
ÆÝÒÔ, 2015, òîì 147, âûï. 3, ñòð. 623�663  2015
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Fig. 1. The piture of energy levels as a funtion of u at L1 = 2L2 := 2LkIn = �nL1 ; kIIn = �nL2 at u =1: (1.4)The smooth evolution with u is shown in Fig. 1, but the net result is the rather radial reshu�ing of (1.3)into (1.4). The task an be to study this reshu�ing and to ask if there are quantities that remain the sameafter the reshu�ing.The question is atually uninvestigated, but its more sophistiated versions were studied and some invariantswere revealed (although it is unlear if they redue to triviality in this original problem).The point is that there is nothing speial about the Æ-funtion potential: the pattern remains the same foran arbitrary barrier vanishing in the viinity of the box walls. Any suh problem is desribed in terms of the2� 2 sattering matrix S : e�ikx��x near �L1 ! ��(k)e�ikx + ��(k)e�ikx��x near L2 : (1.5)The spetral equation states that S onverts sin�k(x + L1)� � eik(x+L1) � e�ik(x+L1) into sin�k(x � L2)� �� eik(x�L2) � e�ik(x�L2). For the Æ-funtion potential, the sattering matrix is justS = 0B� 1� u2ik � u2iku2ik 1 + u2ik 1CA : (1.6)For the two isolated barriers, the sattering matrix is a produtS1 Æ S2 = S1 � eikl12 00 e�ikl12 ! � S2; (1.7)where l12 is the distane between the two, and so on: in general, we have the produt ÆiSi.Changing the shape of the potential redues to a omposition of reshu�ings, when onstituents of theprodut hange order, i. e., to a omposition of operations:Kj : Æi<jSi Æ Sj Æ Sj+1 Æi>j+1 Si ! Æi<jSi Æ Sj+1 Æ Sj Æi>j+1 Si: (1.8)This operation is of ourse very familiar: in the theory of quantum groups, if the Si are group elements [4, 5℄, thispermutation is desribed by the quantum R-matrix, and we an therefore suspet that atually Kj = Rj and,16 ÆÝÒÔ, âûï. 3 625



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015further, Rj+1 = UjRjUyj , where U is the quantum mixing (Raah) matrix (see [6℄). From this data, it is thenstraightforward to build invariants: these are the ordinary knot invariants in the Reshetikhin�Turaev�Witten(RTW) formalism (graded traes and ertain matrix elements of the ordered produts of the R-matries), whihin the ontext of wall-rossing theory are known as KS invariants.To make this story really nontrivial, we need to promote sattering matries S to operator-valued quantitiesŜ . In quantum group theory, this is ahieved by making the elements of the algebra of funtions nonommuta-tive; in quantum mehanis it su�es to introdue internal degrees of freedom like spins or, more generally, toonsider matrix models (e. g., matrix quantum mehanis). This makes R- and U-matries di�erent from justordinary permutation matries: they start to realize the far less simple braid group strutures.The emergene of braids is, of ourse, not universal for quantum mehanial problems, they arise only whenthe spae is 2-dimensional and there are topologially di�erent ways to adiabatially arry one point aroundanother, produing a Berry phase. However, this is a generi situation for algebraially integrable dynam-is, where the separation of variables redues the study to a omplex urve (sometimes alled the spetral orSeiberg�Witten urve, the Liouville torus being its Jaobian). Although formally integrable systems are prettyrare, there is a growing evidene that typial e�etive �eld theory obtained after integration over fast variablesis integrable [5, 7℄, and this explains the growing interest in this type of theories.Even in this integrability ontext, naturally appearing representations of the braid group an be quite so-phistiated and di�ult to study. Still, there are two immediate lasses of examples (in addition to the ordinaryVerma modules of