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We attempt to find exact solutions of the Bianchi | model in f(R) gravity using the Noether symmetry ap-
proach. For this purpose, we take a perfect fluid and formulate conserved quantities for the power-law f(R)
model. We discuss some cosmological parameters for the resulting solution which are responsible for expanding
behavior of the universe. We also explore Noether gauge symmetry and the corresponding conserved quantity.
It is concluded that symmetry generators as well as conserved quantities exist in all cases and the behavior of
cosmological parameters shows consistency with recent observational data.
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1. INTRODUCTION

There is interest in investigating nonlinear hig-
her-order differential equations whose exact solutions
cannot be determined from well-known methods. This
problem is resolved by Lie’s theory, which helps not
only to find exact solutions but also to explore new
solutions by applying different transformations. The
most interesting aspect of this theory is Noether sym-
metry, which is used to obtain analytical solutions as
well as the corresponding conserved quantities. Dif-
ferent methods have been introduced to establish con-
servation laws, like the multiplier approach [1] and
the partial Noether theorem for variational and non-
variational problems [2]. Some authors [3] proposed
computer packages to construct conserved quantities.
Cheviakov [4] introduced Maple code to formulate con-
servation laws by using the multiplier approach.

The accelerated expansion of the universe is widely
discussed by modified theories of gravity such as the
f(R) gravity, f(T) gravity (T is the torsion), modi-
fied Gauss-Bonnet gravity, f(R,T) gravity (T is trace
of the energy—momentum tensor), scalar-tensor theo-
ries, etc. The f(R) gravity is the simplest modification
of general relativity, where the Ricci scalar R is re-
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placed by an arbitrary function f(R). The field equa-
tions of f(R) gravity are fourth-order nonlinear par-
tial differential equations whose exact solution can be
found via the Noether symmetry approach. Different
authors [5] elaborate a comprehensive review of f(R)
gravity. Starobinsky [6] discussed the stability criteria
of some f(R) models.

Observations of the CMBR. and experimental data
such as WMAP and Planck satellites indicate that the
present universe is isotropic and largely homogeneous.
This stage of the universe is described by the FRW
model, which ignores all structure of the universe and
observed anisotropy in the CMB temperature. How-
ever, the early stages of the universe are found to
be spatially homogeneous as well as anisotropic. The
anisotropy is still found in the present universe as the
CMB temperature and to discuss this anisotropy, we
consider the simplest anisotropic model, i.e., Bianchi
type cosmological homogeneous models. These mo-
dels describe the anisotropy effect in the early universe
on present-day observations. Many authors have dis-
cussed these models from different standpoints. Akarsu
and Kilinc [7] explored the Bianchi type I (BI) model
which yields de Sitter volumetric expansion due to a
constant effective energy density for anisotropic fluid
along with an anisotropic equation of state (EoS) pa-
rameter. Yadav and Saha [8] investigated a locally rota-
tionally symmetric (LRS) BI anisotropic cosmological
model with dominance of dark energy for the condition
A = B™. They found that the anisotropic distribution
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of dark energy leads to the present accelerated expan-
sion of the universe.

The symmetry approximation is extensively used to
study exact solutions under different scenarios, which
are then used to discuss cosmic aspects. Sharif and
Waheed studied the Bardeen model [9] and stringy
charged black holes [10] via approximate symmetry.
The same authors [11] introduced curvature correction
terms in a scalar—tensor theory to explore Noether sym-
metries for FRW and LRS BI universe models. Aslam
et al. [12] found maximum Noether symmetries for the
BI universe in f(7) gravity. Kucukakca [13] formu-
lated exact solutions for a flat FRW universe in the
scalar—tensor theory nonminimally coupled to torsion
scalar via Noether symmetry. Aslam et al. [14] inves-
tigated Noether gauge symmetry in f(7) gravity min-
imally coupled to a scalar field. Jamil et al. [15] ex-
plored Noether gauge symmetry in the Saez Ballester
scalar—tensor theory for the BI model. Kucukakca et
al. [16] found exact solutions by using the Noether
symmetry approach for the LRS BI universe.

