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FLUX TUBE SPECTRA FROM APPROXIMATE INTEGRABILITYAT LOW ENERGIESS. Dubovsky a*, R. Flauger a;b, V. Gorbenko aaCenter for Cosmology and Partile Physis Department of Physis, New York University10003, New York, USAbShool of Natural Sienes, Institute for Advaned Study08540, Prineton, USAReeived September 30, 2014We provide a detailed introdution to a method we reently proposed for alulating the spetrum of exitationsof e�etive strings suh as QCD �ux tubes. The method relies on the approximate integrability of the low-energye�etive theory desribing the �ux tube exitations and is based on the thermodynami Bethe ansatz. The ap-proximate integrability is a onsequene of the Lorentz symmetry of QCD. For exited states, the onvergeneof the thermodynami Bethe ansatz tehnique is signi�antly better than that of the traditional perturbativeapproah. We apply the new tehnique to the lattie spetra for fundamental �ux tubes in gluodynamis inD = 3+ 1 and D = 2+ 1, and to k-strings in gluodynamis in D = 2+ 1. We identify a massive pseudosalarresonane on the worldsheet of the on�ning strings in SU(3) gluodynamis in D = 3 + 1, and massive salarresonanes on the worldsheet of k = 2; 3 strings in SU(6) gluodynamis in D = 2 + 1.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300881. INTRODUCTIONString theory originated as a andidate theory ofstrong interations [1℄. However, it was soon aban-doned as a theory of hadrons, at least for the time be-ing, beause it failed to reprodue the observed prop-erties of deep inelasti sattering as well as the asymp-toti freedom of non-Abelian gauge theories. But thesuess of the Veneziano amplitude in desribing manyaspets of the hadron spetrum and sattering is hardlya oinidene. Con�ning strings (�ux tubes) are ru-ial ingredients in the strongly oupled QCD dynamisresponsible for olor on�nement, and their presene isvividly revealed by lattie QCD simulations [2℄1), sug-gesting that understanding the struture and dynamisof QCD �ux tubes might provide insights into the dy-namis of olor on�nement.The modern approah to the relation between stringtheory and gauge theories relies on the AdS/CFT or-*E-mail: sergei.dubovsky�gmail.om1) See http://www.physis.adelaide.edu.au/theory/sta�/leinweber/VisualQCD/Nobel/ for animations.

respondene [3℄. Within this framework, the QCD �uxtube is expeted to be desribed by a string propagatingin a spae�time with an extra urved dimension, whihan be interpreted as the dynamial string tension, orequivalently, the renormalization group sale [4℄. Iden-tifying a onrete string theory that would provide aholographi desription of nonsupersymmetri QCD re-mains a long shot, and even if this dual string theorywere found, it would be outside the regime in whih weurrently have theoretial ontrol.In this paper, we therefore fous on a rather diretpath towards understanding the struture of the �uxtube theory that does not involve holography. Instead,it is based on existing lattie tehniques ombined withe�etive �eld theory and tools from integrability.Advanes in lattie QCD simulations have allowedmeasuring the spetrum of low-lying worldsheet exi-tations with impressive auray [5�7℄. But the theo-retial interpretation of these results was problematiuntil now. For most states, the string lengths aessiblein the lattie simulations were too short for the exist-ing tehniques to be reliable. The onventional pertur-bative methods [8�10℄ for alulating the spetrum ofstring exitations result in badly diverging asymptoti458



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :series in this regime, preventing the interpretation ofthe data. At the same time, the data exhibited a num-ber of puzzling and suggestive features. In partiu-lar, while perturbative alulations were not reliable,many of the levels show surprisingly good agreementwith the spetrum of a free bosoni string quantizedin the light-one gauge following the lassi paper [11℄by Goddard, Goldstone, Rebbi, and Thorn (GGRT)(see also [12℄). This is onfusing, given that the GGRTspetrum is well known to be inompatible with thebulk Poinaré symmetry if the number of spae�timedimensions is di�erent from 26.For the lattie simulations, the omputational ostgrows exponentially with the length of the string. Atleast with the urrent tehnology, this makes it essen-tially impossible to push lattie alulations into theregime in whih onventional perturbation tehniquesonverge. Alternative tehniques for alulating the�ux tube spetra are thus required, to provide betteronvergene for relatively short strings. We proposedsuh a tehnique in [13℄, and its suess relies on theobservation that the worldsheet theory beomes inte-grable at low energies. This tehnique seems su�ientto explain the previously puzzling features seen in lat-tie results. In addition, it allowed showing that the ex-isting lattie data provide strong evidene for the exis-tene of a massive pseudosalar state on the worldsheetof the QCD �ux tube, the worldsheet axion.The goal of this paper is to provide a detailed a-ount of the method proposed in [13℄. In Se. 2, webegin with a brief summary of the lattie results andof the e�etive string theory approah (for a detailedreent review, see [14℄). We review the results of theonventional perturbative expansion for energy levels,whih exhibits a large number of universal terms. Weexplain that the GGRT spetrum, in spite of being in-onsistent with the bulk Poinaré symmetry, still rep-resents a �nite-volume spetrum of a ertain integrablerelativisti two-dimensional theory. As we explain, thisobservation immediately allows alulating all the uni-versal terms in the spetrum of relativisti e�etivestrings [15℄.In Se. 3, we present the new method for alulatingthe �ux tube spetrum. The main idea of the method isto divide the alulation into two steps. First, we per-turbatively alulate the worldsheet S-matrix desrib-ing the sattering of the �ux tube exitations withinthe e�etive string theory. We then determine the or-responding �nite-volume spetrum using the exitedstate thermodynami Bethe ansatz (TBA) [16, 17℄,whih is very similar to the tehniques developed byLüsher [18, 19℄, whih are routinely used to extrat

four-dimensional sattering amplitudes from the lattieQCD data. We provide a partial diagrammati inter-pretation of the perturbative resummation performedby the TBA and explain why it is natural to expetthat this method results in a better behaved perturba-tion theory for exited states.In Se. 4, we use this tehnique to interpret thelattie data. We provide more details than in [13℄ asto how to implement the method and inlude a largerset of exited states in our analysis. This extendedanalysis on�rms the onlusion reahed in [13℄: thelattie data provides strong evidene for the existeneof a pseudosalar state bound to a on�ning string.We also apply the tehnique to the available data forthree-dimensional gluodynamis. There, we �nd no evi-dene for any massive exitations on the fundamental�ux tube, but identify massive salar exitations on k-strings.We onlude in Se. 5 by disussing future diretionsand prospets. We also present an intriguing hint forthe existene of additional light bound states, omingfrom the preision ground-state data.2. LATTICE DATA VERSUS CONVENTIONALPERTURBATIVE EXPANSIONWe start with a brief summary of lattie results forthe exitation spetrum of on�ning �ux tubes. A de-tailed desription of these results and tehniques an befound in [5�7℄ (for a review, see [20℄). In most of ourdisussion, we assume the spae-time dimension D == 4. However, we also apply our tehniques to theavailable D = 3 data. We are interested in the inter-nal dynamis of a single losed �ux tube, rather thanin e�ets oming from its boundaries and from inter-ations between several �ux tubes. To disuss theseseparately, it is neessary to suppress proesses wherethe �ux tube an break. This is ahieved by perform-ing simulations in pure gluodynamis without dynam-ial quarks. Gauge-invariant operators in a pure gluetheory are onstruted as traes of path-ordered expo-nentials of the gauge �eld A� (Wilson loops),OP = TrP 0�exp ZC A1A ; (1)where C is a losed path. In what follows, we mostlydisuss �ux tubes arrying a single unit of fundamen-tal �ux. This amounts to taking the trae in (1) in thefundamental representation of the gauge group.A nie trik, whih allows onentrating on the dy-namis of long �ux tubes, is to use the nontrivial lattie459



