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EXPLORING THE SPECTRUM OF REGULARIZED BOSONICSTRING THEORYJ. Ambjørn a;b*, Y. Makeenko a;**aThe Niels Bohr Institute, Copenhagen UniversityDK-2100, Copenhagen, DenmarkbIMAPP, Radboud University6525, AJ, Nijmegen, The NetherlandsInstitute of Theoretial and Experimental Physis117218, Mosow, RussiaReeived Otober 20, 2014We implement a UV regularization of the bosoni string by trunating its mode expansion and keeping theregularized theory �as di�eomorphism invariant as possible�. We ompute the regularized determinant of the 2dLaplaian for the losed string winding around a ompat dimension, obtaining the e�etive ation in this way.The minimization of the e�etive ation reliably determines the energy of the string ground state for a longstring and/or for a large number of spae�time dimensions. We disuss the possibility of a saling limit whenthe uto� is taken to in�nity.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301551. INTRODUCTIONA modern formulation of string theory is based onthe Polyakov path integral [1℄, where the worldsheetmetri gab(!) and the target-spae position X�(!),� = 1; : : : ; d, of the string worldsheet are treated asindependent variables. Thanks to the di�eomorphisminvariane, the metri an be diagonalized, gab = e'Æab,by hoosing the onformal gauge. The remaining pathintegration over the so-alled Liouville �eld ' deoupleson the mass shell for the bosoni string in d = 26, theritial dimension. Due to this deoupling, the resultsin d = 26 reprodue those obtained in the early 1970susing the operator formalism. For d 6= 26, the pathintegral over ' has to be taken into aount and playsan important role for the onsisteny of the theory.The path integral over the target-spae string oor-dinates (and ghosts) is Gaussian and results in a de-terminant of the 2d Laplae�Beltrami operator withproper boundary onditions imposed. For an open*E-mail: ambjorn�nbi.dk**E-mail: makeenko�nbi.dk

string with �xed ends, these are Dirihlet boundaryonditions, for whih the determinant was omputedin [2; 3℄. The result is given by the onformal anomalyand determines the e�etive ation for the Liouville�eld '. The path integral over ' an be onsistentlytreated [4℄ order by order in the inverse string lengthand/or in the limit of a large number of spae�time di-mensions d, where the WKB expansion around the sad-dle points applies. Of speial interest in this approahis the ground-state energy as a funtion of the stringlength R, whih is given by the well-known Alvarez�Arvis spetrum [5, 6℄. It reveals a tahyoni singularityat distanes R � R0, with �1=R20 being the tahyonmass squared. For larger distanes, this quantity iswell-behaved.The onformal fator does not appear in the lassi-al string. However, as was pointed out by Polyakov [1℄,the omputation of 2d determinants requires a UV ut-o� like �2pg in the parameter spae1). This followsfrom the di�eomorphism invariane and results in theonformal anomaly, whih deouples in the e�etive a-tion as � ! 1. The dependene of the uto� on the1) We reall that pg = e' in the onformal gauge.536