ordinary quantum groups like SUq(N), widely used in onventional knot theory). One ofthem is provided by the WKB limit of quantum mehanis, where the R-matries atually desribe reshu�ingsof the Stokes lines. The other is provided by modular transformations of onformal bloks: the modular kernelsTi and Si provide an interesting set of Ri and Ui matries, whih an be used to onstrut a priori new familiesof knot invariants. In the simplest ase, however, the family is not new: it yields just the ordinary Jonespolynomials (and probably HOMFLY at the next step), but more sophistiated examples seem to be apableof providing a long-awaited group theory (RTW) interpretation of the Hikami invariants.The plan of this paper is as follows.We begin in Se. 2 with a general review of the WKB approah involving the theory of Stokes lines, theirreshu�ings, and KS invariants. Then, in Se. 3, we onsider the standard example of the double-well potentialfrom this perspetive. After that, in Se. 4, we swith to matrix models and reformulate the problem in termsof operator-valued (hek) resolvents. In Se. 5, we onsider KS/RTW invariants assoiated with the simplestknots and links and show that the R-matries provided by the modular transformations of onformal bloksgive rise to various types of knot invariants: the Jones polynomials and the Hikami integrals.A natural part of this presentation are the distinguished (Fok�Gonharov [8℄) oordinates on the modulispae provided by the WKB theory, where the R-matries at via peuliar rational transformations (also knownas mutations in luster algebra [9℄ and related to disrete hanges of oordinates in the algebra of funtions [10℄).The onlusions in Se. 6 desribe an (inomplete) list of relations between di�erent subjets in theoretialphysis, whih are brought together by onsideration of the wall-rossing phenomena.2. WALL CROSSING FORMULAS AS A PIECE OF THE WKB THEORY2.1. Asymptoti behaviorIn the Seiberg�Witten (SW) theory desribing the low-energy limit of N = 2 supersymmetri gauge the-ory [11℄, the entral harge and the mass of an exitation are given by ontour integrals of the SW di�erential �:Z = I �; M = I j�j: (2.1)The BPS states have M = jZj, and therefore they are assoiated with the Stokes ontours �(x) 2 � on thespetral surfae �, suh that the SW di�erential � (whih is a meromorphi di�erential on � whose variationswith respet to the moduli are holomorphi) along these ontours has a de�nite phase �� :Arg�e�i���h�(x)i� = 0; (2.2)626
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−Fig. 2. Interseting one Stokes linewhene Arg0B�e�i�� Z�(x) �1CA = 0: (2.3)If the gauge theory is desribed via M-theory [12℄, then these � are interpreted as intersetions of the mainM5-brane with the M2-branes (see [13℄). The spetral surfae � is a rami�ed overing of the original bareurve �0, and � is an eigenvalue of the Lax 1-form [14℄. The mass of the BPS state is given by the absolutevalue of the same integral, and the mass is �nite when the ontour is losed. To make the Stokes ontour losed,we should adjust the phase �� ; this possibility to adjust the phase of the Plank onstant is the main newpeuliarity of the BPS state ounting as ompared to the usual WKB theory. When the moduli of the spetralsurfae hange, so do the phase and the shape of the ontour, and at some values of moduli the hange an beabrupt: disontinuous. Suh a jump in the multipliities of the BPS states ours along real-odimension-onesurfaes in the moduli spae and is alled the wall-rossing phenomenon. What remains invariant is peuliarombinations of multipliities, enoded in the form of the Kontsevih�Soibelman formula.Our purpose in this paper is to disuss a pedestrian approah to this kind of problems, relating them to theelementary