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015topology. Namely, we onsider states reated by ope-rators of form (1), suh that the orresponding pathwinds around one of the lattie dimensions. It is on-venient to think about the orresponding diretion asa spatial one, although, of ourse, all diretions on thelattie are Eulidean anyway. States of this kind are or-thogonal to onventional glueball states reated by ope-rators (1) with ontratible paths. This follows from aglobal ZN symmetry (enter symmetry) present in theSU(N) Yang�Mills theory ompati�ed on a irle. Itis generated by gauge transformations suh that theorresponding gauge funtions satisfy twisted bound-ary onditions. The twist is performed using a multi-pliation by an element from the enter of the gaugegroup, g(R) = e2�ki=N g(0); (2)where k is an integer.Transformations satisfying boundary ondition (2)at properly on the gauge on�gurations and preservethe ation funtional, but do not originate from a well-de�ned gauge funtion. Hene, they should be onsid-ered as generating a global, rather than gauge, sym-metry. Any two transformations with the same twist kare equivalent up to a onventional gauge transforma-tions, and hene the resulting symmetry group is ZN .A state reated by operator (1) with a winding numberk arries harge k with respet to this symmetry, andtherefore the full Hilbert spae splits into a diret sumof N orthogonal subspaes labeled by orrespondingwinding number (modulo N).Most of the lattie data disussed here is extratedfrom the two-point orrelators of the states arryinga unit harge under the enter symmetry (a brief dis-ussion of k-strings with larger values of the harge ispresented in Se. 4.6). These states represent losed�ux tubes with a unit winding number around theompat diretion. Considering a large enough set ofshapes of the Wilson lines allows probing not only theground state but also the low-lying exitations of the�ux tubes. By measuring the exponential fall-o� of theorrelators, we extrat energies of the states reatedfrom the vauum by the orresponding operators, inthe same way as for onventional glueball mass mea-surements.A theoretial framework for perturbative alula-tions of these energies from �rst priniples is providedby e�etive string theory. The idea is that the �ux tubestates whose exitation energy above the ground statein the k = 1 setor is smaller than the mass of the light-est glueball are desribed by a two-dimensional e�etive�eld theory. In the absene of additional symmetries

(suh as supersymmetry), the only massless degrees offreedom in this theory are Goldstone modes desribingthe spontaneous breaking of the bulk Poinaré groupISO(1; D�1) to a residual symmetry group, whih re-mains unbroken in the presene of an in�nite straightstring. The latter is the produt of the worldsheetPoinaré symmetry ISO(1; 1) with the transverse ro-tations O(D�2). This symmetry breaking pattern im-plies the presene of D� 2 massless Goldstone degreesof freedom represented by salar �elds X i. Geometri-ally, they parametrize transverse exitations of a �uxtube, suh that its embedding into the bulk spae isgiven by X� = (��; X i);where �� (� = 1; 2) are the worldsheet oordinates.The e�etive ation is onstruted as a sum of loalgeometri invariants orresponding to this embedding,and starts with a Nambu�Goto (NG) termSstring = �`�2s Z d2�p� deth�� + : : : == `�2s Z d2���1�12��X i��X i�18 ���X i��X i�2 ++ 14 ���X i��X i�2 + : : :� ; (3)where h�� = ��X���X� (4)is the indued metri on the worldsheet, `s is the stringsale, and : : : stands for higher-order terms.Within this formalism, the problem of alulatingthe spetrum of low-lying �ux tube exitations beomesthe omputation of the spetrum of low-lying Kaluza�Klein (KK) modes of this two-dimensional e�etive the-ory upon ompati�ation on a spatial irle of irum-ferene R. The traditional approah to this problem isa perturbative expansion in powers of `s=R. One per-turbatively alulates the spetrum of a quantum me-hanial Hamiltonian obtained after KK deompositionof e�etive ation (3). At any �nite order in the `s=R-expansion, only a �nite number of terms from (3) on-tribute. The proedure is straightforward, even thoughthe algebra may beome rather messy in alulatingsubleading terms in this expansion. The major subtletyin this approah is to enfore the invariane under non-linearly realized bulk Lorentz transformations at eahorder of the expansion,Æ�i� Xj = ��(Æij�� +X i��Xj); (5)460



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :where � is an in�nitesimal parameter of the boost/ro-tation. By onstrution, lassial ation (3) enjoys thissymmetry, but depending on the regularization sheme,it may be broken at the intermediate stages of the al-ulation.As we an see from (3), a large number of terms inthe e�etive ation are �xed as a onsequene of non-linearly realized Lorentz transformations (5). Hene,several leading-order terms in the `s=R expansion areuniversal and an be predited in a model-independentway in any D-dimensional theory, giving rise to e�e-tive string-like objets. The only assumptions enteringthis predition are that the bulk theory is relativisti,has a gap, and the spae-time Goldstones X i are theonly massless degrees of freedom arried by the stringworldsheet. One example of a leading-order nonuni-versal term in e�etive ation (3) that does not vanishon-shell2) and is ompatible with (5) isÆS / `2s Z d2� �����X i����X i�2 :These terms originate from loal geometri invariants,suh as R2 and R2�� , where R�� is the indued urva-ture of the worldsheet metri. Power ounting demon-strates that this term ontributes to the spetrum atthe order `6s=R7, and hene all the terms up to `4s=R5are universal. A brute fore alulation of all the uni-versal terms is tedious, however, and has not been per-formed yet. Shortly, following [15℄, we will review ashortut that allows obtaining all the universal `4s=R5terms bypassing a diret alulation.Confronting the e�etive string theory preditionswith lattie data for D = 4 SU(3) gluodynamis leadsto several puzzles, as an be seen from Figs. 1, 2, and 3.The data points on these plots represent string energiesas a funtion of the ompati�ation size R. Figure 1shows the ground-state energies, Fig. 2 shows stateswith a single left-moving phonon with di�erent valuesof the KK momentum, and Fig. 3 shows a state withone left-moving and one right-moving phonon, eahwith one unit of KK momentum. In the last ase, dif-ferent olors label di�erent two-partile states, lassi-�ed aording to representations of the O(2) group ofunbroken rotations in the transverse plane.In addition, we present two theoretial expetationsof how these energies might look like. Dotted linesshow the sum of universal `4s=R5 e�etive string theoryterms. As explained above, these follow from the on-sistent �rst-priniple alulation and should agree withthe data for su�iently long strings.2) Or, equivalently, annot be removed by a �eld rede�nition.
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ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :exp(2iÆGGRT ) = exp(i`2ss=4): (7)The speial role of the ritial dimension D = 26 (andalso ofD = 3 [21℄) is that in this ase, the theory is bothintegrable and enjoys a nonlinearly realized target-spae Poinaré symmetry ISO(1; D�1). The existeneof this family of integrable models is not surprising,given that the light-one string quantization providesa diret anonial onstrution of the orrespondingHilbert spae, and does not break the two-dimensionalpart of the Poinaré algebra. However, Lorentz invari-ane had not been �rmly established prior to [15, 22℄4).The subtlety is that the onventional light-one quan-tization is performed in the setor with zero windingnumber, while the spetrum (6) arises in the setorwith a nontrivial winding. The normal-ordering on-stant in the light-one quantization (whih determinesthe (D � 2)-term in (6)) is usually �xed by imposingthe target-spae Poinaré symmetry, and it remains un-lear what �xes it in the nonritial dimension.These questions are resolved by applying the TBAmethod to reonstrut the �nite-volume spetrum fromthe S-matrix in (7). This exatly reprodues the GGRTspetrum (6), both demonstrating that the GGRTspetrum is indeed the �nite-volume spetrum of arelativisti two-dimensional theory and showing thatthe normal-ordering onstant is in fat �xed from therequirement of a two-dimensional Poinaré symmetryalone in the setor with a nontrivial winding.This observation turns out to be important for theidea behind the method desribed in this paper, andto illustrate its power, following [15℄, we review howit allows deriving the universal part of the �ux tubespetrum in the onventional `s=R expansion in a sim-ple way. By straightforward perturbative alulationof the sattering amplitudes, we �nd that at the levelof the Lagrangian, the relation between the integrablefamily of GGRT theories and the e�etive theory onthe worldsheet of an in�nitely long relativisti �ux tubetakes the formLGGRT = LNG + LPS + : : : (8)Here, LGGRT stands for the Lagrangian of the GGRTtheory (determined by the S-matrix in (7)), LNG is theLagrangian of the relativisti �ux tube theory,LPS = D � 26192� ����X i����X i�Xj�Xj + : : : (9)is the Polhinski�Strominger (PS) operator [23℄, and: : : stands for higher-order terms in the `s-expansion.4) We thank Ofer Aharony and Zohar Komargodski for em-phasizing this point to us.