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Exploring the spetrum of regularized bosoni string theorymetri is of ruial importane for the onsideration inthis paper.The emergene of a tahyoni exitation of thestring is seen learly in the zeta-funtion regularization,where the sum over osillators (the stringy modes) isomputed as 1Xn=1n = �(�1) = � 112 : (1)This negative value is the result of an analyti ontin-uation from positive values of the argument of the zetafuntion, for whih the sum is onvergent. Of ourse,the sum of positive numbers in Eq. (1) is in�nite andthe negative value emerges after the subtration of anin�nity as was illustrated in detail by one of the �rstalulations [7℄. In this paper, we investigate how thesums over the stringy modes (like in Eq. (1)) an beonsistently regularized, maximally preserving the dif-feomorphism invariane.One regularization of this kind is the so-alled dy-namial triangulation (DT) [8℄, where the intrinsi ge-ometry of the parameter spae (de�ned by the metrigab(!)) is approximated by a set of equilateral trian-gles of side a. The summation over triangulations isdone independently of the integration over the target-spae oordinates assoiated, for instane, with the ver-ties of the triangles. In this sense, DT disretizes thePolyakov string. DT provides the oneptual founda-tion for matrix-model solutions of the so-alled non-ri-tial string theory. However, for the real bosoni stringtheory with d � 2, DT also provides an interestingresult. In DT, the renormalized mass exitations andthe renormalized string tension are by de�nition non-negative and it was shown in [9℄ that if we keep thelowest mass exitation �nite as the uto� a ! 0, thestring tension sales to in�nity. With this otherwisevery suessful regularization, it thus seems impossibleto obtain a bosoni string with a �nite tahyoni massand a �nite string tension.In this paper, we want to make ontat with the DTresult mentioned using a standard ontinuum regular-ization of the bosoni string, namely, trunating thestring mode expansion. We onsider a losed stringwinding one around a ompat dimension of length Rand propagating a (Eulidean) time T . We generiallyonsider a string whose length is larger than the inversetahyon mass (if present for the regularized string). Wetherefore expet a stable ground state and ompute itsmass as a funtion of the string length R. This deter-mines the string tension as the energy per a unit lengthand should provide us with information about the mass

of the lowest state (usually, the tahyon) from the be-havior of the energy at small R. We then searh for asaling regime, where the two quantities may or maynot remain �nite in the limit of an in�nite uto�.In Ses. 2 and 3, we introdue the string regulariza-tion by a trunation of the mode expansion and om-pute the regularized determinant of the 2d Laplaianfor a !T �!R retangle in the parameter spae. We usethe Dirihlet boundary ondition along the T -axis andperiodi boundary onditions along the R-axis. Thisgives an e�etive ation of the regularized string. Wedemonstrate how the Lüsher term emerges using thisregularization. In Se. 4, we argue that the reparame-terization invariane favors NT = NRT=R for the num-bers of modes NT and NR along the respetive T - andR-axes.The e�etive ation omputed this way depends onthe ratio !T =!R. There are two ases where this pa-rameter an be reliably determined by minimizing thee�etive ation: small �0=R2 and large d. They areonsidered in Ses. 5 and 6. In Se. 5, we �rst reallthe situation in the lassial limit and then analyze theone-loop (semilassial) orretion that determines therenormalization of the string tension. In Se. 6, wederive the equation whih minimizes the e�etive a-tion at large d. The minimized e�etive ation ontainsterms of all orders in �0=R2, and we �nd the e�etiveation in both the large-R and the small-R limit. Weshow that, at a �nite uto�, the tahyoni singularityis present for positive values of the bare string tensionK0, but is absent for a range of negative values of K0.We �nd that there exists a ritial (negative) value K�suh that if the bare string tension K0 approahes K�from above, it is possible to have a renormalized stringtension K that stays �nite as the uto� � ! 1, butin this ase the lowest mass exitation does not salebut goes to in�nity. However, there also exists a valueK, K� < K < 0, suh that if K0 approahes K frombelow, the lowest mass an be kept �nite for the uto��!1, but in this ase the �renormalized� string ten-sion goes to in�nity as �2. This situation seems verysimilar to what is observed using DT as a regulariza-tion. 2. REGULARIZED STRING MODEEXPANSIONWe onsider a losed string winding one timearound a ompat dimension of length R. We imposeDirihlet boundary ondition along the T -axis and peri-odi boundary ondition along the R-axis. We onsider537