textbook onsideration of Stokes phenomena for the WKB approximation.For this purpose, we onsider the Wilson lineW�(�) = P exp0� iei�~ Z� L1A (2.4)of the N �N -matrix valued Lax form along an open ontour � 2 �0 on the bare Riemann surfae �0. The Neigenvalues of L de�ne the SW di�erential �i on the N sheets of the spetral surfae � that N times overs �0,and we hene an roughly write W�(�) asw�(�) = diag8<:exp0� iei�~ Zi �i1A9=; (2.5)where i are pre-images of � on �. However, if we wish to treat w� as a semilassial approximation to anevolution operator for some quantum mehanial system, then we should swith between di�erent branhes ias � rosses the Stokes lines. For example, if we have a two-sheet overing with �� = ��, and onsider theevolution along the ontour that goes from point A to B and rosses a Stokes line originating at rami�ationpoint P (see Fig. 2), then	(B) =   (B+) (B�) ! = 0BBBBBBBBB� exp0B� iei�~ B+ZA+ �1CA exp0B� iei�~ 0B� B+ZP �� PZA� �1CA1CA0 exp0B�� iei�~ B�ZA� �1CA

1CCCCCCCCCA  (A+) (A�) ! (2.6)
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D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015B+B� p1 p2 A+A�Fig. 3. Interseting two Stokes lineswhile for the inverse path from B to A, we would rather enounter a low-triangular matrix. Thus, instead of thenaive w�, we obtain a semilassial Abelianization of the Wilson operator WAB(�) given by the sum of threeelementary matries 	(B) = �wB+A+(�) + wB+PA�(�) + wB�A�(�)�	(A): (2.7)2.2. Jumps of WKB network topology on the urveWe all the ontours � satisfying (2.2) the set of WKB lines (WKB network) � 2 �0 suh that its preimagesompose. The WKB network gives a triangulation of the spetral surfae �0. This triangulation depends onthe phase � and it an jump at some spei� ritial values �, making a kind of �ips of the triangulation.When a �ip ours, two di�erent Stokes lines merge into a single line of �nite length (we let  denote itspre-image on �), and hene integral (2.1) giving the entral harge Z = H � beomes onvergent. We animmediately de�ne the value of the ritial phase as� = Arg Z : (2.8)Now we observe how the value of the asymptoti expansion of a Wilson operator hanges. If two Stokes linesthat originate at rami�ation points P1 and P2 were rossed on the way from A to B (see Fig. 3), we wouldobtain a Wilson operatorWAB(��) = wB+A+(��) + wB�A�(��) + wB+P1A�(��) + wB�P2A+(��) + wB�P2P1A�(��) == wB+A+(�) + (1 + w�)wB�A�(�) + wB+P1A�(�) + wB+P2A�(�); (2.9)where �� = � � 0. For the other value of the phase �+ = � + 0, the on�guration of the Stokes lines an bedi�erent, and we obtain another deompositionWAB(�+) = wB+A+(�+) + wB+P1A�(�+) + wB�P2A+(�+) + wB�P1P2A�(�+) == (1 + w�)wB+A+(�) + wB�A�(�) + wB+P1A�(�) + wB+P2A�(�) (2.10)di�ering not only in the value of � but also in reordering of the points P1 and P2. At the ritial value � ofthe phase, where reshu�ing of the Stokes lines ours and a losed Stokes line � appears, the two expressionsdi�er exatly by w� , i. e., an abrupt reshu�ing oursWAB ! K̂�WAB ; (2.11)where a morphism K̂ ats as K̂� : w� = (1 + w�)h�;�iw�: (2.12)We note that this is not an ordinary operator. This morphism ats as a hange of oordinates on the modulispae of �at onnetions. We an therefore apply it to every term in the sum independently. In detail,628



