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TUNNELLING WITH WORMHOLE CREATIONS. Ansoldi a;b, T. Tanaka ;d*aNational Institute of Nulear Physis (INFN), I-34149, Trieste, ItalybUniversity of Udine, I-33100, Udine, ItalyDepartment of Physis, Kyoto University, 606-8502, Kyoto, JapandYukawa Institute for Theoretial Physis, Kyoto University, 606-8502, Kyoto, JapanReeived Otober 18, 2014The desription of quantum tunnelling in the presene of gravity shows subtleties in some ases. We disusswormhole prodution in the ontext of the spherially symmetri thin-shell approximation. By presenting a fullyonsistent treatment based on anonial quantization, we solve a ontroversy present in the literature.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301431. INTRODUCTIONQuantum tunnelling plays various roles in osmol-ogy. For instane, false vauum deay through quan-tum tunnelling [1�3℄ is an important proess for theuniverse to visit many vaua in the string landsape[4�6℄. Also, the possibility of reation of an open uni-verse through false vauum deay has been extensivelydisussed [7�10℄. Properly taking the e�et of grav-ity into aount an be quite nontrivial. Although thee�et of gravity is seondary in some ases, there arein fat several ases where gravity plays a ruial role,suh as the upward quantum tunnelling from a lower-to a higher-energy vauum [11, 12℄.Even when the e�et of gravity is seondary, inlu-ding gravity an make the treatment highly nontrivial.One example is the subtle issue raised by Lavrelashvili,Rubakov, and Tinyakov [13℄ that �utuations aroundbubble nuleation might ause an instability, whihleads to explosive partile prodution. One presriptionto ure this pathology was proposed in Refs. [14, 15℄,where it is shown that the instability an be eliminated,at least apparently, by an appropriate hoie of thegauge.Quantum tunnelling in onnetion with gravity hasbeen disussed also in other ontexts. One of them iswormhole formation [16�24℄, whih is the main subjet*E-mail: tanaka�yukawa.kyoto-u.a.jp

of this paper. Wormhole formation is a signature ofwhat is also referred to in the literature as baby/hilduniverse reation [25℄. Spherial thin shells with var-ious equations of state have been studied as modelsof matter �elds able to desribe this proess. Even inthe simple ase of a pure tension shell, the quantummehanial formation of a wormhole seems possible.However, some inonsistenies between di�erent pre-sriptions seem to exist in the literature [26℄. In thispaper, we show that the origin of these apparent dis-repanies is tightly related to the use of the time oor-dinate in the stati hart. We then propose a plausiblepresription based on a smooth time-sliing to taklethe problem.This paper is organized as follows. In Se. 2, webrie�y review the derivation of the standard result forthe tunnelling amplitude based on the diret evaluationof the ation, when the time slie of the stati hart isused. In Se. 3, we disuss the problem that arises whenwe try to apply the onventional formula to situationsharaterized by wormhole prodution. To overomesome di�ulties that appear in this last ase, in Se. 4we then study the same problem using the anonialapproah with a smooth time slie: this allows us toderive the formula for the tunnelling rate without anyambiguity. In Se. 5, we �nally show how the sameformula an be reprodued by the diret evaluation ofthe ation if we arefully take the smooth time slie.Setion 6 is devoted to a summary and disussion: wealso elaborate on a remaining, more subtle, issue.526