J. Ambjørn, Y. Makeenko ÆÝÒÔ, òîì 147, âûï. 3, 2015an !T � !R retangle in the parameter spae mappedonto a T � R retangle in the target spae with 0 andR identi�ed along the R-axis.The one-loop e�etive ation an be omputed asthe determinant of the 2d Laplaian in the onformalgauge with the above boundary onditions imposed onthe !T � !R retangle. The Laplaian is� = 1� ��21 + �22� ; (2)where � = RT=!R!T , and we havetr log(��a2) = 1Xm=1 1Xn=�1 log("��m!T �2 ++ �2�n!R �2# !R!Ta2RT ) ; (3)where we want to think about a = �=� as a UV lattie-like uto� similar to the lattie uto� a in DT. For large!T � !R, we replae the sum over m by the integralover the �momentum� x = �m=!T :tr log(��a2) = !T� ��Xn Z dx log("x2 +�2�n!R �2# !R!Ta2RT ) : (4)To regularize this divergent expression, we integrateover x from 0 to X , where the upper limit of the inte-gration is introdued to provide a UV uto�, whih utso� mode numbers m larger than X!T=�. In Se. 4, werelate it to the � introdued above. To perform theintegral, we use the relationXZ0 dx log(x2 + y2) = X �log(X2 + y2)� 2�++ 2y artan Xy ; (5)where y = 2�n=!R. As X !1, in the right-hand side,we reover the term �jyj familiar from the zeta-funtionregularization.The remaining sum over n an be evaluated by us-ing Plana's summation formula12f(0) + 1Xn=1 f(n) = 1Z0 d! f(!) ++ i 1Z0 dtf(it)� f(�it)e2�t � 1 ; (6)

whih holds whenever f(z) is analyti for Re z � 0.The �rst term in the right-hand side of Eq. (6) re-sults in the integralXZ0 dx YZ�Y dy log(x2 + y2) == (3X2+Y 2) artan YX+(X2+3Y 2) artan XY ++ 2XY �log(X2 + Y 2)� 3�� �2 (X2 + Y 2): (7)Here, Y is a UV mode sum uto� along the !R axis inthe same way as X was along the !T axis.3. LÜSCHER TERM FROM THE MODEEXPANSIONThe seond integral in the right-hand side of Eq. (6)is onvergent and therefore does not depend on the ut-o� Y . Substitutingy artan Xy X�y>0�����! �2 y (8)and using 1Z0 dt te2�t � 1 = 124 ; (9)we �nally obtaintr log(��a2) = !T!R2�2 n(3X2 + Y 2) �� artan YX + (X2 + 3Y 2) artan XY ++ 2XY �log�(X2 + Y 2)!R!Ta2RT �� 3��� �2 (X2 + Y 2)o� �!T3!R : (10)The last term in the right-hand side is nothing but theLüsher term. It omes from the seond term in theright-hand side of Eq. (6), that is, from the di�erenebetween the sum and the integral in the �rst term inthe right-hand side of Eq. (6). The rest of the termsin (10) omes from the integral. This demonstrates howthe Lüsher term emerges when we use trunation ofthe mode expansion as our regularization.4. THE CHOICE OF THE CUTOFFEquation (10) above is derived when the mode ex-pansion is trunated at the number of modes NT == !TX=� and NR = !RY=�, as one would do in a box.538



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Exploring the spetrum of regularized bosoni string theoryHowever, the box is here a �parameter spaetime box�,and it beomes important to hoose X and Y suh thatthe reparameterization invariane be preserved as muhas possible. Using the zeta-funtion regularization, we�nd that the ground-state energy of a given hoie of!T and !R only depends on the ratio !T =!R.In our ase, the relation between X , Y , and theuto� � should be derived taking the boundary met-ri T=!T along the T -axis and R=!R along the R-axisinto aount. Following Polyakov's idea [1℄ to hoosethe uto� for the hosen parameterization as � 4pg, wearrive at X = T!T �; Y = R!R�: (11)It follows from these relations that the one-loop e�e-tive ation depend only on the ratio !T =!R, like forthe zeta-funtion regularization.The DT regularization also favors relation (11). Us-ing the DT regularization, we attah a random lat-tie with the lattie spaing a at the boundary of thephysial domain, i. e., the boundary with the lengthT and R. Hene, physial wavelengths smaller thana should not atually be allowed in the determinantalulation. When we alulate the determinant, wehave Æx = �=km, km = m�=!T . Hene, Æx = !T =m.However, we have to sale the oordinate x to a phy-sial xph = (T=!T )x. Thus, Æxph > a results in n << NT = T=a, i. e., X = (T=!T ) �, � = �=a. SimilarlyY = (R=!R) � or Y = (R!T =T!R) X .5. SEMICLASSICAL EXPANSION IN �0Beause �0 / ~, the semilassial WKB expansion,whih is an expansion in ~, also beomes an expansionin �0. Sine �0 has the dimension of length2, the atualexpansion parameter is �0=R2. Aordingly, the barestring tension is K0 = 12��0 : (12)A renormalization of K already ours at the order ~.The lowest mass appears only at higher orders.5.1. Classial limitBy minimizing the quadrati ationS0 = K02 �T 2!2T + R2!2R�!R!T ; (13)we obtain T=!T = R=!R lassially. This implies thatwe an hoose