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsK̂�(WAB(��)) = K̂�(wB+A+(�)) + (1 + K̂�(w�))K̂�(wB�A�(�)) ++ K̂�(wB+P1A�(�)) + K̂�(wB+P2A�(�)) = (1 + w�)h�;B+A+i| {z }1 wB+A+(�) ++0B�1 + (1 + w�)h�; �i| {z }0 w�1CA (1 + w�)h�;B�A�i| {z }�1 wB�A�(�) + (1 + w�)h�;B+P1A�i| {z }0 wB+P1A�(�) ++ (1 + w�)h�;B+P2A�i| {z }0 wB+P2A�(�) =WAB(�+): (2.13)2.3. Nontrivial moduli spae invariants: wall-rossing formulas in the moduli spaeAs we have seen, the asymptotis of Wilson lines is not smooth. The disontinuity is of the order of w�(�),whih is asymptotially small.Nevertheless, the value of the observable itself is expeted to be smooth. This fat allows onstruting non-trivial invariants of the morphisms K̂ on the Coulomb branh, alled spetrum generators [53℄, tightly relatedto the spetra of BPS states arising in the e�etive theory.In general, as we start inreasing the phase � from 0 to �, a number of reshu�ings our, when partiularlosed Stokes lines �a appear at ritial values �a, and disappear with the further inrease in �. This providesa sequene of ations  �Ya K̂�a : (2.14)The number of fators here is atually the number of BPS states on a given spetral urve, i. e., at a givenpoint of the moduli spae. If we now start hanging moduli of the spetral urve, this produt an hange,re�eting the hange of the ordered set A of the BPS states, inluding their number (the number of fators inthe produt), and the order in whih they our with as the phase � inreases. However, on the domain wall inmoduli spae (on a hypersurfae of marginal stability) given by the ondition � = �, the two di�erent produtsshould oinide:  �Ya2AK̂�a = �Yb2BK̂�b : (2.15)Thus, we obtain the Kontsevih�Soibelman (KS) invariant, taking values in funtors ating on the spae ofw-variables often alled the Fok�Gonharov oordinates of the �at onnetion moduli spae.Basi example: For two onjugate A and B yles on a torus with hA;Bi = 1, the KS relation states thatK̂AK̂B = K̂BK̂A+BK̂A; (2.16)where the operator ation is de�ned asK̂mA+nBw = (1 + wmAwnB)mhA;i+nhB;iw : (2.17)Note that the oordinates wAwB = wBwA ommute, and also wA+B = wAwB , while neither of these is true forthe operators K̂. With these de�nitions, Eq. (2.16) is just an identity: indeed, applying both sides, e. g., to wA,we obtain K̂AK̂BwA = K̂A 11 + wB wA = 11 + (1 + wA)wB wA = wA1 + wB + wAwB ; (2.18)and̂KBK̂A+BK̂AwA = K̂BK̂A+BwA = K̂B 11 + wAwBwA == 11 + 11 + wB wAwB 11 + wBwA = wA1 + wB + wAwB : (2.19)629



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015Similarly, in appliation to wB : K̂AK̂BwB = (1 + wA)wB ; (2.20)and̂KBK̂A+BK̂AwB = K̂BK̂A+B(1 + wA)wB = K̂B �1 + 11 + wAwBwA� (1 + wAwB)wB == 0B�1 + 11 + 11 + wB wAwB 11 + wBwA1CA�1 + 11 + wB wAwB�wB == 1 + wA + wB + wAwB1 + wB wB = (1 + wA)wB : (2.21)3. CLASSIC PROBLEM OF QUANTUM MECHANICS: DOUBLE-WELL POTENTIALWe onsider the Shrödinger equation with the quarti potential�~2�2z � (z � x1)(z � x2)(z � x3)(z � x4)�	(z) = 0: (3.1)Depending on the hoie of zeroes xk, the struture of levels is rather di�erent.At a �rst glane, this may seem somewhat ontroversial. Aording to the well-known theorem in ODEtheory, solutions of the Cauhy problem are ontinuous funtions of parameters if the oe�ients of the equa-tion are ontinuous. Nevertheless, the problem of �nding eigenvalues of self-adjoint operators (Sturm�Liouvilleproblem) is quite di�erent. One found integrable in the usual Hilbert norm, the eigenfuntions at some hosenvalues of parameters are not expeted to keep integrability at another hoie of the parameters.The integrability of a funtion depends on its asymptoti behavior. In this partiular ase, there are twoasymptoti forms e� z3~ . We hoose two linearly independent solutions 	1;2 with the asymptotis behavior	1(z) �z!�1 1+(�1)ez3=~ + 1�(�1)e�z3=~; (3.2)	2(z) �z!�1 2+(�1)ez3=~ + 2�(�1)e�z3=~: (3.3)We de�ne an �S-matrix� asS =  �++ ��+�+� ��� ! =  1+(+1) 1�(+1)2+(+1) 2�(+1) !�1 1+(�1) 1�(�1)2+(�1) 2�(�1) ! : (3.4)We note that this matrix is independent of the hoie of the basis in solutions. For a generi hoie of parameters,this S-matrix is unphysial.To de�ne an eigenfuntion, we require it to be integrable for real ~, i. e., to behave as	(z) �z!