Upon ompati�ation on a irle of irumferene R,the in�nite-volume relation (8) implies that up to theorder (`s=R)3, the �ux tube spetrum oinides withthe expansion of the GGRT spetrum. The leading(`s=R)5-di�erene between the two is given simply bythe matrix elements of the PS operator. This is thefastest way to derive the universal perturbative `s=R-results presented in Figs. 1�3. This general argumentagrees with the expliit alulations [24℄ performed fora large set of states in the onformal gauge.In fat, the �ux tube spetrum exhibits an evenlarger set of universal relations. Relation (8) is a on-sequene of the universality of the one-loop two-to-twosattering amplitude on the worldsheet of the relativis-ti �ux tube. Power ounting demonstrates that atu-ally arbitrary onneted one-loop amplitudes are uni-versal and determined solely by the NG part of theation. At a �nite volume, this universality translatesinto relations between energies of di�erent �ux tube ex-itations at higher orders in the `s=R-expansion. Thisan be heked by inspeting the leading orretions tobinding energies of di�erent states.Unfortunately, as disussed above, in spite of thishigh degree of universality, the onventional `s=R-ex-pansion is not very useful for the study of the exited�ux tube states observed in urrent lattie simulations,whih brings us to the main subjet of this paper, thedesription of an alternative tehnique based on theTBA.3. FINITE-VOLUME SPECTRA FROMINFINITE-VOLUME SCATTERINGTo �nd a ure for the bad onvergene property ofthe `s=R-expansion, we �rst understand the physialorigin of the problem. Why do exited states behave somuh worse than the ground state, for whih the expan-sion works extremely well? The di�erene between theground state and the exited states is visible already inthe GGRT theory. As is apparent from expression (6)for the GGRT spetrum, the `s=R-expansion for ex-ited states breaks down when R2=`2s � 4�(N + ~N),whih an be a relatively large number. For the groundstate, however, the radius of onvergene orrespondsto R2=`2s = (D � 2)�=3, whih is muh smaller. Physi-ally, the origin of additional terms of the order 2�N=Rin the exited states energies is lear. These are themomenta of free phonons omprising the exited state.This suggests that it is useful to think of the �nite-volume energies to be funtions of the formE = `�1s E(pi`s; `s=R);463



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015where pi are the momenta of individual partiles prop-agating on the worldsheet. The onventional `s=R ex-pansion assumes the free theory answer for pi and ex-pands the resulting funtion in `s=R. The key idea ofthe new method is to alulate the spetrum in suha way that these two funtional dependenes beomedisentangled.Our previous disussion, most notably the de�nitionof the GGRT theory by its sattering phase shift (7),suggests a natural language to ahieve this. We shouldperform the alulation of the �nite-volume spetrumin two distint steps: �rst alulate the (in�nite-volume) S-matrix and then proeed towards extratingthe �nite-volume spetrum from this S-matrix. The�rst step orresponds to the perturbative expansion inpi`s and beause of the usual analyti properties of theS-matrix turns out to be onvergent even for momentathat are not partiularly small.Even though it is widely believed that the S-matrixof a quantum �eld theory uniquely determines its �nite-volume properties, the presription for the seond stepis not known in general. However, it is understood intwo irumstanes.For massive theories below the partile produtionthreshold, there is a perturbative proedure �rst imple-mented by Lüsher [19℄ and ommonly used in lattiealulations. There is no prinipal obstrution to ex-tending this tehnique above the inelasti threshold,and multihannel generalizations of Lüsher formulasare being developed (see, e. g., [25, 26℄). One of themajor hallenges (at least at the tehnial level) withinthis approah is to alulate winding orretions, om-ing from virtual partiles traveling around the ompatdimension. In massive theories, these are exponentiallysuppressed, and usually are either negleted or alu-lated by aounting for the lowest-order winding on-tributions. In a massless theory, like the e�etive stringtheory, more are is needed beause the winding or-retions are only power-law suppressed.For two-dimensional integrable theories, there isan exat (nonperturbative) method for alulating the�nite-volume spetrum known as the TBA [16, 17℄.Even writing the omplete set of equations, espeiallyfor exited states, is in general quite nontrivial andusually involves some amount of guesswork. However,there is a speial lass of re�etionless integrable sat-tering, where the TBA for exited states appears totake a simple universal form [22; 27℄. The GGRT modelbelongs to this lass and the orresponding set of exi-ted-state TBA equations is known exatly.The worldsheet theory of �ux tubes does not have amass gap and is not integrable. However, its leading-or-

der sattering amplitudes (in the p`s expansion) oin-ide with those of the GGRT theory. At the next-to-leading order, relativisti e�etive strings deviate fromthe GGRT theory for general D, and re�etions andannihilations appear at this order. But in D = 4, theystill take a speial form for whih it is possible to writethe full set of exited-state TBA equations. This is ourstarting point for the analysis of the �ux tube spet-ra observed on the lattie. As we see in what follows,this method provides muh better ontrol of the spet-ra than the onventional `s=R expansion, and makesit lear that the minimal e�etive string theory has tobe extended to explain the lattie data. The extensionit to be inorporated in the TBA equations perturba-tively.3.1. Thermodynami Bethe ansatz forre�etionless satteringWe review the basis of the TBA. For now, weonsider massless theories with integrable re�etionlessS-matries with any number of partile speies. By in-tegrability, we mean that in every sattering proessthe number of partiles is onserved, the �nal partileshave the same momenta as the initial ones, and the ab-sene of re�etions implies that the �nal distribution of�avors oinides with the initial one. Integrability im-plies that the S-matrix element for sattering of n left-and m right-moving partiles is equal to the produtof n �m pairwise S-matries. Every 2 ! 2 S-matrixelement in every �avor hannel must be just a numberwith the absolute value 1, as demanded by unitarity,Sdab = ÆaÆdb exp(2iÆab):The TBA allows extrating the �nite-volume spe-trum of the theory from the phase shifts Æab. Thereare three key ideas underlying this method. The �rst isalled the asymptoti Bethe ansatz (ABA). It is a set ofalgebrai equations that gives the spetrum in the ap-proximation where the ontributions from virtual par-tiles traveling around the �world� are negleted. TheABA equations are disussed in more detail in Se. 3.2together with their derivation.The seond idea is the following: instead of on-sidering the theory in a �nite volume R and at zerotemperature, we onsider the theory in whih time andspae diretions are interhanged. Consequently, thistheory appears to live in an in�nite volume but at a�nite temperature T = 1=R. For a relativisti the-ory, the spae�time-interhanged (�mirror�) theory o-inides with the initial one. The ABA beomes exat inthe thermodynami limit and takes the form of ertain464



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :integral equations that allow �nding the free energydensity f(T ) in the mirror interhanged theory. Thefuntional integral representation of the partition fun-tion implies that it is related to the ground-state energyof the initial theory asE0(R) = Rf(1=R):To alulate the energy of exited states, the thirdidea is needed. The presription is to deform the on-tour in the integral equations used for alulating theground-state energy in a ertain way [17℄. Althoughthe derivation of this proedure for the general ase isnot yet known, there is a rigorous mathematial proofof the resulting TBA equations for ertain integrabletheories, suh as the sinh-Gordon model [27℄. For theGGRT theory (the ase we are mainly interested inhere) rather nontrivial heks were performed [22℄ tobe ertain that the method an be safely applied. Inaddition to this, in Se. 3.3, we provide partial dia-grammati intuition behind the TBA equations.We now turn to presenting the TBA equationsthemselves. There are two ontributions to the energyof a state in this formalism. First, there are �real� par-tiles, with (positive) momenta equal to pli and pri forleft and right movers present in the state. In addition,there is a �thermal bath� of partiles with pseudo-ener-gies �al (q) and �ar(q) for left- and right-moving ompo-nents of the bath5),�E =Xi pli +Xi pri ++ 12�Xa 1Z0 dq ln [1� exp(�R�al (q))℄ ++ 12�Xa 1Z0 dq ln [1� exp(�R�ar(q))℄ : (10)The thermal bath ontribution is responsible for wind-ing orretions and indeed has a thermal origin from thestandpoint of the mirror theory. To distinguish thermalpartiles from the real ones, we let the momenta of theformer be denoted by q. The index a labels a �avor.The momenta pi label the state. The ase without realpartiles naturally orresponds to the vauum state.The real partile momenta p and the pseudo-ener-gies �(q) are determined from solving the TBA set ofintegral equations. These onsist of two groups of equa-5) As before, we let the energy be denoted by �E, as a re-minder that the full energy E in addition ontains the lassialstring tension ontribution R=`2s.