!T = T; !R = R: (14)A possible onstant fator between !T , !R and T , Rdoes not a�et the renormalized onstants alulatedbelow. Classially, we therefore have X = Y = �,but as we see below, this is not true when we inludequantum orretions.5.2. Order ~~~If we use Eq. (14) in formula (10), we obtain theone-loop e�etive ationS1 = d� 22�2 RT�2 hlog(2�2) + �2 � 3i�� �(d� 2)6 TR: (15)In priniple, we have to use generi orretions of theorder �0 to Eq. (14) when substituting !T and !R intolassial ation (13). Therefore, we write!T = T; !R = R+ a1K0R: (16)However, this additional term anels when substitutedin Eq. (13), and is important only at the next order,where a1 is determined by the minimization of the a-tion.Adding (13) and (15), we obtain the �nite resultS0 + S1 = KRT � �(d� 2)6 TR; (17)if we use the additive renormalization of the string ten-sion K = K0 �K�; (18)where (following the lattie and DT terminology), weset K� = d� 22�2 �2 h3� �2 � log(2�2)i ; (19)whih is the ritial value of the string tension for thegiven regularization. The physial, renormalized stringtensionK is then obtained when the bare string tensionK0 approahes K� from above.6. MINIMIZING THE ENERGY AT LARGE dIn the preeding setion, the minimization shouldbe performed order by order in the semilassial expan-sion, i. e., the small �0 or largeK0 expansion. However,there exists another expansion, the large-d expansion539



J. Ambjørn, Y. Makeenko ÆÝÒÔ, òîì 147, âûï. 3, 2015[5℄, where the path integral is expanded around a sad-dle point and where an in�nite set of �0 orretions isinluded even to the leading order.Substituting (11) in Eq. (10) with a = �=�, we ob-tainS0 + S1 = K02 �!R + R2!R�T ++ d�2T2�2 �R �log��!RR + R!R��2�� 3� ++ 12 �!R+3R2!R� artan !RR +12 �3!R+R2!R��� artan R!R � �4 �!R + R2!R��� �dT6!R (20)for !T = T � R. A saddle point is reahed when !Rsatis�es the equation�!2R �R2�K0 + d�3 + d�22�2 �� � �!2R � 3R2� artan !RR + �3!2R �R2� �� artan R!R � �2 �!2R �R2�� = 0: (21)The usual Alverez�Arvis behaviorE = K0!R; !R =rR2 � �d3K0 (22)is reprodued from Eqs. (20) and (21) for � = 0.6.1. Large REquation (21) an be solved in the limit of longstrings (i. e., large R), leading to!R = R� �d6R 1[K0 + d�2(� � 2)=4�2℄ �� �2d272R3 1[K0 + d�2(� � 2)=4�2℄2 �� �3d3 �K0 + d�2(3� � 4)=12�2�432 [K0 + d�2(� � 2)=4�2℄4R5 +O �R�7� (23)andE(R) = �K0 + d�22�2 hlog(2�2) + �2 � 3i�R�� �d6R � �2d272[K0 + d�2(� � 2)=4�2℄R3 �� �3d3432[K0 + d�2(� � 2)=4�2℄2R5 ���4d4[5K0+d�2(15��28)=12�2℄10368 [K0+d�2(��2)=4�2℄4 R7+O �R�9� : (24)