�1 e�z3=~: (3.5)This imposes a ondition on the S-matrix entries���(x1; x2; x3; x4) = �++(x1; x2; x3; x4) = 0: (3.6)The ruial point is that the S-matrix is disontinuous on the moduli spae (xk; ~) (see also [15℄). To observethis, we onsider two well-known physial situations:I. The ground energy level is below the level of the wall between the wells: all the zeroes xk are real. Theproblem an be desribed by a partile loalized either at the left well or at the right well, and hene there aretwo almost degenerate levels (with the wavefuntions symmetri and antisymmetri with regard to interhangingthe wells) that di�er only due to instanton jumps between the wells.630
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Fig. 4. Topology of the WKB lines when all zeroes are real
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Fig. 5. Topology of the WKB lines when two zeroes are real and two zeroes have opposite imaginary partsThe topology of the WKB lines is depited in Fig. 4.The �rst WKB approximation gives the following expression for ���:���(xk) � �4 sh0�1~ x2Zx1 �1A| {z }�rst well level sh0�1~ x4Zx3 �1A| {z }seond well level+exp8<:�2~ x3Zx2 �9=;| {z }instanton exp8<:�1~ x2Zx1 �9=; exp8<:�1~ x4Zx3 �9=; : (3.7)II. The ground energy level is above the level of the wall between the wells: two zeroes are real and twozeroes have opposite imaginary parts. In this ase, there are no pairs of almost degenerate energy levels.The topology of the WKB lines is depited in Fig. 5.The �rst WKB approximation gives the following expression for ���:���(xk) � � exp8<: 12~ I1 �9=;� 2 sin0�1~ x4Zx1 �1A : (3.8)S jumps disontinuously, the jump being desribed by an operator K̂ that is a ounterpart of the KS operatorin ordinary quantum mehanis: K̂(S(I)) = S(II): (3.9)631



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015However, S depends only on the point xk not belonging to the path in the moduli spae. Hene, all thejumps along a losed ontratible loop should anel:Yloop K̂ = 1: (3.10)4. CHECK-OPERATOR �QUANTUM, REFINED�4.1. Intuitive remarksIn many appliations, matrix elements of the N �N Lax form are themselves operators. As we saw, suhare the Seiberg�Witten di�erentials �(i) and the Abelianized monodromies w�. In suh ases, the Kontsevih�Soibelman relations inlude the Fok�Gonharov oordinates, whih take values in operators rather than innumbers.Here, we �rst give some heuristi remarks about a possible �re�nement� of the Abelianization map onstru-tion, and then give a more solid desription using �hek�-operators [16�18℄.Speulations are quite �hand-waving� so far, but we nevertheless try to draw several important onlusions:1. Gauge ovariane: The ommutation relations inherited from the natural Poisson struture on Laxoperators [19℄ $ = Z d2z Tr ÆL ^ ÆL (4.1)are not gauge invariant. Similarly, the same-time ommutator in the Chern�Simons theory is known to beindued by Eq. (4.1) only in the temporal gauge. There is no problem to de�ne an invariant ommutator24I �̂; I0 �̂35 = ~0 h; 0i ; (4.2)where the  are paths on the spetral urve, and h?; ?i is the yle pairing on the urve.2. �Anomaly�: Before integration, the ommutator h�̂(i)(z); �̂(j)(z0)i is kind of �anomalous�: one ansmoothly modify the paths as long as the intersetion points where the ommutator ontributes are avoided.This breaks the initial holomorphiity of the problem, suh that the expression H �̂ now depends on the regu-lar homotopy lass of  rather than on the homology lass of . We suppose that a representative [℄ in thehomology lass of  without self-intersetions an be hosen; thenPexp I �̂ = qwr  exp8><>:I[℄ �̂9>=>; ; (4.3)where wr is a writhe, a signed sum over self-intersetions.Similarly, we de�ne the oordinates depending only on the homology lass [℄w[℄ = exp0B� iei�~ Z[℄ �1CA : (4.4)They form a nonommutative algebra w[℄w[0℄ = qh[℄;[0℄iw[℄+[0℄; (4.5)where q = exp �iei�~0=2~� (note that ~ and ~0 are generally two independent onstants). To derive this, weonsider the produt of two exponentialsPexp I �̂ Pexp I0 �̂ = Pexp IÆ0 �̂; (4.6)632