tions. First, there are generalized quantization ondi-tions for the real momentapliR+Xj 2Æaiaj (pli; prj)�� iXb 1Z0 dq2� d 2Æaib(ipli; q)dq �� ln �1� exp(�R�br(q))� = 2�Ni; (11)priR+Xj 2Æajai(pri; plj) ++ iXb 1Z0 dq2� d 2Æbai(�ipri; q)dq �� ln �1� exp(�R�bl (q))� = 2� ~Ni: (12)In the absene of interations, Æ = 0, these redue tothe free theory quantization onditions for a set of par-tiles on a irle. For an interating theory, the quan-tization ondition is modi�ed for two reasons. First,pairwise interations between real partiles explain theappearane of the orresponding phase shifts in (11),(12) (we explain the origin of this e�et in Se. 3.2 indetail). Seond, there are integral ontributions thataount for winding orretions. Imaginary momentaappearing in (11)�(14) ome from performing the dou-ble Wik rotation to the mirror theory. However, therossing symmetry, whih in terms of the phase shiftan be written asÆ(pl;�pr) = Æ(�pl; pr) = �Æ(pl; pr);guarantees that the equations are atually real. Wedid not use this to simplify the equations and eliminatethe i, beause the rossing symmetry is modi�ed in thepresene of annihilations, whih we disuss below.Finally, the pseudo-energies satisfy the TBA on-straints�al (q) = q + iRXi 2Æabi(q;�ipri) + 12�R ��Xb 1Z0 dq0 d 2Æab(q; q0)dq0 ln �1� exp(�R�br(q0))� ; (13)�ar(q) = q � iRXi 2Æbia(q; ipli) + 12�R ��Xb 1Z0 dq0 d 2Æba(q; q0)dq0 ln �1� exp(�R�bl (q0))� : (14)6 ÆÝÒÔ, âûï. 3 465



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015For the GGRT phase shift 2Æaibj = `2spliprj , it isstraightforward to solve the full TBA system (11)�(14)analytially, resulting in (6). We note that in the mas-sive sinh-Gordon model, the full TBA system takesthe same form [27℄, strongly suggesting that this formshould be universal for re�etionless sattering. Thefull set of TBA equations has a rather intimidating ap-pearane, but as we just explained, the major ompli-ations ome from winding orretions. Dropping themresults in the ABA equations, whih are known as theLüsher formula in the ontext of lattie alulations,pl(r)iR+Xj 2Æaiaj (pl(r)i; pr(l)j) = 2�Ni: (15)In the massive ase, all integral terms are suppressedas exp(��R), where � is the mass gap, as is natural toexpet for winding orretions. In our ase, the wind-ing orretions are only power-law suppressed, and wehave to pay more attention to them. However, as wesee in what follows, for the values of R we onsider,the main e�et still omes from the asymptoti partof the Bethe ansatz. We explain the reason for this inSe. 3.4. 3.2. Asymptoti Bethe ansatzIn this setion, we sketh a simple derivation of themultihannel generalization of the ABA equations. Itis ertainly not new. One of the reasons to presentthe ABA derivation here is to stress that the logi un-derlying this derivation does not diretly rely on inte-grability. In partiular, we allow nondiagonal satter-ing, and hene the amplitude is no longer re�etion-less. Coneptually, there appears to be no obstrutionto generalizing the ABA to aommodate partile pro-dution. For example, to aount for the 2 $ 4 pro-esses, we should add matrix elements mixing two- andfour-partile states. In the ase at hand, however, theseproesses are suppressed at low energies. In what fol-lows, we therefore neglet these e�ets and assume thatthe 2! 2 part of the S-matrix Sdab is unitary.We �rst onsider two partiles in an in�nite volume,the �rst one moving to the right and the seond mov-ing to the left. The basis for the in-states is formed byjpr; a; pl; bi and the wave funtion of a generi state isde�ned as ab(x1; x2) = h0j�a(x1)�b(x2)F djpr; ; pl; di; (16)where the �eld operators are taken at equal time, F ddenotes the �avor wave funtion, and we suppressedthe time dependene. Stritly speaking, our disussion

assumes that the states are taken to be wave pakets,but to keep the formulas short, we do not write thisexpliitly. When partiles are far apart, they do not in-terat with eah other, the energy of the state is givenby jplj + jprj, and the wave funtion is just a produtof two plane waves. Thus, in the region x1 � x2, thewave funtion onsists of two ontributions: either the�rst partile is found at x1 and the seond at x2 (be-fore they sattered), or the seond partile is found atx1 and the �rst at x2. In the latter ase, the partileshave to satter before they reah their positions. As aresult, the total wave funtion in this region takes theform ab(x1 � x2) = exp(iprx1 + iplx2)F ab ++ exp(iplx1 + iprx2)SbadF d: (17)The same reasoning applied in the region x1 � x2 gives ab(x1 � x2) = exp(iplx1 + iprx2)F ba ++ exp(iprx1 + iplx2)SabdF d: (18)Now we onsider this state in a �nite volume andimpose the orresponding periodiity ondition. Toahieve this, we onsider x1 and x2 suh that x1 �� x2 � x1 + R. Then the periodiity of the wavefuntion  (x1; x2) =  (x1 +R; x2) requires thatexp(iprR)SabdF d = F ab: (19)All other periodiity onditions are equivalent beausethe total momentum p1 + p2 is quantized in units of2�=R. Equation (19) has solutions if and only ifdet �exp(iprR)Sabd � Æa Æbd� = 0; (20)where (ab) as well as (d) should be treated as a sin-gle matrix index when the determinant is taken. Thisis the multi-hannel generalization of the Lüsher for-mula, whih imposes a relation between the S-matrixand the allowed momenta of partiles in a �nite volume.If the S-matrix is known, it allows �nding the energyspetra, given by jplj+ jprj. Conversely, if the spetraas funtions of R are known, we an reonstrut theS-matrix.It is straightforward to extend this derivation tomulitpartile states in integrable theories. In partiu-lar, for re�etionless sattering, we immediately arriveat (15). As we already said, there appears no fun-damental obstrution to extending these arguments tononintegrable theories, even though obtaining the ex-pliit equations is likely to be quite hallenging due toinevitable mixing between states with di�erent num-bers of partiles.466



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :Antiipating a disussion in what follows, we pointout one of the main reasons why the TBA tehnique dis-plays better onvergene than the onventional (`s=R)expansion. As follows from ABA equations (15), theatual momenta pi of interating phonons are smallerthan the free-theory value 2�Ni=R, if the phase shiftÆ is an inreasing funtion of the momentum. Giventhat the perturbative parameter for the low-energy ex-pansion is pi`s, aounting for this e�et improves theonvergene properties of the expansion.3.3. Towards a diagrammati interpretation ofthe thermodynami Bethe ansatzIt is lear from the presented derivation that thewinding orretions are absent in ABA system (20)beause we did not take virtual quanta propagatingaround the world into aount. For the GGRT theory,these are aounted for by the �thermal� ontributionsin (10) and (11), (12) together with a set of integralequations (13), (14) for pseudo-energies.These equations were obtained following the idea pi-oneered in [17℄. The starting point are the ground-stateTBA equations derived in [16℄. These are Eqs. (10) and(13), (14) without any real partile ontributions. Theidea in [17℄ is that the ground-state energy as a funtionof a su�iently large set of external parameters allowsreonstruting the full set of exited states energies byanalyti ontinuation in the parameters and exploitingthe monodromies the equations and solutions undergowhen irling singularities in the omplex plane.To arrive at the exited-state TBA equations for theGGRT model, we an for example introdue hemialpotentials �al(r) for the number of phonons. These areinorporated by shifting the pseudo-energies�al(r) ! �al(r) + �al(r)in the thermal integrals in (13) and (14). As a resultof an analyti ontinuation along a ontour in the om-plex plane of the �, whih starts and ends at � = 0,the integrals may pik up extra ontributions from ir-ling around the branh points of the logarithm. Thesegive rise to the ontributions in (13) and (14) orre-sponding to real partiles. The generalized ABA equa-tions (11), (12) determine the positions of the singu-larities. The partile number simply ounts how manytimes di�erent singularities were irled.Unfortunately, there is still an ambiguity left in thispresription onerning the orret diretion for ir-ling around the singularities (the one orrespondingto positive partile numbers Ni). This may be �xed by