In both expansions, we keep the terms that show a de-viation from the expansion of the standard square-rootexpression (22).It is seen from Eq. (24) that we annot simul-taneously renormalize all orders of the 1=R expan-sion. If the string tension is renormalized aordingto Eqs. (18) and (19)2), the dimensional oe�ients atthe next orders (that are related to the mass of thelowest state) remain �-dependent. This shows some si-milarity to DT, exept that insisting on the mass renor-malization there leads to a string tension that annotbe renormalized (it beomes in�nite as the uto� is re-moved). 6.2. Small RFor small R (short strings), Eq. (21) an also beanalyzed.For � = 0 (the zeta-funtion regularization), the ex-at solution (22) shows the appearane of the tahyon,namely, when !R eases to be real forR <r �d3K : (25)If we simply set R = 0 in Eq. (21), the oe�ient infront of �2 would vanish and the situation would belike that for the zeta-funtion regularization.However, for the distanes R � 1=� and forjK0j � �2, we have RpjK0j=d � 1, and hene all termsin Eq. (21) are of the order of unity and therefore re-main important for suh small R. Nevertheless, theequation an be numerially solved for both positiveand negative values of K0.In Fig. 1, we plot the solution for !R versus R ob-tained in the units of 1=� for K0 = d�2 by using Math-ematia. The solution looks similar to that in Fig. 1for other positive values K0 � d�2.We see from Fig. 1 that the solution looks quali-tatively similar to that in Eq. (22). The solution nolonger exists for small values of R � 1=�, as alreadymentioned. We may assume that this is assoiated witha tahyon of the mass � �.For negative values of K0, the situation is di�erent.We see from expansion (23) that it no longer appliesfor K0 near the ritial valueK = �d�2(� � 2)4�2 = �0:0289169d�2: (26)2) The string tension is the same as at one loop beause thelarge-R limit is always semilassial, beause the expansion is in�0=R2.540
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Fig. 1. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for positive K0
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Fig. 2. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for negative K0 > KThe solution for !R versus R is plotted in Fig. 2 in theunits of 1=� for K0 = �0:028d�2. It looks similar forother negative K0 > K. It an be seen from the �gurethat a new branh emerges that starts from!R =r� �d3K0 ; (27)
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Fig. 3. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for negative K0 < Kas is presribed by the exat formula for the solutionof Eq. (21) at R = 0. This branh emerges wheneverK0 is negative. For the old branh, whih orrespondsto expansion (23), the tahyoni instability at R � 1=�exists as it does for positive values ofK0. However, thisinstability goes to in�nity (in the units of 1=�) as K0approahes ritial value (26) from above. This mayimply that the tahyon mass sales as K0 ! K + 0.This old branh disappears for K0 < K, given byEq. (26). The solution exists for all R � 0. At large R,it is given by expansion (23), but now !R > R insteadof !R < R, as it was for K0 > K. The dependene ofthe solution of Eq. (21) for !R on R is plotted in Fig. 3for K0 nearK� = d�2[3� �=2� log(2�2)℄2�2 == �0:0786963d�2; (28)the value for whih the right-hand side of Eq. (18) van-ishes. Figure 3 is drawn quantitatively for K0 = K�.This is the value for whih K remains �nite as �!1,as is disussed below. The solution for !R in terms of �looks similar to that in Fig. 3 for other negative valuesK0 < K.We see from the �gure that the solution always ex-ists, while !R � 1=� for R = 0, as is presribed bythe exat formula (27) for the solution of Eq. (21) atR = 0. We may assume that this situation orrespondsto the ase where there is no tahyon in the spetrum,like for DT.541