Many authors explored Noether symmetry in f(R)
gravity. Capozziello et al. [17] investigated some ex-
act spherically symmetric solutions with the help of
Noether symmetry in f(R) gravity. Vakili [18] studied
Noether symmetry for a flat FRW universe and dis-
cussed the effective EoS parameter for the quintessence
phase. Jamil et al. [19] found Noether symmetry of the
tachyon model for a flat FRW metric and discussed
cosmic evolution via a power-law model. Hussain et
al. [20] explored Noether gauge symmetry for a flat
FRW spacetime which yields zero gauge term. They
also checked the stability criteria for the power-law
f(R) model. Shamir et al. [21] calculated a nonva-
nishing gauge term for the same model and also dis-
cussed Noether gauge symmetry for the static spheri-
cally symmetric model. Kucukakca and Camci [22] ex-
plored Noether gauge symmetry for the FRW universe
in the Palatini f(R) gravity.

In this paper, we explore Noether and Noether
gauge symmetries for an LRS BI universe model in
f(R) gravity. We discuss some cosmological parame-
ters to elaborate accelerated expansion of the universe.
The paper is organized as follows. In Sec. 2, we pro-
vide a general formalism of Noether and Noether gauge
symmetries and field equations of f(R) gravity. Sec-
tion 3 is devoted to exact solutions, the Noether sym-
metry generator and corresponding conserved quanti-
ties, while Sec. 4 formulates symmetry generator via
Noether gauge symmetry. In the last section, we sum-
marize the results.
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2. NOETHER SYMMETRY AND f(R)
GRAVITY

In this section, we briefly discuss Noether and
Noether gauge symmetry and f(R) field equations for
the LRS BI universe model. Noether symmetry is ob-
tained when a Lie derivative of the Lagrangian vani-
shes, while Noether gauge symmetry is its generalized
form with a nonzero gauge term. The Noether theo-
rem describes a strong connection between symmetries
and conservation laws. We consider a point transfor-
mation that depends on an infinitesimal parameter \,

i.e., Q' = Q¥(¢’, \) and generates a one-parameter Lie
group. The vector field
o0 d, i 0
X = B¢ — + | —(Bi(q"))| —
B30 + | GO 70

is referred to as Noether symmetry if the Lagrangian
remains invariant, i.e., Lx£ = 0. For Noether gauge
symmetry, the vector field is defined as

0 , 0

- iy J(t. gty ——
X_a(taq)at+7(taq)aq]7

where «a, 3%, and 77 are unknown functions and the dot

represents the time derivative. This field yields Noether

gauge symmetry if the Lagrangian satisfies the equation

XMz + (Da)L = DG(t, ¢").

Here, G(t, ¢') represents the gauge term, D and X[ are
the total derivative operator and the first-order prolon-
gation given by

0

D=— 0

+qla—qi7

XM= X + (v 497, 6" — ¢ — ay qlqj)a—q.i.
The conserved quantity corresponding to X is defined
as

. . 0L

I=G—-al—- (v —¢a)=—.

(v = i) 5

For Noether symmetry, the gauge term vanishes and
the conserved quantity takes the form

oL

For a dynamical system, the Euler—Lagrange equation
and the associated energy function are defined as
oL oLy _ 0
oq’ ag ) 7

a
it

oL

- L=E,.
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The action of f(R) gravity is given by

A= / & o/ "g(f(R) + Lan(gasn¥))s (1)

where f is an arbitrary differentiable function of the
scalar curvature and L, is the matter Lagrangian. Us-
ing metric variation of this action, we obtain the cor-
responding field equations as

1
fRR;w - gfguu - vqufR + g;u/DfR = KT - (2)

Here, fr = df /dR, V, represents the covariant deriva-
tive, and 0 = V,V¥. In terms of the Einstein tensor,
Eq. (2) takes the form

K

f_R (Taﬁ +

where the effective stress—energy tensor is

Gap = '), (3)

1 -R
1% = L (L5004 9V fOfngs) . 1)
This contains such ingredients that are required to deal
with accelerated expansion of the universe, referred to
as dark source terms.
The LRS BI universe model is given as

ds® = dt* — A%(t) dz® — B (t)(dy® + dz?),  (5)
where the scale factors A and B are functions of time.
In order to calculate the Lagrangian, we can write the
action as

A= /[AB2f —\(R=R)+Lnldt,  (6)

where the dynamical constraint R, the Lagrangian mul-
tiplier y, and the matter part of the Lagrangian L,,
(taking perfect fluid in a matter-dominated universe)
are

R=-— A1232 (AB>+2ABB+2BAB+AB?), (7)
X=AB’f', Ly =po(AB*)~. (8)

The Lagrangian corresponding to the action becomes

L(A,B,R,A,B,R) = AB*(f — Rf')+4BABf'+

+2AB2f'+2B? ARf"+4ABBRf" +po(AB*) ™', (9)

where the prime represents the derivative with respect
to R.
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3. EXACT SOLUTIONS AND CONSERVED
QUANTITIES