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Tunnelling with wormhole reation2. CONVENTIONAL APPROACHIn this paper, we onsider the simplest spheriallysymmetri domain-wall model, whose Lagrangian isgiven byS = 116�G Z d4xp�gR� Z d� m(R̂); (1)where R is the salar urvature andm(R̂) is the radius-dependent mass of the wall, e. g., m(R̂) = onst for adust domain wall, while m(R̂) = 4��R̂2 for a wall on-sisting of pure tension �; moreover, � is the proper timealong the wall, and R̂ denotes the irumferential ra-dius of the wall. In general, quantities marked witha hat are assumed to be evaluated at the position ofthe wall, e. g., B̂ = B̂(t) = B(t; r̂(t)) if B is a funtionof t and r, and r = r̂(t) is one possible parameteriza-tion of the wall trajetory. Depending on the modelparameters, the wall motion an have some lassiallyforbidden region for a range of the radius. We are in-terested in disussing the quantum tunnelling of thewall when it reahes a turning point, i. e., a boundaryof the lassially forbidden region, by expliitly takinggravity into aount.In this setion, we derive a onventional but inor-ret formula for the tunnelling rate of the wall. Al-though we mostly follow Ref. [27℄, we do not laim thatthe result obtained there is wrong. Indeed, our empha-sis is about the fat that the authors of Ref. [27℄ learlyidenti�ed a disrepany between the diret evaluationof the ation that they propose and a naive anoni-al approah. Moreover, it was learly emphasized inRef. [27℄ that the proposed diret approah guarantees,instead, a ontinuous variation of the ation as the pa-rameters (the Shwarzshild mass, the de Sitter osmo-logial onstant, the wall surfae tension in their model)are hanged: on the ontrary, the onventional anon-ial approah does not guarantee the ontinuity of theation as a funtion of the parameters. At the sametime, the diret alulation of the ation reveals di�-ulties in the identi�ation of the Eulidean manifoldinterpolating between the before- and after-tunnellinglassial solutions in a onsistent way: indeed, Farhi etal. assoiate what they all a pseudo-manifold to theinstanton solution. The diret approah de�nes thepseudo-manifold by weighing di�erent volumes of theinstanton along the lassially forbidden trajetory byan integer number that ounts how many times (and inwhih diretion) the Eulidean volume is swept by thetime slie. We show in what follows that the anonialapproah, in full generality, an reprodue the same

value for the tunnelling ation given in the approahproposed in [27℄.The diret evaluation of the ation is possible be-ause the solution is simply given by a juntion of twospaetimes. Here, for simpliity, we assume that boththe inside and outside of the bubble are empty, andhene the inside an be taken as a piee of Minkowskispaetime and the outside as a piee of Shwarzshildspaetime. (In Ref. [27℄, the inside was equipped witha vauum energy density, i. e., a osmologial onstant,but this does not hange the treatment in any substan-tial way.) The method proposed in [27℄ was developedin oordinates adapted to the stati and spheriallysymmetri nature of the spaetimes partiipating inthe juntion. With this, we mean that the Lagrangianwas preferably onsidered in onnetion with the o-ordinate times in the stati hart in both spaetimeregions, whih we denote by tS and tM in the simpli�edase that we onsider here. However, most of the al-ulations were performed using the proper time of anobserver sitting on the juntion, and therefore the re-sult an be easily extended to a oordinate-independentexpression, as we see in Se. 5.The ontributions to the ation an be summarizedas follows.1. A matter term oming from the shell, Iwallmatter:this is nothing but the ontribution from the stress�energy tensor loalized on the bubble surfae.2. A gravity term oming from the bubble wall,Iwallgravity: this is, basially, the well-known extrinsi-urvature-trae-jump term.3. The bulk ontributions vanish for lassial solu-tions sine there is no matter in the bulk.4. Surfae terms: although the appearane ofsurfae terms is oneptually lear, the treatment ofthese terms may be nontrivial. As learly disussed inRef. [27℄, several ontributions arise.(a) The ruial ontribution in [27℄, Iwallsurfae, omesfrom the bubble wall positions, where the normal tothe onstant-time surfae is disontinuous. However,this ontribution does not appear if we adopt a smoothfoliation of time aross the wall. In Se. 4, we take thislast piture.(b) Another ontribution omes from a surfae ata large onstant irumferential radius in the outsidespaetime, IRBIGsurfae: this ut-o� radius allows us to workwith a (spatially) bounded volume, and the large-radiuslimit has to be taken in the end. This limit naturallybrings in divergenes, whih an be usually dealt with,e. g., by the Gibbons�Hawking presription. The �nalregularized result is alled IRBIGnet below.With the notation used above and by setting (beause527