requiring that the orret result be reprodued in thefree-theory limit, `s ! 0.This line of reasoning leads to the orret result forthe exited-state TBA. Nevertheless, it is tempting tolook for a diagrammati understanding of how the ex-ited-state TBA arises. In partiular, we may hopeto see that it orresponds to a ertain resummation ofthe onventional perturbative expansion, whih wouldhelp to illuminate the origin of the better onvergeneof the TBA method. Some insight into this issue wasgiven in [18, 19℄ (see [28℄ for a review and generaliza-tion to an arbitrary dispersion relation). However, theproposed diagrammati method orresponds to an ex-pansion in winding orretions or exp(�mR) beausemassive partiles were onsidered. Sine winding or-retions in massless theories are only power-law sup-pressed, this expansion does not provide a good ap-proximation. This motivates us to seek an alternativeresummation of Feynman diagrams.At this point, we do not have a omplete solutionto this problem, but instead merely report on partialprogress in this diretion. First, we reall that eventhough our theory is massless and winding orretionsare not suppressed exponentially, numerially they arenevertheless small for the relevant values of D� 2. Wealready mentioned the reason for this at the end ofSe. 3.1 and illustrate this point numerially below.This suggests an iterative solution of the TBA equa-tions, in whih we �rst ignore the integral parts, �ndthe orresponding � and p, and then solve the integralequations iteratively.We note that this expansion is di�erent from theexpansion in the winding number mentioned above.The latter orresponds, roughly, to expanding the ther-mal TBA logarithms in a series of exponential termsexp(�nR�).To see that the onvergene of this method is goodat least for the GGRT theory, we note that to the lea-ding order, it orresponds to the expansion of the squa-re-root formula (6) in a formal parameter D � 2, andthat expansion is onvergent for any state for the val-ues of R and D� 2 we onsider. For the ground state,the (D� 2) expansion is equivalent to the `s=R expan-sion, but they behave di�erently for all exited states.For instane, ompletely negleting the (D� 2) ontri-butions results in the following ABA spetrum for theGGRT theory:El(N; ~N) == `�1s sR2`2s + 4�2`2s(N � ~N)2R2 + 4� �N + ~N�: (21)467 6*



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015= + + + : : :Fig. 4. Propagator for a virtual quantum in the pre-sene of the real left-moving partiles indiated byrossesThis oinides with the spetrum of the lassial string.In the rest of this setion, we demonstrate how the �rstterm of the (D�2) expansion of spetrum (6) arises inthe diagrammati language.We will organize the alulation in the followingway. We start with a set of partiles orrespondingto a hosen state, with momenta determined by theABA quantization onditions. At this stage, windingorretions are not yet inluded, and it is therefore ap-propriate to think of this state as a �gas� in an in�nitevolume, albeit in a very speial state in whih all par-tiles have the same momentum. The leading windingorretions then take the form of onventional bubblediagrams with the propagator taken to be the one for�utuations around this gas.To illustrate how this works in pratie, we �rstonsider a state on a irle with a single left-movingphonon. The ABA quantization is equivalent to thefree one in this ase, and hene the momentum of thepartiles in the gas is pl = 2�N=R. It is onvenientto also introdue the parameter �l = `2spl=R; physi-ally, this is the energy density of the gas (in stringunits). We onsider a probe partile with a momen-tum q�, propagating through the gas. To alulate thedressed propagator for this partile, we need to resumthe diagrams represented in Fig. 4. In terms of the mo-mentum expansion, we restrit ourselves to the leadingterm; only tree-level diagrams are then taken into a-ount. All one-partile irreduible diagrams ontainingmore than two gas insertions vanish in this ase, andwe thus obtain the propagator exatly to all orders in�l as a geometri series,G(q) = iq20 � q21 + iq20 � q21 iM2plR iq20 � q21 + : : : ; (22)where M is the forward sattering amplitude for thesattering of the virtual partile o� a phonon in thegas, M = 2`2sp2l (q0 + q1)2;and the fator of 1=R stands for the number densityof phonons. By alulating the geometri series, weobtainG(q) = i(q0 + q1) [q0 � q1 + (q0 + q1)�l℄ : (23)

Sine left-movers do not interat with eah other, thedispersion relation for a left-moving quantum is notmodi�ed in a purely left-moving gas. On the otherhand, the right-moving probe is slowed down by inter-ations and its dressed dispersion relation isq0 = 1� �l1 + �l q1:We note that for �l > 1, a �right-mover� is arried awayby the gas and atually propagates to the left. It is nowstraightforward to onstrut the quadrati e�etive a-tion reproduing propagator (23),Seff == Z d2��1+�l2 _xi _xi+�l2 _xixi0�1��l2 xi0xi0� : (24)Now, following the logi outlined above, we alu-late the energy of the state on a irle as the sum of theenergy of the real left-moving partile, pl, and the win-ding ontribution. In the leading order, the latter is theground-state energy of the free theory with ation (24).It an be alulated either using the ground-state TBA(for the mirror theory) or diretly. Proeeding in thediret way, we alulate the energy as the expetationvalue of the Hamiltonian orresponding to (24),hHeff i = * RZ0 d� 1 + �l2 _xi _xi + 1� �l2 xi0xi0+ : (25)Using the Poisson summation formula, we write theresult as a sum over windings,hHeff i =Xn6=0Z d2q(2�)2 �� iR �(1 + �l)q20 + (1� �l)q21� exp(iq1nR)2(q0 + q1)(q0 � q1 + (q0 + q1)�l) ; (26)where we drop the zero-winding ontribution. Af-ter performing the Wik rotation for q0, we lose theq1-ontour and take the q1-integral by residues. Theresulting total energy of the state is�E = pl + D � 22� 8<: 1Z0 dq ln [1� exp(�Rq)℄ ++ 1Z0 dq (1� �l) ln [1� exp(�Rq(1 + �l))℄9=; == 2�NR � (D � 2)�R6(R2 + 2�N`2s) : (27)468
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is no obstale to extend the same logi to the statesontaining both left- and right-moving phonons. Onemodi�ation in this ase is that the momenta pl andpr of the partiles in the gas are not given by the freequantization ondition anymore, but are solutions ofLüsher equation (15). The di�ulty now, however, ishow to obtain the result in all orders in the partileenergy densities �l(r) = `2spl(r)=R. The reason is thatleft- and right-moving partiles now interat with eahother, and hene there are nonvanishing one-partileirreduible diagrams with more than four outgoing legsontributing to the dressed propagator. It may be pos-sible to sum all these diagrams for the NG ation atleast at the tree level, but we leave this for future work.Instead, we present the perturbative result in the �, a-ounting only for the four-partile interations, as be-fore. This leads to the following dressed propagator fora probe partile:G(q) = �iq20 � q21 + (q20 + q21)�l + (q20 � q21)�rR: (28)As expeted, the dispersion relation for both left- andright-movers is modi�ed in this ase. A alulation si-milar to the one we did for the purely left-moving stateresults in the following expression for the energy at theleading order in the �:�E = pl + pr � (D � 2)� (1� �l � �r)6R : (29)As illustrated in Fig. 6, this leads to a signi�ant im-provement ompared with the naive `s=R expansion,but still is not aurate at small radii, where the energydensities �l(r) beome large and multipartile intera-tions must be inluded.We feel the above perturbative examples serve wellthe purpose of illustrating the physis underlying theTBA method. It is an interesting open questionwhether they an be pushed to higher orders. We havementioned that already at the tree level, we must learnhow to resum an in�nite number of tree-level diagrams.But we may also try to be more ambitious and push themathing alulation resulting in e�etive ation (24) tohigher orders. It would be interesting to study whetherthis method allows reproduing the full TBA system inthe (D � 2) expansion, or whether new physial ingre-dients are required.3.4. UV insensitivity of winding orretionsIt is apparent from the above disussions that win-ding orretions are more subtle and harder to aountfor than the ABA part of the �nite-volume spetrum.469
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ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :batively in the p`s expansion. As explained in Se. 2,the phonon sattering on the worldsheet of a �ux tubeis universal up to `4s. The orresponding amplitudeswere alulated in [15℄. At this order, there is no par-tile prodution, and hene the S-matrix is integrableand ompletely determined by the two-partile elastiamplitudes. To desribe these last, it is onvenientto haraterize two-partile states aording to theirquantum numbers under the unbroken group O(2) ofrotations in the transverse plane. We �nd one salarjsi, one pseudosalar jpi, and two omponents jt;�iof the symmetri tensor O(2) representations. Intro-duing reation operators for states of de�nite heliity,i. e., eigenstates of the ontinuous SO(2) rotations inthe transverse (X2; X3) plane,ayl(r)� = ayl(r)2 � iayl(r)3; (30)we write the orresponding states in the formjsi = (ayl+ayr� + ayl�ayr+)j0i;jpi = (ayl+ayr� � ayl�ayr+)j0i;jt;�i = ayl�ayr�j0i: (31)The two-partile S-matrix is diagonal in basis (31) andin the order `4s redues to the elasti sattering phasesin eah of the hannels, whih are equal toÆs(p) = ÆGGRT + ÆPS +O(`6s); (32)Æt = ÆGGRT � ÆPS +O(`6s); (33)where ÆGGRT is the GGRT phase shift (7) and ÆGGRTis the PS phase shift given by2ÆPS = 26�D24� `4s(plpr)2; (34)where we restored the dependene on the dimension Dof the target spae-time6). The appearane of the riti-al string dimension D = 26 in the PS phase shift (34)indiates that it introdues qualitatively new e�ets asompared to the leading GGRT phase shift. Indeed,it an be shown that the PS phase shift is responsiblefor the eventual breaking of integrability on the world-sheet of a nonritial string at a higher order in the `sexpansion.At the order `4s, whih we are working in, the theo-ry is still integrable, but is not re�etionless anymore.The PS shift removes the degeneray between phase6) Of ourse, for D 6= 4, expressions (31) should be modi�ed,and the pseudosalar representation turns into an antisymmetritensor.