Here, we attempt to find exact solutions through
Noether symmetry and the corresponding conserved
quantities. We also check the behavior of some cos-
mological parameters for the resulting model to study
the accelerated expansion of the universe. We assume
A = B™, m # 0,1, which is obtained from the con-
stant ratio of shear and expansion scalars [23]. With
this condition, Lagrangian (9) takes the form

L(B,R,B,R) = B"2(f—Rf)+2(2m+1)B™ B2 f'+
+2(m +2)B™M BRf" + po.  (10)

The corresponding vector field for Noether symmetry
is

(11)

where 1 and ¢ are unknown functions that depend on

the canonical variables B and R. The derivatives of

these unknowns with respect to time are
.o .0 .98 L O¢

j=B--+R;~, €=B_>+R_ . 12
=85 T or =P ler (1Y
Using Eqgs. (10)—(12) in the condition for the existence

of symmetry (Lx £ = 0), we obtain the set of equations

2(m +2)B™ 'y, =0, (13)

(m+2)B™ (f — Rf')n — B"?Rf"¢ =0, (14)
m(2m + 1)B™ ! f'n + (2m + 1) B™ f"¢ +

+2(2m+1)B™ f'n,, +(m +2)B™ T e, =0, (15)

(m + 1)(m + 2)Bmfu,'7 + (m + 2)Bm+1f///€ +
+2(2m + 1)B™f'n,,, +(m +2)B™"+ f'n, +

+ (m+2)B™T "¢, =0. (16)

Equation (13) implies that either f"” =0 with n,, # 0
or vice versa. The first case leads to a trivial solution.
Thus, we consider f” # 0 and 7,, = 0 and choose the
power-law f(R) model, i.e., f(R) = foR™ (n # 0,1),
where fp and n are constants. Inserting this model in
Eqgs. (13)—(16), we have

2n(m +2)(n — 1)B™ ' R" %, =0, (17)

(m +2)B™ 'y +nB™ 2 R7¢ =0, (18)
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m(2m + 1)B™ '+ (n — 1)(2m + 1)B™R'¢ +
+2(2m+1)B™n,, +
+(n—1)(m+2)B"'R™¢ =0, (19)

(n—1)(m +1)(m +2)B™R ' +
+(n—=1)(n—2)(m+2)B" R +
+ 2(2m+1)B™n,,, +(n—1)(m+2)B™ 'Ry, . +
+(m+2)(n—1)B™'R™¢,_=0. (20)

We solve this system of equations by assuming a po-
wer-law form of (n, &) and separation of variables.

3.1. Power-law form
We consider unknowns in a power-law form as
n= 50351R62, €= ﬂOB&Rﬁz,

where the powers d1, d2, f1 and [» are arbitrary con-
stants. Inserting these values in Eqgs. (17)—(20), we ob-
tain

n(n—2)+v/3n—2n2
n= 60 - a(n-1)
5 n+v3n —2n2 ni\/3n )2n R (21)
= B S — n(n—1
g 0 n(n _ 1) )

where n € [1.1, 1.5]. The corresponding Lagrangian
and symmetry generator become

L= —(n—1)B0E" R 4
+2n(2m + DB pepnl 4
Ve
+2n(n—1)(m+2)B T R BR + po,
X =
n(n=2)tV3n 222 () n £ +v3n — 2n?
=6 [ BT D=VARTAY )
0B n(n —1)

Bn:l:\/(3n7)2n2 R o
n(n—1 —
. OR

The conserved quantity associated to this symmetry
generator is

m(n—1)4n(n—2)+\/3n—2n2 1.
I =46y |4n(2m+1)B n(=1) R" "B +

+2n(n —1)(m + 2) x
n—2 ( (m+1)(n—1)4n(n—2)+v3n—2n2 .
X R B n(n—T)

R+

(m+1)(n— 1)+n:l:\/3n 2n2
+ B n(n—1) .

3.2. Separation of variables

In this approach, we consider functions in the form

n=mB)n(R), &=~&(B)&(R),

where 11, 72, &, and & are unknown functions to be
determined. Using these unknowns in Eqs. (17)-(20),
we obtain

m 2 m
n=agB' f:—ao<ﬂ) B~%7R, (22)
n

where ay is an integration constant. It is found that the
above solutions are satisfied for the constraint m = —1,
which gives

n=ayB™', ¢=-200B7’R. (23)

Thus, the corresponding Lagrangian (10) and symme-
try generator (11) become

BR‘ : R*%
fo—(BR )" B2 fo— BRf0+007

X:aO(B 13—23 238)

L=
(24)

0B OR

The corresponding conserved quantity is given by
I = ao(B*RY?*)7'B. (25)

We see that the symmetry generator and the corre-
sponding conserved quantity obtained by the power-law
approach are more complicated than the separation of
variables technique. Thus, we proceed with the exact
solution with the symmetry generator found through
separation of variables.