S. Ansoldi, T. Tanaka ÆÝÒÔ, òîì 147, âûï. 3, 2015of the square, the notation below di�ers from the oneused in Ref. [27℄)A2M = 1; A2S = 1� 2GMR ; (2)the above terms an be written as [27℄1)Iwallmatter = � Z � f� i m(R̂) d�; (3)Iwallgravity = Z � f� i d� ( 12G "2R̂�(R̂2;� +A2)1=2 ++ R̂2�(R̂2;� +A2)1=2 �R̂;�� + 12(A2);R�#) ; (4)Iwallsurfae = � 12G Z � f� i d� dd� �� "R̂2 log (R̂2;� +A2)1=2 + �R̂;�A !# == � 12G Z � f� i d� "2R̂R̂;� log (R̂2;�+A2)1=2+�R̂;�A ! ++ R̂2�(R̂2;� + A2)1=2 �R̂;�� + (A2);R2 ��� R̂2�(R̂2;� +A2)1=22A2 (A2);R# ; (5)IRBIGsurfae = �RBIGG � 3M12 ��tfS � tiS� ; (6)IRBIGnet = IRBIGsurfae � (Isurfae)0 == �M12 �tfS � tiS�+O� 1RBIG� ; (7)where square brakets represent the jump of the brake-ted quantities aross the shell, i. e.,hB̂i = limÆ!0+ �B̂(r̂ � Æ)� B̂(r̂ + Æ)� : (8)1) The expression for Iwallsurfae given in Ref. [27℄ looks slightlydi�erent, but it is equivalent to this one as long as we require thatIwallsurfae be always real valued. As we explain later (see Eq. (19)),the sign �ip of � is only important in the Eulidean regime. Be-ause the argument of the logarithm has a jump there, we mayhave to add one more term proportional to a Æ funtion at thesign �ipping point to the right-hand side of Eq. (5). However,the ruial point is that the analytiity of Iwallsurfae is broken at thesign �ipping point. Therefore, it is di�ult to �nd a onsistentmeaning for the analyti ontinuation of this expression to theEulidean region.

Square brakets are not used anywhere in this paperwith a di�erent meaning. Moreover, the signs�� = sign�A2M �A2S � G2m2R̂2 � (9)are unambiguously determined by the onsisteny withthe juntion ondition [28℄Gm̂R = ���R̂2;� +A2�1=2� : (10)Notiing thatdtSd� = ��R̂2;� +A2S�1=2A2S ; (11)we an ombine all the above ontributions into theLagrangianL = 1G d�dtS  nR̂ h�(R̂2;� +A2)1=2i�m(R̂)o �� R̂R̂;� "log (R̂2;� +A2)1=2 + �R̂;�A !#!�M: (12)Finally, adding a onstant M to the Lagrangiansuh that the Lagrangian vanishes at the turning point,R̂;� = 0, we an evaluate L on a lassial solution toobtainLjsolution = � R̂R̂;tSG �� "log (R̂2;� +A2)1=2 + �R̂;�A !# : (13)Here, R̂;� is to be replaed with its lassial solution,whih is obtained from the juntion ondition (10) asR̂2;� = G2m24R̂2 (1� (AS +AM)2R̂2G2m2 )��(1� (AS �AM)2R̂2G2m2 ) : (14)As expliitly seen above, the ation ould in gen-eral ontain seond-derivative terms. These seondderivatives are removed by the �areful� inlusion ofthe boundary term, Iwallsurfae. From Eq. (13), we identifythe e�etive momentum onjugate to R̂ asPe� := � R̂G "log (R̂2;� +A2)1=2 + �R̂;�A !# : (15)528