shifts in di�erent hannels; the phase shift in the ten-sor hannel is di�erent from the one in the salar andpseudosalar hannels. As a onsequene, annihilationtransitions like ayl2ayr2j0i ! ayl3ayr3j0i are possible atthis order.As a result, in general, one expets that the re-�etionless TBA desribed in Se. 3 an no longer beapplied. For general D, this is indeed the ase. Butthe ase D = 4, where the string has only two trans-verse diretions, is speial. Swithing to the heliitybasis (30) allows diagonalizing the S-matrix for an ar-bitrary number of partiles. Hene, for two �avors, wean still apply the full re�etionless exited TBA sys-tem desribed in Se. 3. The only modi�ation is thatthe TBA partiles have to be labeled by their heliitiesrather than by O(2) �avors. The orresponding phaseshifts are given byÆ++ = Æ�� = Æt;Æ+� = Æ�+ = Æs(p): (35)Before onluding the setion, we brie�y ommenton the D = 3 ase beause we disuss the D = 3 lat-tie data in what follows. In that ase, we �nd a singletwo-partile state with zero total momentum. The PSamplitude in this ase vanishes for kinemati reasons,and the worldsheet S-matrix agrees with the GGRTS-matrix at the order `4s.We now apply the TBA approah to various states(and theories).4.1. Ground-state energyAs disussed in Se. 2, the ground state is the onlystate for whih the onventional `s=R expansion is ad-equate for explaining the data. The vauum matrixelement of the PS operator in (9) vanishes. Hene, theground-state energy deviates from that in the GGRTmodel only at the order (`s=R)7. As shown in Fig. 1,the sum of the universal terms agrees very well withthe lattie data. We �nd equally good agreement byapplying the TBA method. Using the leading `2s-or-der expression for the phase shift (i. e., the GGRTphase shift), the solution of the TBA equations withN = ~N = 0 reprodues the GGRT vauum energy(see [22℄ for details). Figure 1 shows that the two re-sults are undistinguishable at the urrently availablelevel of preision of the lattie data.Inluding the PS phase shift does not hange theanswer, in agreement with the result from the `s=R ex-pansion. Indeed, in this ase, all TBA partiles areharaterized by a single pseudo-energy �(q), whih isobtained by solving a single TBA onstraint that takes471



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015the form (f. with the general form of the TBA on-straints in (13), (14)),�(q) = q + 12�R Z dq0�d 2Æ++(q; q0)dq0 ++ d 2Æ+�(q; q0)dq0 � ln [1� exp(�R�(q0))℄ : (36)The PS ontribution anels in the sum of the phaseshifts, and we obtain exatly the same pseudo-energyas in the GGRT theory, and orrespondingly the sameresult for the vauum energy.4.2. Purely left(right)-moving statesWe turn to states that ontain only left- (or right-)moving real phonons, i. e., ~N = 0 and arbitrary N .This is the simplest lass of states for whih the stan-dard `s=R expansion breaks down even for relativelylong strings, as an be seen in Fig. 2. Fortunately,these states are still simple from the point of view ofthe TBA. The ABA is espeially simple beause thereare no interations between left-movers. Aounting forwindings by keeping the leading GGRT part of the sat-tering amplitude, we obtain the GGRT expression asan approximation for the energies of these states. Aswe already disussed, this approximation works verywell.To �nd the result for the amplitude to the order`4s given in Eq. (35), we have to solve the TBA on-straints (13) and (14) for four di�erent pseudo-energies,��l and ��r . As a onsequene, di�erent from the groundstate, the energies aquire a dependene on the PSphase shift (even though the PS operator has zero mat-rix elements for these states, and hene there is no(`s=R)5-orretion in the standard perturbative expan-sion). The TBA equations together with the expliitexpressions for the phase shifts (35) imply that pseudo-energies are now omplex and have the form��l(r)(q) = l(r)q � idl(r)q2 (37)with real l(r) and dl(r).The resulting set of equations for the oe�ients and d is straightforward to solve numerially. Theresult is presented in Fig. 8. The �gure shows boththe result in whih the windings are evaluated for thephase shift at the order `4s as disussed here and for theGGRT phase. In aordane with our earlier disussionabout the UV insensitivity of the winding orretions,the e�et of the PS phase is very small (. 0:5%).The GGRT winding orretions are in fat alsosmall. This an be seen in Fig. 8, whih also shows
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levels, we also �nd signi�antly improved agreementwith the lattie data. This is noteworthy espeially be-ause so far we have not introdued any free parameterin our analysis in addition to `s, whih is �xed fromthe ground-state data, just like in the `s=R expansion.The urves presented in Fig. 9 are therefore the resultsof a alulation from �rst priniples.The improvements in the onvergene of the per-turbative expansion are more prominent for the salarstate than for the tensor states. The reason for thisis that in the TBA method, the perturbative approxi-mation enters in the alulation of the sattering am-plitudes. How good the perturbative expansion is, isontrolled by how soft the phonon momenta p`s arethat omprise the states. These momenta are deter-mined from solving the TBA system and take di�erentvalues in the di�erent hannels for the same value ofR. The PS orretion in the (pseudo)salar hannelsadds to the tree-level phase shift. In the tensor han-nel, it has the opposite sign, and hene the phase shiftgrows more slowly. In agreement with the disussionat the end of Se. 3.2, the phonon momenta are thensofter in the (pseudo)salar setors, and therefore theperturbative expansion behaves better.To demonstrate this e�et, the theoretial urves onthe plot are terminated when the momenta of the par-tiles beome large enough suh that the one-loop on-tribution to the phase shift ÆPS beomes equal to thetree-level one ÆGGRT . This happens when p � 1:8`s.Even though the PS ontribution to the phase shifta�ets these states signi�antly, its e�et on the win-ding orretions is still negligible beause the windingorretions are UV insensitive, as shown above. To il-lustrate this expliitly for these states, we also solvedthe TBA system by inluding the PS phase shift inthe asymptoti Bethe ansatz but negleting it in allwinding ontributions (i. e., in TBA onstraints (13)and (14) and in the integral terms in momenta quanti-zation onditions (11) and (12)). The result is shownin Fig. 9 together with the exat treatment. The dif-ferene is again less than 0.5%.The improved theoretial ontrol makes it manifestthat the anomalous behavior of the pseudosalar levelis a genuinely new physial e�et and is unrelated tothe bad onvergene of the expansion. At this order,the salar and pseudosalar states, for whih the ex-pansion is well-behaved, are predited to be degenera-te. But the observed splitting between the salar andpseudosalar states is larger than the splitting (bothpredited and observed) between the salar and tensorstates even for relatively long strings. It is then im-plausible to expet that this disrepany would disap-473