We introduce cyclic variables to solve the field equa-
tions. The existence of a Noether symmetry generator
ensures the presence of cyclic variables, which are found
by using a point transformation, ¢: (B,R) — (u,2)
such that pxdu = 0 and pxdz = 1. We consider z
to be a cyclic variable; the corresponding Lagrangian
becomes independent of this variable. Using this trans-
formation, the complexity of the system is reduced by

w=BR, z= %32, (26)

where a; is an arbitrary constant. The corresponding
inverse transformation is

Uu

= et 1/2
s B = (2a12)"/". (27)

Using Eq. (27) in Lagrangian (10), we have

1 w320z
e 3 (0 s

60
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The Euler-Lagrange equations take the form

mB? 2B 2(m+2)
B B Bmrnf
o (f—ff’ B 2(2m-|-11?)BRf" —Rf”—R2f”,> . (29)

B B
Rf”+2(m2+m+2)§f”+2(m+2)Ef” =0. (30)
The associated energy function is
B 1
B2 2f'(2m+1)

x (f—Rf’ —2(m+2)%f”+po> . (31)

We obtain the pressure and energy density from
Eqgs. (29) and (31) as

2(m +2)
Cm+ D) f

1
P G

X(fif'_

2

(m+2)%f” + ”—20>  (33)

In terms of cyclic variables, it follows that

4 4
u+i=0, = ﬂu3/2, ﬂu3/2—2u2 =ui. (34)
fo fo

Solving these equations, we obtain

u = —(bit + by) 72, (35)
35
zZ = ln(blt + b2)71/b% + bgt + b4,

where by = 4¢q/ fo, b2 = ¢2/2, bs, and by are integration
constants. Finally, inserting these values in Eq. (27),
we obtain

B = (In(bit +bo) Y% 4+ b3t + b))%, (36)

A=DB"" = ({In(byt+bs) /¥ +bst+bs} 1) "2, (37)

R = —(byt + by) "> {In(byt+by) ™" /% 4 bgt+b} ", (38)

Now, we discuss some cosmological parameters, i.e.,
the Hubble, deceleration and EoS parameters for this
model. The Hubble parameter is given by

1 (A 2B
H—§<z+§>-
Using Eqgs. (36) and (37), we obtain

1
H = g(bg — (bl(blt + 62))_1) X
x {In(byt + by) "% 4 bgt + s} ™1, (39)

The deceleration parameter ¢ is an important factor in
cosmology because it measures cosmic acceleration of
the expanding universe. The positive sign of this pa-
rameter corresponds to deceleration, whereas negative
behavior indicates the accelerated expansion, but ¢ = 0
describes expansion with a constant velocity. The de-
celeration parameter ¢ = —H /H? — 1 takes the form

g = —6{In(bit +bs) /% 4 bgt + by} ' x
X [{(brt + b2)(bs — (b1 (bt + b)) ")} 2 —
— (In(byt + bs) ™% 4 byt + b))~ ] = 1. (40)

The EoS parameter (w = p/p) is used to distinguish
different phases of the universe and further divides the
DE phase into different eras. The DE phase is di-
vided by the quintessence era for —1 < w < —1/3,
whereas w = —1 and w < —1 correspond to the cosmo-
logical constant and phantom eras, respectively. With
Eqgs. (32) and (33), the EoS parameter becomes

,_ R+ RR-2B"'RBR - 3/2R?
R3 +3B-'RBR + R'po/2fo

With Eqgs. (36) and (38) used in above equation, it takes
the form

1
w = do do_l(blt + b2)2 + 5{21)1(1)1 + bg)il +

+dy (b3 — (b1 (bt +be)) ™1} +
+ {(bit + bo) 7 (dg " — 207) —
—dy?(bs — (bi(bit + b)) )%} =
—dy " (bg — (by(Dyt +D2)) ) {2b1 (b1 + ba) L +
+dy (= (by (byt 4 by) +