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Tunnelling with wormhole reationAfter Wik rotation to Eulidean time, �� = i� , the Eu-lidean momentum, �Pe� = �iPe� and Eq. (14) beome�Pe� = i R̂G "log (A2 � R̂2;�� )1=2 + i�R̂;��A !# (16)and̂R2;�� = G2m24R̂2 ( (AS +AM)2R̂2G2m2 � 1)��(1� (AS �AM)2R̂2G2m2 ) : (17)We indiate quantities after the Wik rotation with ���,if they are di�erent from the Lorentzian ones. We alsonote that �Pe� is real, sine the modulus of the argumentinside the logarithm is unity. Then the tunnelling a-tion an be evaluated as�I(tS) = Z d�tSR̂;tS �Pe� (18)to provide the tunnelling rate proportional toexp(�2�I(tS)).3. WORMHOLE PRODUCTIONThe framework disussed in the preeding setion isgenerially appliable to the tunnelling problem. How-ever, analyti ontinuation brings up situations thatare tehnially and oneptually more involved. To seethis, we �rst notie that � = �1 �ips sign whenA2� + R̂2;� = G2m24R̂2  1� (A2S �A2M)R̂2G2m2 !2 == G2m24R̂2  1� RgR̂G2m2!2 (19)vanishes, where Rg := 2GM . We denote by R̂ thevalue of R̂ at the sign hanging point. In the Lorentzianregime, the sign �ip of � does not our in regions out-side horizons: it an happen behind horizons, but inthese ases no pathology arises [26℄. In any ase, inthis work, beause of our de�nitions (2), we impliitlyexlude regions behind horizons. This is ertainly non-restritive for our urrent purpose, beause it is pos-sible to prove that tunnelling must always begin andend in regions that are not behind the horizons, and itis always true that Pe� is ontinuous during the timeevolution. However, in the Eulidean regime, not onlythe sign �ip an happen, but also the argument of the

logarithm (and hene the logarithm itself) in Pe� hasa jump at the point where the sign of � �ips: this an-not be avoided if we onsistently require that the e�e-tive momentum vanishes at both turning points. (Infat, the disontinuity annot be avoided if we requirethat Pe� analytially ontinued bak to the Lorentzianregime be real both before and after the tunnelling.)This happens beause the expression for Pe� is essen-tially nonanalyti. For this reason, it is hard to justifythe use of analyti ontinuation for an ation that on-tains Pe� .In the present ase, from Eq. (19), we �nd that thesign �ip an happen for �+ only. From the analytiontinuation of Eq. (11),d�tSd�� = ��A2S � R̂2;���1=2A2S ; (20)we �nd that d�tS=d�� also vanishes at the sign �ip point.This means that the trajetory of the wall beomespurely radial. At this point, there is a jump of thelogarithm in �Pe� . We draw a shemati piture of thewall trajetory when there is a sign �ip in Fig. 1. Inthis piture, the enter orresponds to R = 2GM , theradial diretion is the resaled radius, and the angulardiretion is the Eulidean time �tS.As a onrete example, we onsider the ase of apure tension wall with m = 4��R2. In this ase, fromEq. (14), we �nd that the turning points orrespondingto R̂;� = 0 are given by the solutions off(R̂) := ~�2R̂3 � 2~�R̂2 +Rg = 0; (21)where we set ~� := 4�G�. It is easy to see that f(Rg) �� 0 and the equality holds for ~� = 1=Rg. At the min-imum of f(R̂), where R̂ = 4=3~�, we have f(4=3~�) == Rg � 32=27~�. Therefore, we �nd that there is alassially forbidden region for ~� < 32=27Rg. A worm-hole an be produed when the ritial radius, wherethe disontinuity appears,R̂ = �Rg~�2 �1=3 ; (22)is in the lassially forbidden region. As mentionedabove, this ritial radius does not result in pathologiesin the lassially allowed region. Therefore, if R̂ > Rg,the ritial radius is under the potential barrier. Thismeans that wormhole prodution is possible when ~� << 1=Rg.Now, we disuss the key issue of this paper. Aslong as we use the foliation by the Shwarzshild time,10 ÆÝÒÔ, âûï. 3 529
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where p, �L, and �R are the respetive onjugate mo-menta to r̂, L, and R. For the derivatives, we adoptthe following standard onvention:_B = �B�t ; B0 = �B�r : (26)We stress that the values of all the metri funtionsare assumed to be ontinuous aross the wall, althoughtheir derivatives an be disontinuous. The onstraintequations Ht = 0 and Hr = 0 are solved in the bulk as�L = R�; �R = �0LX ; (27)where we introdue the de�nitionsX := R0L ; � := (X2 � A2)1=2: (28)By integrating the onstraint equations aross the wall,we obtain the juntion onditions, whih in the presentnotation an be written as531 10*
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where ��� means that the equality holds modulo totalderivative terms. It is then possible to integrate theabove equation to obtain�(L;R;R0) = RR0 log�X � �A �+RL�: (33)In the above expression, there is an arbitrariness be-ause the total derivative of an arbitrary funtion of Rwith respet to r an be added, whih, of ourse, doesnot a�et the �nal result.Then the ation beomesI = Z dt p _̂r + 1G �Z dr Z dt���t � Z dt h	 _Ri� == Z dt p _̂r + 1G ���Z dr����tfStiS � Z dt _̂r[�℄� Z dt h	 _Ri� ; (34)532