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015pear when higher-order ontributions to the worldsheetS-matrix are inluded.This strongly suggests that to explain the anoma-lous behavior of the pseudosalar level, we need to re-onsider the basi assumptions underlying our alu-lation and add a qualitatively new input. An impor-tant hint suggesting the missing ingredient omes fromobserving that the energy of the pseudosalar level ispratially independent of the length of a �ux tube.This suggests that we are observing a light massiveexitation on the worldsheet of a �ux tube � a newpartile. A similar explanation for the energy of thepseudosalar level was suggested earlier in [5℄.It is straightforward to inorporate suh a state intoour e�etive string theory framework. The minimalpossibility is to introdue a new massive pseudosalar�eld � on the �ux tube worldsheet. At the leading orderin the derivative expansion, interations of suh a �eldwith the Goldstones are desribed by the LagrangianL� = �12(��)2 � 12m2�2 �� �8���ij������X i���Xj + : : : ; (38)where dots stand for terms that are of higher ordersin �elds and derivatives. In partiular, these inludemodel-independent quarti ��XX ouplings origina-ting from the ovariant ompletion of the kineti andmass term for �.The presene of four-derivative terms in the leadingpseudosalar �XX oupling in (38) is ditated by non-linearly realized Lorentz invariane. It requires thatevery term in the ation orresponds to the expansionof some geometri invariant (see, e. g., [29℄ for a reentdisussion). The invariant that orresponds to the in-teration term in (38) is rather speial and deservessome attention. It originates from� = �8��Ki�Kj� ����ij ; (39)where Ki� is the extrinsi urvature of the worldsheet.Thus, � is oupled to the topologial invariant knownas the self-intersetion number of the string worldsheet.The existene of this worldsheet �-term for a stringin a four-dimensional target-spae was pointed out byPolyakov [30℄, and it was suggested that it should begenerated on the �ux tube worldsheet in the presene ofthe bulk �-term [31℄. Given this oupling, it is naturalto refer to the �eld � as the worldsheet axion.This axion is not a stable partile, and it shouldnot therefore be added to the set of asymptoti statesin the TBA system. However, it does ontribute to the

sattering of Goldstones. In partiular, it appears asa resonane in the pseudosalar hannel, where its ef-fet is most pronouned. A diagrammati alulationusing ation (38) to the leading order in � gives theontribution to the two-partile phase shift,2Æres(p) = �1 �2`4sp68�2(4p2 +m2) ++ 2�2 tan�1� �2`4sp68�2(m2 � 4p2)� : (40)with �1 = (�1; 1; 1), �2 = (0; 0; 1) for the respetivesalar, symmetri, and pseudosalar hannels. The�2-term represents the resonant s-hannel ontribution,while the �1-term arises from the t- and u-hannels.Aounting for the pseudosalar resonane in thewinding ontributions is problemati beause swithingto the heliity �eld basis (30) no longer diagonalizes thefull S-matrix. Already in the two-partile setor, phaseshifts (40) now take di�erent values in the salar andpseudosalar hannels (whih is, of ourse, the reasonwe introdued the resonane in the �rst plae). Asa onsequene, we an no longer inlude the PS on-tribution into winding orretions. However, we havealready seen that the winding orretions are not UVsensitive and that the error introdued by not inlu-ding the PS ontribution into the winding orretionsis negligible (. 0:5%). From now on, we therefore a-ount for the full phase shifts only in the ABA partof the generalized momentum quantization onditions(11) and (12) and everywhere else keep only the GGRTontribution. This signi�antly simpli�es the TBA sys-tem. The pseudo-energies beome real, independent ofthe �avor of the partiles, and linear in the momenta,�1l(r)(q) = �2l(r)(q) = q:This onverts the TBA equations into the simple sys-tem of algebrai equations = 1 + p`2sR � �(D � 2)12R2 `2s; (41)pR+ 2Æ(p)� �(D � 2)12R `2sp = 2�N; (42)where N = 1, and the expression for the energy is�E = 2p� �(D � 2)6R : (43)Depending on the state, the phase shift in Eq. (42) isgiven by the sum of one of (32), (33) and of (40).The axion introdues two free parameters, the massm and the oupling � (or, equivalently, the width). We474
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ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :2Æ = 2ÆGGRT +O(`6ss3): (47)The orretions here are nonuniversal. In partiular, asalready mentioned, the GGRT phase shift itself is om-patible with nonlinearly realized Lorentz symmetry forD = 3.In this setion, we ompare the data from [6℄, whihis for the gauge group SU(6) with � = 171 and the Wil-son loop in the fundamental representation, with theGGRT predition. The result for the �ve lowest-lyingstates with an even number of phonons and zero totalmomentum is shown in Fig. 13. We see that all statesare in qualitative agreement with the GGRT phase shiftand see no evidene for new light massive states. How-ever, there are small quantitative di�erenes betweenthe GGRT predition and the data. The energies of thestates shown in yellow and orange orrespond to stateswith two and four phonons and are predited to be de-generate. However, they appear to be split in the data.Furthermore, the measured energies are systematiallybelow the GGRT predition. This suggests that thebinding energy between the phonons is larger in theSU(6) gauge theory than in the GGRT theory, whihimplies a phase shift that grows more rapidly, onsis-tently with what is seen in the right panel of Fig. 13. Itis then natural to introdue orretions into the phaseshift 2Æ = 2ÆGGRT + 3`6ss3; (48)and determine this leading orretion from the datausing the TBA, taking only the GGRT phase shift inthe windings into aount, as before. Suh a orre-tion to the phase shift would follow from higher-ordergeometri invariants in the Goldstone theory suh asR2 in the ation, and we an trust our proedure pro-vided the oe�ient is small enough, suh that this isin fat a orretion for the range of momenta of inte-rest. Based on loop ounting, we expet the oe�ientto be of the order 1=(2�)2, whih should roughly bereliable for p`s . p2�, inluding all data points of the�rst exited state for both two- and four-partile states,but only some of the seond exited two-partile state.We extrat 3 from the �rst exited two-partile stateusing the TBA equations (41)�(43) as well as the �rstexited four-partile state using the relations = 1 + 2p`2sR � �(D � 2)12R2 `2s; (49)pR+ 4Æ(p)� �(D � 2)12R `2sp = 2�N (50)with N = 1, and