+ bg)l)}] [(blt+ bo) 2 +

(bs — (by (bst + bg))fl){le(bl + b2)71 +
+dy ' (b — (b1 (bat + b)) ™)} +

—1
Po _
%dol(b1t+b2)4 ,

where dy = {In(byt + bs) ~1/%7 + bst + by}

_|_

NNV

+ (41)
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Fig.2. Plots of (a) the Hubble parameter and (b) the deceleration parameter versus ¢ for by = 1.5, by = 0.25, bz = 0.5,

by =0.1

The graphical behavior of scale factors B and A is
shown in Fig. 1. The plot in 1a represents increasing
behavior of B indicating expansion in y and z direc-
tions, while A evolves in decreasing manner as shown
in Fig. 1b. This shows that expansion is observed in
opposite direction (z-direction) for A. Figure 2a in-
dicates that the Hubble parameter increases with the
passage of time, whereas Fig. 2b shows negative behav-
ior of the deceleration parameter representing acceler-
ated expansion of the universe. The behavior of w is
shown in Fig. 3, which indicates the quintessence phase
initially. This parameter crosses the phantom dividing
line and meets the phantom phase with the passage of
time. Thus, all the parameters indicate the accelerated
expansion of the universe for the LRS BI model in f(R)
gravity.

We now investigate Noether symmetry without im-
posing the condition (A = B™) for the LRS BI model.

62

1.5 2.0 2.5 3.0

Fig.3. Plot of the EoS parameter versus time for
by = 1.5, by = 0.2, by = —4.5, by = —0.5, po = —1.5,
fo=0.5
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We define the vector field as

0
o8

0 0 .0
X = 1 —.
¢ 9 A + f + ¢ +

0 0
+19— 4+ R—,
0B OR’
where ¢, n and £ are unknown functions depending on
A, B, and R. The derivatives of these functions are

defined as

(42)

90 500 00 o 5O 00

0= Agi+Bap+Ron, = Ag+Bapthon,
0¢ 0¢ o
§=Ag+Bap +hap.

The symmetry existence condition for Lagrangian (9)
yields

2f'm,a+Bf"E, =0, (43)

Bf"¢,, +2Af"n,, =0, (44)

(B*¢ +2ABn)(f — Rf') — AB’R¢ =0, (45)
f'o+Af"€+2Bf'¢,, +

+2Af'n,, +2ABS"E,, =0, (46)

2f'n+2Bf"¢ +2Bf'¢,, +2Af',, +2Bf'n,, +

+2ABf"¢,, +B2f"¢,, =0, (47)
2f"n+ Bf"¢+ Bf'"o,, +
+ 241", +2f'n,x +Bf"6,, =0, (48)

2Bf"0+2Af " n+2ABf" ¢+ B f"6,, +2Bf'6,, +
+2ABf'"n,, +2Af'n,, +2ABf"E,, =0. (49)
To solve this system of equations, we consider the same
power-law f(R) model for separation of variables as
in the preceding case, which leads to n = 1. Thus,

we proceed further using the power-law technique with
unknowns in the form

o= ¢0Ad>1 B%2 Rd’3, n=nyAmB"™R",
¢ = €0A£1 Bé Rés .

Substituting these values in the above equations, we
obtain

¢ =-2mA, n=mB, (=0 (50)
The symmetry generator becomes
0 0
X = —2770A8A + noBaB

which corresponds to scaling symmetry. The corre-
sponding conserved quantity is

I =n9(4nABR"'B — 4nB>R" ' A).
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4. NOETHER GAUGE SYMMETRY

In this section, we explore Noether gauge symmetry
for A = B™. For this symmetry, we define the vector
field as

+o(t,B,R) L

Y—T(tBR)a 5B

ot

0
+¢(t,B R)aR

where 7, ¢ and @ are unknown functions to be deter-
mined. The first-order prolongation of this vector field
is given by

(51)

o 0 o .9 .0
m__ 0,0 0 -0 0
Y 8t+¢83+¢8R+¢aB+¢aR’ (52)
where
06, 500 200 L0r .0 or
o= +P 8B+R8R 5 B35 Bligg 59
0 oY or or or
b= tBapth aR ~lig R gp—Blgp. (54)

This vector field yields a Noether gauge symmetry if
the corresponding Lagrangian satisfies the condition

o .0 .0
5Bt Ran:

The corresponding conserved quantity takes the form

oL oL

(¢ — BT)BB (¥ - R)aR

Using Eqgs. (51)-(54) in (55) for Lagrangian (10), we
obtain

villg+(Drye =DG, D= (55)

I=G-71L- (56)

T,B = 07 (57)