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotswhere Æ denotes a onsequential onatenation of two paths. Equivalently, this relation an be rewritten interms of w-variables: qwr w[℄ qwr 0w[0℄ = qwr(Æ0)w[Æ0℄: (4.7)Using the relations [ Æ 0℄ = [℄ + [0℄; (4.8)wr( Æ 0) = wr  +wr 0 + h[℄; [0℄i; (4.9)we reprodue algebrai relation (4.5). The seond relation says that the writhe funtion is a quadrati re�nementof the intersetion form (see [20, Appendix C℄ for the details).As in the preeding setion, the Wilson lines are polynomials in the w variables, although now over Z[q; q�1℄:TrPexp I L �X qwr w[℄: (4.10)To onlude this setion, we mention that this quite heuristi onsideration an be applied to physialproblems [20℄. K̂-jumps of expansion (4.10), similarly to the jumps disussed in the preeding setion, allowalulating harateristis of the BPS spetra in N = 2 SYM theories. These invariants are now re�ned with adeformation parameter q and take the spin of BPS multiplets into aount.4.2. Beta-ensemble onstrutionBeta-ensembles naturally extend matrix models and inherit their basi properties. The model is given bythe partition funtion of a 2D Coulomb gas (we here onsider an example where the gas is plaed on a sphere)Z =Yi Ii dziYi<j (zi � zj)2� exp(�1gXi V (T jzi)) ; (4.11)where g and � are two parameters similar to ~ and ~0, and the potential V (T jz) determines the moduli spaeof the partition funtion: it is parameterized by the parameters Tk of the potential and by the hoie of theintegration ontours. For de�niteness, we hoose the potential to be a polynomial and Tk to be oe�ients ofthis polynomial: V (z) = nXk=0 Tkzk: (4.12)We onsider only losed ontours, and hene hanging the variables aszi ! zi + �� � zi (4.13)does not hange the integral, whih leads to the following Ward identity in the �rst order in �:*Xi 1(� � zi)2 + �Xi 6=j 1(� � zi)(� � zj) � 1gXi V 0(zi)+ = 0: (4.14)After some algebra, this equation an be represented in the form(� � 1)�� *Xi 1� � zi++ �* Xi 1� � zi!2+� V 0(�)g *Xi 1� � zi++ 1g *Xi V 0(�) � V 0(zi)� � zi + = 0: (4.15)633



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015We de�ne the resolvent as �(�) := 1Z r̂(�)Z := gp�*Xi 1� � zi+ ; (4.16)where the operator r̂(�) an be desribed by the ation of gp�P 1zk+1 ��tk on the partition funtion with themodi�ed potential V (z)! V (z)� gPk tkzk, treated as a formal (perturbative) series in the variables tk:Z =Yi Ii dziYi<j (zi � zj)2� exp8<:�1gXi V (T jzi) +Xi;k tkzki9=; : (4.17)We use Z for the partition funtion Z restrited to all tk = 0.The last term in Eq. (4.15) an be reprodued by the ation of the di�erential operator in the Tk:�P (�) = �g2 nXk=2 kTk k�2Xn=0 �n�Tk�2�n : (4.18)We all suh operators hek-operators sine they at on the moduli Tk (in ontrast to r̂(�)). We note that theMiwa transform of the Tk-moduli Tk =Xj �j�kjk (4.19)transforms the hek-operator �P (�) into �P (�) �Xj ��j� � �j : (4.20)We also an introdue the hek-operator that generates the resolvents:�rZ = r̂Z : (4.21)This operator an be onstruted reursively from �y := qV 0(T jz)2 � 4� �P , its derivatives, and V 0(T jz) [17℄.The reursion is provided by the g2-expansion, and, in the leading order, �r(0) = gp��y.Then the Ward identity an be rewritten in the form�gQ�� �r(�) + : �r(�)2:� V 0(�)p� �r(�) + �P (�)�Z = 0; (4.22)where Q := p� � 1p� and the normal ordering means that the operator �r(�) ats only on Z, but not on itself.4.3. Determinant hek-operator: quantizing the spetral urveIn the leading order of the WKB approximation (i. e., as g2 ! 0), Ward identity (4.22) beomes an algebraiequation for resolvent (4.16): �(0)(�)2 � V 0(�)p� �(0)(�) + f(�) = 0 (4.23)with the polynomial f(�) := �P logZ. This algebrai equation de�nes a spetral urve. We note that themonodromies of these hek-operators along A- and B-periods of these spetral urve form the Heisenbergalgebra [17℄: 264IAi �r(�) d�; IBj �r(�) d�375 = Æij : (4.24)634