�E = 4p� �(D � 2)6R : (51)Inluding all data points with p`s � 2 and taking theerror bars at fae value, we �nd3 = 0:7� 0:1(2�)2 ; (52)nonzero at approximately 7�. This orretion inreasesthe binding energies and thus lowers the energies ofthe theory predition. It also introdues a splittingbetween two-partile states and four-partile states, inagreement with the data simply beause the phononsomprising the two-partile states arry larger mo-menta and are more strongly bound than the phononsmaking up the four-partile states.Ignoring the ontributions to the winding orre-tions from orretions to the GGRT phase shift has sofar worked well. There is a subtlety, however. Thepositive oe�ient 3 implies a orretion to the pseu-do-energies with a negative oe�ient. As a onse-quene, the integrals in the TBA equations are nolonger onvergent. These divergenes are not surprisingand arise beause higher-derivative theories typiallyome with ghosts around the ut-o� sale. The per-turbative alulation presented in Se. 3.3 shows thatthis happens for positive 3. We know, of ourse, thatthe full theory does not have ghosts and that there arehigher-order terms that ure the divergenes. Intro-duing suh higher-order terms by hand seems unsatis-fatory beause it would introdue additional arbitraryoe�ients. It seems more appealing to interptret the`6ss3 orretion as arising from a heavy resonane thathas been integrated out, whih suggests the phase shiftexp(2iÆ) = exp(2i~̀2splpr)s� 2iM�+M2s+ 2iM�+M2 �� s� 2iM��M2s+ 2iM��M2 ; (53)where ~̀2s = `2s � 32�M(M2 + 4�2) ; (54)whene the orret phase shift is reovered for s�M2.This amplitude (53) is not onsistent with the nonline-arly realized symmetries and should for now be simplythought of as a �tting funtion that has the desirableproperty that the integrals in the TBA remain �niteand orretions to windings relative to those in theGGRT theory remain small. Fitting to the data, we�nd M = 3:7=`s and � = 1:0=`s: (55)477
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ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :levels and phase shift for the states with equal num-bers of left- and right-movers and zero total momentumin Figs. 17 and 18, extrating phase shifts for 2- and4-partile states using Eqs. (41)�(43) and (49)�(51).The data shows lear evidene for a resonane and thetheory preditions are obtained with the resonane withm = 1:88=`2As and � = 0:29=`2As ; (56)m = 1:74=`3As and � = 0:16=`3As ; (57)where the supersript denotes the representation of thestring. It was perhaps natural to expet the preseneof resonanes for k-strings, given that these an bethought of as bound states of two fundamental �uxtubes. It is intriguing that the values for the mass andthe width are lose when measured in the orrespond-ing string units (and lose to the mass and width of theworldsheet axion in 4D).These states niely illustrate that the energy plotsan be rather omplex beause of level rossing evenwith a very simple phase shift. The solid lines rep-resent the theory preditions for 2-partile states, thedashed lines those for 4-partile states. We learly seeavoided level rossing for the 2-partile states as wellas between the 4-partile states. However, the 2- and4-partile states, shown in red and purple, ross. In theintegrable theory, these states have di�erent quantumnumbers and do not mix. In QCD, the integrability isnot exat and a ertain amount of mixing between 2-and 4-partile states is expeted, whih would lead toavoided level rossing.The theory preditions also show that the extra-tion of these energy levels is very subtle beause severalenergy levels have omparable energies and the orre-lation funtion may not be dominated by a single ex-ponential. Also, the phase shift extration from the en-ergy levels in the region of level rossing is not omp-letely straightforward due to ambiguities of quantumnumber assignments. The identi�ation of two- andfour-partile states employed here appears to produethe most meaningful results on the phase shift plot,but we annot exlude at the moment that some of thedata points might have been misidenti�ed, espeiallyfor k = 2 strings. This motivates further high-preisionlattie measurements of these states. Hopefully, teh-niques presented here might be helpful in guiding thesemeasurements.We note an interesting feature exhibited by the k == 2 data: a very pronouned break in the resonaneplateau on the energy plot for the lowest (orange) levelat R=`2As . 3. The orresponding points also show

up very far from the theory urve on the orrespondingphase shift plot. The natural explanation for the originof this break is that it ours when the physial size ofthe ompat dimension beomes omparable to the sizeof the massive resonant state. Our phase shift extra-tion beomes unreliable at these short radii, beausethe winding orretions due to the resonane beomelarge. This interpretation is supported by observingthat a very similar break at the same values of R alsoappears in the lightest glueball energy plot [7℄, sugges-ting that the size of the resonane is roughly equal tothe size of the lightest glueball.The k = 3 data does not exhibit suh a break. Per-haps only the shortest point in Fig. 17 (with R=`3As �� 2) an be onsidered an indiation for the beginningof the break. This is in agreement with the k = 3string being muh more strongly bound than the k = 2strings. The k = 3 tension is equal to �3A � 0:6 � 3�f ,while the k = 2 tension is �2A � 0:8 � 2�f , where �f isthe fundamental �ux tube tension.5. FUTURE DIRECTIONS ANDCONCLUSIONSWe feel that the most important onlusion to bedrawn from this paper is that there is strong motivationfor further high-preision lattie studies of the proper-ties of �ux tubes. The TBAmethod provides a solid an-alyti framework for theoretial interpretation of lattieresults for the �ux tube lengths that are aessible withthe existing omputer power. This opens the possibilityfor a omprehensive desription of the worldsheet dy-namis of the on�ning strings in the near future, whihmight be an important step towards understanding thephysis of on�nement.The results presented here pose a number of int-riguing questions, whih may be answered with a newdata. Many of them onern the nature of the observedpseudosalar resonane in the D = 4 data. In partiu-lar, the phase shift plots in Figs. 11 and 12 show asystemati disagreement between the theory urve andthe data at the momenta above the resonane in thepseudosalar hannel. By itself, this disagreement isnot very dramati, given that the orresponding mo-menta are already quite large. But an intriguing pro-perty of the observed phase shift in the pseudosalarhannel is a pronouned plateau at Æ � �, whih or-responds to the absene of sattering. Together witha systematially better agreement between theory anddata in other hannels, this suggests that some interes-ting piees of physis may still be missing.7 ÆÝÒÔ, âûï. 3 481
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of even lighter massive worldsheet exitations.Even if this possibility is not realized, it is awell-motivated question whether the axion is indeed thelightest massive mode, or there might be lighter mas-sive states missed by the lattie searhes. For an insightinto how light these states might be, we an use theavailable high preision data for the ground-state en-ergy. A free partile of a mass m on the worldsheet re-sults in an additional ontribution to the ground-stateCasimir energy of the form�E(R) = �m� Xn 1nK1(mnR):Given that the lattie data shows no sign of a reso-nane in the salar hannel, we onsider the e�et ofadding a pair of suh partiles on the ground-state en-ergy (having a massive O(2) vetor in mind). The re-sult is presented in Fig. 19. We exlude the data pointorresponding to the shortest string from the �t to beonservative. We see that the best-�t value for themass is m � 1:3`s. Taking the error bars at fae value,we �nd an improvement in the �t orresponding to al-most 4� (and muh larger if the data for the shorteststring had been inluded) in favor of the existene ofadditional light partiles.A omparable improvement of the �t may beahieved by adding an R�7 orretion to the gro-482



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spetra from approximate integrability : : :und-state energy, but the required value for the or-responding oe�ient is about a fator of �ve largerthan the typial size of the loop orretions (estimatedfrom the expansion of the GGRT ground-state energy).Of ourse, these onsiderations do not take possiblelattie systematis into aount. Most of the improve-ment in the �t is driven by the data points orrespond-ing to the shortest strings, whih might su�er from pos-sible disretization e�ets and from their proximity tothe deon�nement transition. Nevertheless, this ob-servation provides an additional strong motivation forthe systemati searh for �exoti� light states on theworldsheet with quantum numbers for whih the or-responding NG state is expeted to be heavy.The natural andidate operators for reating newmassive states on the worldsheet are Polyakov loopswith additional loal insertions, suh asW�� = TrP 0�F�� exp ZC A1A : (58)It is intriguing that the basis of operators used in [5℄ in-ludes suh an operator with (��) indies in the trans-verse plane (i. e., a pseudosalar), but not with otherorientations. Related to this, to understand the ori-gin of the worldsheet axion better it will be interestingto study whih operator provides the best overlap forthe orresponding state, with (58) providing the mostnatural andidate.It would be very interesting to understand the mi-rosopi origin of the worldsheet axion, i. e., to deriveit from the 4D QCD desription. We note in this re-spet that a pseudosalar state with the same mass (instring units) is also present in the available SU(5) datafrom [5℄, and hene the axion appears to be present inthe large N limit. Unfortunately, however, it appearsimpossible to use holographi gravitational AdS/QCDmodels to look for the axion quantitatively. For thegravitational desription to be appliable, the stringlength should be short ompared to the AdS urva-ture length. This implies that the mass of the lightglueballs (gravitational KK modes) is parametriallysmaller than the on�ning string tension, whih is notthe appropriate regime to desribe the pure glue theory.A less ambitious goal would be to look for foot-prints of the worldsheet axion in the spetrum of 4Dstates. This should be possible, given that there is nofundamental obstale for extending the TBA tehniqueto open strings. First steps in this diretion have al-ready been taken in [33℄ (see also [34℄, where the e�etof the PS interation on the open string spetrumwas disussed using the onformal gauge approah).
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