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Tunnelling with wormhole reationwhere we de�ne	 := ���R0 = R log�X � �A � : (35)In the �rst equality in Eq. (34), we removed the ontri-bution of 	 _R at r !1, assuming that the time slie isasymptotially idential to the one in the stati hartof the Shwarzshild spaetime, in whih 	 vanishesbeause � = 0 and X = A. Using_̂R := dR̂dt = �R0 _̂r + _R�r=r̂ ; (36)we an rewrite the last term in the parentheses in theright-hand side of Eq. (34) ash	 _Ri = h	 _̂R�	R0 _̂ri = � [	R0℄ _̂r + [	℄ _̂R; (37)where in the last equality we have extrated _̂R and _̂rfrom the square brakets sine their values evaluatedon both sides of the juntion are idential. Thus, weobtainI = Z dt _̂r�p+ 1G [	R0 � �℄�++ 1G �Z dr����tfStiS � Z dt _̂R [	℄� : (38)Beause we have 	R0 � � = �RL�, the �rst termin Eq. (38) vanishes under the juntion ondition (29),and we �nally obtain the gauge non�xed ation relevantfor the WKB wave funtion in the formI = 1G �Z dr����tfStiS � Z dt _̂R [	℄� : (39)We now examine the motion of the shell, dR̂=dt, inmore detail. The part of the ation related to the shelltakes the formSs = Z dtLs == �m Z dt�(N̂ t)2 � L̂2( _̂r + N̂r)2�1=2 : (40)From this expression, the onjugate momentum to r̂turns out to be given byp = �Ls� _̂r == m�(N̂ t)2 � L̂2( _̂r + N̂r)2��1=2 L̂2( _̂r + N̂r); (41)from whih we obtainL̂2(N̂ t)2 ( _̂r + N̂r)2 = p2m2L̂2 �1 + p2m2L̂2��1 : (42)

From the normalization of the four veloity, we also�nd  N̂ tdt̂d� !2 1� L̂2(N̂ t)2 ( _̂r + N̂r)2! = 1; (43)whih is further simpli�ed using Eq. (42) asN̂ tdt̂d� = �1 + p2m2L̂2�1=2 : (44)Now, we are ready to rewrite dR̂=d� . Using theequation of motion for R, we have_R = �N t�LR +NrR0:Then we obtaindR̂d� = dt̂d� �(N̂r + _̂r)R̂0 � N̂ t �̂L̂R � == N̂ tdt̂d�  (N̂r + _̂r) L̂̂N t X̂ � �̂! == �1+ p2m2L̂2�1=2 �1+ p2m2L̂2��1=2 pX̂mL̂��̂! == pX̂mL̂ � �̂�1 + p2m2L̂2�1=2 ; (45)where in the third equality, we have used Eqs. (42) and(44). Substituting �̂ = (X̂2� Â2)1=2, we an solve thisequation for X̂ asX̂ = � pmL̂R̂;�+��R̂2;�+Â2�1=2�1+ p2m2L̂2�1=2 : (46)Remembering that p and R̂;� do not have a jump arossthe juntion, from Eq. (46) and the juntion ondition(29), we reover exatly Eq. (10).Furthermore, substituting Eq. (46) in Eq. (45), weobtain�̂ = ��1+ p2m2L̂2�1=2R̂;�+� pmL̂ �R̂2;�+Â2�1=2 ; (47)and heneX̂ � �̂ = (�1 + p2m2L̂2�1=2 � pmL̂)�����R̂2;� + Â2�1=2 + R̂;�� : (48)Therefore, we an �nally write the jump of 	 as[	℄ = R̂264log0B���R̂2;� +A2�1=2 + R̂;�A 1CA375 : (49)533