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsOne may ask what are the ways of quantizing the spetral urve equation (4.23) (whih has to beome theBaxter equation after quantization). There are two possibilities. One is to onsider the limit of Eq. (4.11) asg2=� = ~02 ! 0 with g2� = ~2 kept �xed. In this limit (alled the Nekrasov�Shatashvili limit [21℄), Ward iden-tity (4.22) beomes a Riatti (or Shrödinger) equation equivalent to the Baxter equation [22℄ and orrespondingto a quantum integrable system [21; 23�26℄.However, this system depends only on one parameter gp� = ~. But it is possible to quante the spetralurve so as to preserve the �-ensemble representation for the wavefuntion and the dependene on two param-eters � and g. For this, it was suggested in Ref. [24℄ to onsider the equation for the �-ensemble average ofthe would-be determinant in a matrix model: the average 	(�) = hQi(� � zi)i. To deal with this average, weintrodue another hek-operator: 1Z �D[1℄(�)Z := *Yi (� � zi)+ : (4.25)In order to understand the meaning of 	(�), we rewrite it as (the number of integrations in the �-ensemblepartition funtion is denoted by N)	(�) = �N *Yi �1� zi� �+ = �N *exp(Xi �1� zi� �)+ = �N *exp �Xk Pi zkik�k !+ : (4.26)This expression is equal to both	(�) = �N 1Z exp0� �Z dzXk 1zk+1 ��tk1AZ = exp0�1~ �Z dzr̂(z)1AZZ ; (4.27)where N is treated as the zeroth time t0, and	(�) = Z �tk � 1k�k�Z(tk) : (4.28)We onsider the ase � = 1, when the �-ensemble redues to the Hermitean matrix model. Within the AGTonjeture, this ase orresponds to the onformal �eld theory with entral harge 1 [27; 28℄. In this ase, Z isa � -funtion of the Toda hain hierarhy [29℄ in the time variables tk, and 	(�) given by formula (4.28) is aBaker�Akhiezer funtion. It orresponds to an insertion of the fermion  (�) at the point � (and a fermion  atin�nity). This an be easily understood beause in the  = 1 theory (free �elds), a fermion is desribed in termsof a free �eld �(�) by the exponent : exp(i�(�)) :, inserting whih into the onformal orrelator representationof the matrix model [30℄ gives exatly the determinant [24℄. This fermion desribes the simplest fundamentalrepresentation of the SL(N) group, whih an be understood from the realization of its N -plet as [31℄ ij0i = T i�1� j0i; (4.29)where the fermion modes are de�ned by  (�) =PNi  i�i and T� =PN�1i T��i is the sum of all raising opera-tors assoiated with the negative simple roots of SL(N). Then all other fundamental representations are de�nedas produts of fermions. This onnetion with the fundamental representations an also be made manifest byexpansing the determinant in the fundamental representations:Yi �1� zi� � =Xk �[1k℄(zi)��1��k ; (4.30)where �[1k℄(zi) is the Shur funtion, i. e., the harater of the SL(N) group assoiated with the fundamentalrepresentations. 635