T,p = 0, (58)

2(m +2)B™ g, =0, (59)

2(m + 2)Bm+1f”¢at = G?R ) (60)

4(2m4A1)B™ f' ¢,y +2(m+2)B™ T ) =G, , (61)
(2m + 1)mB™ "' f'¢ + (2m + 1)B™ f"¢ +

+ 2(2777, + 1)Bmfl¢73 +(m + 2)Bm+1f”¢73 —
—-2(2m+1)B"f'r; =0, (62)
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(m+1)(m+2)B™ f"¢ + (m + 2)B™+! f"¢ +
+ (m + 2)Bm+1f”¢73 +2(2m + I)Bmfl¢vn -

—(m+2)B™ "1 +(m +2)B™f"),, =0, (63)
(f = Rf){(m+2)B" "¢+ B"?r,} —
—B"PRf"p + 10po = Gy. (64)

For a nontrivial solution, we choose the power-law form
as f = foR3/? and solve the above system by the sep-
aration of variables approach, i.e.,

¢ = ¢oo1(t)p2(B)os(R),
Y = Yo ()2 (B)3(R),

where 7y, ¢g, and g are arbitrary constants while 7;,
¢i, and ; are unknown functions to be found. Also,
we assume that 75 = 0, which yields 7 = ¢3. Thus, we
obtain

T = 71071 (t)2(B)713(R),

T =c3,
¢p=DB"" ((35 Cos \/?t — cg sin \/?O ca,  (65)
¢ =2RB™? <C5 cos \/?t — ¢g8in \/?t> ca, (66)
—V6B™'R <C5 cos \/?t +
+ cg sin @t) cy —cr, (67)

where ¢, (k = 3,4,5,6,7) are integration constants.
These solutions satisfy Eqs. (57)—(64) with

sin ﬁt ——
,/3 = ,/

With this condition, it follows that

2R

G = —Cr, 3

2R
¥ = 2cg B ?Rcos ?t,

where cg is a redefined constant. The corresponding
symmetry generator is

0

8R

¢ = CgB71

T = C3,

0
Y=ag+

2R O /2R
+cg (Bl cos ta_B + 2B 2R cos
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which can be split into two generators as

B! cos 1/ ?t-l—QBﬁRcos 1/ ?t,

where the first symmetry generator Y; corresponds to
energy conservation. The conserved quantities associ-
ated to the vector field are

I = — 6B 'R'Y?B? + 3BBRR™/?),

. /2 . 192
I, = 3B 2RY2B cos ?Rt—%BflRflﬂRcos ?Rt.

1
(B 3/2
2( R

5. SUMMARY

In this paper, we have explored the LRS BI universe
model via Noether symmetry in f(R) gravity. Noether
symmetry is a powerful tool to find exact solutions of
nonlinear partial differential equations, symmetry gen-
erators, and the corresponding conserved quantities.
We have explored the power-law form and separation
of variables to formulate the Noether symmetry gen-
erators and the associated conserved quantities by as-
suming A = B™. We have considered the power-law
f(R) model to avoid trivial solutions. The symmetry
generators and the corresponding conserved quantities
are obtained through both approaches but the sepa-
ration of variables approach is simpler. We have also
formulated Noether symmetry without assuming the
condition A = B™ which leads to the scaling symme-
try.

We have explored the behavior of some cosmologi-
cal parameters like the Hubble, deceleration, and EoS
parameters for this model. These parameters indi-
cate that the results correspond to the accelerated ex-
pansion of the universe. The EoS parameter shows
the crossing of the phantom dividing line from the
quintessence to phantom era, which is consistent with
recent cosmological observations [24]. We have also ex-
plored Noether gauge symmetry by assuming the con-
dition A = B™ and formulated a symmetry generator
associated with the energy conservation for n = 3/2.
Sharif and Shamir [25] have found two exact solutions
for BI and Bianchi type-V spacetimes by using the vari-
ational law of the Hubble parameter in f(R) gravity.
They formulated solutions for a singular model with
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power-law expansion and a nonsingular model with ex-
ponential expansion. The deceleration and Hubble pa-
rameters are positive and infinite for power-law expan-
sion, respectively. For exponential expansion, the de-
celeration parameter is negative, whereas the Hubble
parameter is finite for finite values of . We have found
one exact solution via the Noether symmetry approach
for the power-law f(R) model. The Hubble and decel-
eration parameters are finite and negative, respectively.
It would be interesting to examine the LRB BI universe
model for different choices of f(R) models.
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