S. Ansoldi, T. Tanaka ÆÝÒÔ, òîì 147, âûï. 3, 2015After Eulideanization, Eq. (39) an be rewritten usingthe above results, and it gives�I = 1G �Z dr ������t fS�t iS � Z dt _̂R[ �	℄� (50)with�� = i� = iRR0 log X � i �A2 �X2�1=2A !��RL �A2 �X2�1=2 (51)and[ �	℄ = [i	℄ = iR̂264log0B���A2�R̂2;���1=2+iR̂;�A 1CA375 : (52)This expression is idential to Eq. (18) obtained inSe. 2 for the tunnelling that does not produe a worm-hole. First, sine A = X on the initial and �nal sur-faes, where the time slies oinide with the ones with�tS = onst and �tM = onst, �� vanishes there. Sine� = +1 in this ase, as mentioned above, the di�erenebetween �Pe� and [ �	℄ does not arise.By ontrast, in the ase with wormhole prodution,the �rst term in Eq. (50) does not vanish beause Xis negative in the region between R = Rg and the wallin the Shwarzshild spaetime, and hene X = �Athere. Namely, the �rst term ontributes asZ dr ������t fS�t iS = Z rgr̂(�t fS) dr �RR0 = 12 �R2g�R̂(�� f )2� ; (53)where rg is the value of r at R = Rg on the �nal sur-fae. Hene, the di�erene between Eqs. (18) and (50)is evaluated as�I � �I(tS) = Z dr ������t fS�t iS ++ � Z R̂(�t iS)R dRR = 12 �R2g �R2� ; (54)if we assume that �Pe� in Eq. (18) has a disrete jumpat R̂ = R. Of ourse, this disrepany is not strangeat all, sine the naive extension of the validity range offormula (18) annot be justi�ed.5. CONSISTENT DIRECT EVALUATIONAs we antiipated, we now show that the methodusing a pseudo-manifold for the desription of the in-stanton solution gives the same result that we derived

using the anonial approah in the preeding setion.Although this equivalene might seem almost trivial be-ause both approahes are based on the same smoothfoliation of an Eulidean spaetime, its expliit proofwould be pedagogially useful.We then return to the disussion in Se. 2. The�rst key observation is that the ontribution from thearefully inluded Iwallsurfae should not be inluded whenwe adopt a smooth foliation. The seond point is thatwe have rewritten a term in Eq. (4) asZ � f� i d� R̂2(ÂS)2;R̂4G�(R̂2;� +A2)1=2 = �M2 Z � f� i d� dt̂Sd� : (55)We then subtrated M(tfS � tiS) from the total ation.In the omputation in Se. 2, half of this subtrationwas ompensated by IRBIGsurfae and the rest by the aboveontribution (55). However, we �ndZ �� f�� i d�� dt̂Sd�� = �t fS � �t iS + 2�Rg; (56)when we use a smooth foliation for the tunnelling so-lution with wormhole formation. This shows that anadditional ontribution �MRg to the Eulidean ationarises. Gathering all, we �nd that the Eulidean ationevaluated by using a smooth foliation is given by�I(tS) � �Iwallsurfae + �MRg == 1G  � Z dt _̂R [ �	℄ + R̂2 �̂�����t fS�t iS + R2g2 ! == 1G  � Z dt _̂R [ �	℄ + R2g � R̂(�� f )2 ! ; (57)whih is preisely idential to �I .6. SUMMARY AND DISCUSSIONIn this paper, we studied the wormhole produtionfor the simplest spherially symmetri shell model inasymptotially �at spaetime. In this simple setup, theinstanton solution an be generially desribed by thejuntion of Eulideanized Minkowski and Shwarzshildspaetimes. This solution, however, is not a Rieman-nian manifold in the sense that the existene of thedomain wall may depend on the path taken to reahthe possible loation of the wall in spaetime. Theterm pseudo-manifold was used in [27℄ for this solu-tion. A key point that we have emphasized here is thatin this ase, the ordinary onstant-time surfaes asso-iated with the stati hart do not foliate the instanton534
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