J. Ambjørn, Y. Makeenko ÆÝÒÔ, òîì 147, âûï. 3, 2015IfK0 approahesK from below,K0 ! K�0, thenthe lowest mass is apparently not tahyoni and sales.In this limit, the �renormalized� string tension (18) isa positive onstant times �2, sine K� < K, and doesnot sale. It goes to in�nity as � ! 1 in ompleteanalogy with the situation for DT in [9℄: no tahyonand no saling of the string tension.7. CONCLUSIONWe have shown that the regularization of thebosoni string by trunating the mode expansion isfeasible and that the spetrum of the regularized stringdepends on the regularization proedure. In our aseNT = NRT=R, whih maximally preserves the di�eo-morphism invariane, the results seem to be somewhatsimilar to DT for a ertain range of the negative barestring tension: the absene of the tahyon and nosaling behavior of the string tension, whih remains� �2. There exists a (negative) ritial value of thebare string tension, for whih the mass of the lowest ex-itation sales as � ! 1, but the renormalized stringtension does not. For a ertain negative value of thebare string tension, there exists only a simple salinglimit as �!1, oiniding with the semilassial spe-trum.We bene�ted many times from useful disussionswith Valery Rubakov, in partiular, on the subjet ofthis paper.J. A. realls: I �rst met Valery when he visitedthe Niels Bohr Institute for a ouple of month in 1984together with Vadim Kuzmin. We had a wonderfulollaboration resulting in an artile about hypothetialtehni-baryons as nontopologial solitons in a tehni-olor theory. But the most delightful memories fromthis ollaboration are not about physis but about thedisussions we had about life and soiety. We were of-ten working at late night in the basement of the NielsBohr Institute (we were doing some numerial work andthat was where the omputer terminals were in theseold days). Some time after the midnight, Vadim wouldome down to us and say: �time to stop working, youngguys�, and he would bring three glasses and a bottle ofvodka, and we would disuss all kind of topis, some ofthem quite surprizing for Valery. He understood soonthat he had been somewhat mis-informed about how asoiety like the Danish one was strutured. In parti-ular, I remember a long disussion we had about theDanish health are system. Valery ontinued askingand asking and in the end he said: �I see, I understand

now that it an be organized that way, and be equallygood for both the poor and the rih� (whih is perhapsnot entirely true : : : ). The openness with whih he re-eived the new information and the way he orretedhis view after ritially judging on whether the infor-mation was reliable impressed me immensely. If onlypeople in general ould judge new ultures the way hedid we would live in a better world.Y. M. realls: I interseted one with Valery at Fer-milab in 1989, where he was giving an honorable ol-loquium (a week after the one given by Steven Hawk-ing). Before his olloquium, we played volleyball withother members of the Theory Department, inludingthe head, Bill Bardeen. At some point, Bill said toValery that he should probably go now to a speiallunh with some important people in onnetion withhis olloquium. �No�, replied Valery, �I have aneledit beause of the volleyball game�. Our team led byBill �nally lost to the team led by Valery. Bill thenformulated: �Whatever Valery does, he does it well�.Our best wishes for the jubilee!The authors aknowledge support by the ERC-Ad-vane grant 291092, �Exploring the Quantum Universe�(EQU). J. A. aknowledges support of FNU, the FreeDanish Researh Counil, from the grant �QuantumGravity and the Role of Blak Holes�. Y. M. thanksthe Theoretial Partile Physis and Cosmology groupat the Niels Bohr Institute for the hospitality.REFERENCES1. A. M. Polyakov, Phys. Lett. B 103, 207 (1981).2. O. Alvarez, Nul. Phys. B 216, 125 (1983).3. B. Durhuus, P. Olesen, and J. L. Petersen, Nul. Phys.B 198, 157 (1982).4. J. Ambjorn, Y. Makeenko, and A. Sedrakyan, Phys.Rev. D 89, 106010 (2014); arXiv:1403.0893 [hep-th℄.5. O. Alvarez, Phys. Rev. D 24, 440 (1981).6. J. F. Arvis, Phys. Lett. B 127, 106 (1983).7. L. Brink and H. B. Nielsen, Phys. Lett. B 45, 332(1973).8. J. Ambjorn, B. Durhuus, and J. Frohlih, Nul. Phys.B 257, 433 (1985); F. David, Nul. Phys. B 257, 45(1985); V. A. Kazakov, A. A. Migdal, and I. K. Kostov,Phys. Lett. B 157, 295 (1985).9. J. Ambjorn and B. Durhuus, Phys. Lett. B 188, 253(1987).542


