

fields V,,, and A, is used [17]. Also,
J

Y = uFful £ ul FiVu,

V,X =9,X +[[,,X], T,=

FLY = 0okr” —0"r* —i[r*,r"],
FIY = oMy —
1/2 {ul(d, —ir,)u +u(d, —il,)u'}.

ovIm — 1M, 1Y), (A.10)
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The fields R = {V, A} represent nonets (an octet and
a singlet) of the vector and axial-vector resonances
with the lowest masses. In general, the higher-lying
multiplets can be added if needed. However, already
the low-lying resonances saturate the low-energy con-
stants of chiral perturbation theory [17]. We do not
include interactions nonlinear in the resonance fields;
the structure of such terms has been investigated in
Refs. [19,37, 38].

To describe the vector form factor, we need the in-
teraction Lagrangian in the odd-intrinsic-parity sector.
The lowest-order O(p?) interactions follow from the
Wess—Zumino—Witten (WZW) functional [39]. In it,
suffices to keep only the terms that are linear in the
pseudoscalar fields ® and contain two external fields /,
and r,. Thus, we retain

2N
E%?/)ZW = ——\/_ @ envrr
4872 F
1 1 1
x Tr [0,® 5106,,7*,, + 57",,6,,1(, + ir,,apla +

1
+ il,,apr(, + 1,0,y + 1,016 + 10,1, +

+ rc,a,,r,,ﬂ . (A1)

where N¢o = 3 is the number of quark colors, and
0123 —

The external fields r, and [, are further expressed
in terms of the electromagnetic field and the field of
the W boson in Eq. (A.7). Choosing only the electro-
magnetic field in Eq. (A.11), we would obtain 7%+,
nyy, and n'yy couplings. Here, we are interested in
the terms proportional to both fields, the photon and
the W boson:

3egN¢
4872 F

x Tr [® (9,B,Q,W, + 8,W,Q0,B,)] =

etrPT %

Liwe =

_ egNe
T 4872 F

P9, By | Vua(r = 0,W +770,W,) +

+ Vus(K=0,W,f + KT9,W,") (A.12)
An additional odd-intrinsic-parity interaction relevant
for the transition W — V' — P# is considered in Sec. 4.

From Lagrangians (A.1), (A.11), and (A.12), we can
obtain the necessary terms describing interactions of
the pseudoscalar mesons, the resonances, the W bo-
son, and the photon.
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APPENDIX B

Polarization of the 7~ lepton in
electron—positron annihilation

We consider the polarization of the 7~ lepton in the
annihilation process

e (p)+et(p2) =7 (1) + 71 ()

in the case where the electron has nonzero longitudinal
polarization. The effect can be understood by means
of the corresponding matrix element squared

|M|? = E*'T,,,
1 oy s nZ v .
§E =59 + (p1p2)"” + iX(pvpip2),
T = 20" & (@)™ + iM (uvgS)
2 ny — 29 q142 pnrgs), (Bl)

(=pi+p=0+e@, ¢=s,

where S is the T-polarization 4-vector and ) is the elec-
tron polarization degree.

The contraction of the tensors in Eq. (B.1) is given
by (neglecting the electron mass)

MP = A+ B(S),
i (B.2)

4M
A=5%{1+cos’0+ sin? 6| ,

AAM s[(p1S) — (p29)],

B(S)

where 6 is the angle between the momenta of the elec-
tron and the 7~ lepton.
The polarizations of 7~ are defined as [29]

B(S)

B(ST)
A7 )

T _
P= A

Pt =

(B.3)

If we choose the 4-vectors S and S7 in such a way
that in the rest frame of the 7 lepton they are

ST

2 _
ny =

SL = (0,111)7

1'11‘1’12:0,

(20 »ma), (B.4)
n; =1,
where nj is in the direction of the 3-vector qi in the
center-of-mass system and n, belongs to the scatte-
ring plane, then we can write the covariant form of the
4-vectors ST and ST in terms of the momentum 4-vec-
tors, namely (neglecting the electron mass)

gL — (1q2)n — M?qo
M (Q1Q2)2 - MY
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ST = % {[M? = (p2g)]n +

+ [M? = (pra)]a2 + [(p1p2) — 2MPlp1},  (B.5)

N? = [(p1p2) — 2M>][2(q1p1) (@1p2) — M (p1p2)].

It is easy to show that in the rest frame of 7, the co-
variant forms in Eq. (B5) coincide with relations given
in Eq. (B4). Using the above formulas, we find

B(SY) =2)\s%cosf, B(ST) =4 \Ms\/ssinf, (B.6)
and the corresponding results for the polarizations P
and PT are given in the text.

At the Super c¢—7 factory planned in Novosibirsk,
7-pairs will be created near the threshold, where the
directions of their 3-momenta are not determined, and
therefore the above evaluations are not convenient. The
only preferred direction for the considered reaction in
the center-of-mass system is then the direction of the
colliding beams. This means that choosing the unit
3-vector ny in Eq. (B.4) to lie along the electron beam
direction p; and, as before, having ns in the reaction
plane, we are able to go to the threshold limit and
clearly interpret the 7~ -polarization states. This re-
quires a modification of the corresponding covariant
forms for the polarization 4-vectors as follows:

St = %((pj\f—;)pl —q1)7
=5 |(rar 1+ )

(Prq1)
(P1p2)

p2 — ql]7 (B.7)

2(p1qr)?

N12 = 2(]91Q1) - M2 - (plpZ) -

In this case, we have

B(S"") = 2)s* D",

AM? 2 2
D' = {1— 1-— cose} —/1- cos ¥,
5
2M 4M2
Dt =—-"—4/1- sin @,
NG s
and near the threshold, when
4M?
1-— <1,
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we have
1 403
P’:A{l——(l— )sin20],
2 s
(B.8)
. 2\Msin# AM?
Pt = — 1-— .
NG s
Exactly at the threshold (s = 4M?2), P! = X and
Pt =0.

Thus, we see that near the threshold, the 7 lepton
practically keeps the longitudinal polarization of the
electron beam.
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