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015We an now onvert Ward identity (4.22) into an equation for 	(�). For this, we need to rewrite the Wardidentity in terms of shifted time variables and of operators ating on Z :"gQ��r̂(�) + r̂(�)2 � 1p� �V 0�tk � 1k�k �����r̂(�)��#Z �tk � 1k�k� = 0; (4.31)where the subsript ��� refers to negative powers of � and r̂(�) does not need to be normal ordered, sine itdoes not at on itself. We next use�V 0�tk � 1k�k ����� r̂(�)�� = gp� Xn��1 1�n+2 Xk�1 k�tk � 1k�k� ��tk+n == �V 0(tj�)r̂(�)�� � gp�Xk;n 1�k+n+2 ��tk+n = �V 0(tj�)r̂(�)�� � ��r̂(�); (4.32)where in the last step, we ompared the oe�ient k + 1 in��r̂(�) = gp�Xm�0 m+ 1zm+2 ��tmwith Xk�1n��1 Æk+n;m = m+ 1:For the �nonnormalized� ~	(�) := Z �tk � 1k�k �, we an diretly hek thatgp��� ~	(�) = r̂(�) ~	(�)and g2��2� ~	 = �r̂2(�) + gp���r̂(�)�~	(�);whene we �nally obtain the di�erential equation�g2��2� � V 0(�)�� + �P (�; Tk)�	(�) = 0 ; (4.33)whih is a quantization of the algebrai spetral urve equation depending on both deformation parameters gand �. Resaling the wave funtion as 	(�) = exp�V (�)=(g2�)�~	(�), we an rewrite this equation in the form�g2��2� + 12 �V 00(�) � V 02(�)2g2� + 1g2� h �P (�; Tk)V (�)i�+ �P (�; Tk)� ~	(�) = 0: (4.34)Now we an easily onstrut the ation of the determinant hek-operator on the partition funtion us-ing (4.27): *Yi (� � zi)+Z = exp8<:1~ �Z dzr̂(z)9=;Z = : exp8<:1~ �Z dz �r(z)9=; :Z : (4.35)It is ertainly lear how to onstrut the ordinary operator itself in terms of time variables tk [32℄:D̂[1℄(�) = : exp0� �Z dzĴ(z)1A : ; (4.36)Ĵ(z) =Xk �12ktkzk�1 + 1zk+1 ��tk� ; (4.37)636



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotssine this is nothing but the exponential of a free �eld realized via its ation on funtions of time variables tkthat orresponds to the fermion (see above). The normal ordering here means that all the tk- derivatives areput to the right.The equation for the determinant operator is of the seond order in �, and as we move along some losedontour , the two solutions might have some monodromy. We de�ne a gauge-invariant operator �O[1℄ as thetrae of this monodromy matrix: �O[1℄() = TrMon(; �) �D[1℄(�): (4.38)If we take both branhes and orretions from �the measure anomaly� into aount, extra onjugation fatorsare [38℄ �O[1℄() = Xr=�Z�1(V ! 0; �r(r))e 1gp� H dx �r(r)(x)Z(V ! 0; �r(r)) : (4.39)Thus we establish the following ditionary between integrable models and beta-ensembles:� ! �r;~ ! gp�;~0 ! g=p�;TrR Pexp I L ! �OR();w ! exp0� 1gp� I �r1A : (4.40)
4.4. Higher weight operators and spetral oversWe used the subsript [1℄ in the notation for the determinant operator to stress that the operator de�ned inthis way represents a Wilson line in the fundamental representation. Hene, we expet a natural generalizationTrR Pexp I L! �OR(): (4.41)A naive expression for this operator is expeted to be the trae of monodromy of the determinant operator�DR(�) that inserts something like detR(� �M) into the beta-ensemble averaging:�OR() = TrMon(; �) �DR(�): (4.42)We expet that these operators should satisfy the Wilson-loop OPE algebra�OR 
 �OR0 = XQ`jRj+jR0jCQR;R0 �OQ; (4.43)where CQR;R0 are the orresponding Clebsh�Gordan oe�ients.In the ase of SU(2), these operators are usually assoiated with degenerate operators in the Liouvilleonformal �eld theory (see Se. 5.2 below) �D[j℄(�) � �(j+1;1)(�) (4.44)with the fusion algebra �(j+1;1) 
 �(j0+1;1) = j+j0Ms=jj�j0 j�(s+1;1): (4.45)637



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015Translating this remark bak to the beta-ensemble framework, we de�ne�D[j℄(�)Z := *Yi (� � zi)j+Z: (4.46)Nevertheless, the naive form of the R-dependene reveals itself in the form of the spetral urve. We ande�ne a generi spetral over as DetR(�� L(z)) = 0: (4.47)Aording to this remark, for a symmetri representation [r℄, we expet the spetral urve to be polynomial in� of degree r + 1, the same as the order of the di�erential equation.We present an expliit example of the di�erential equation satis�ed by �D[2℄.We seek a variation suh that the variation of the measure in partition funtion (4.11) an be rewritten asa derivative ating on �D[2℄(�). With variation (4.13) denoted by Æ(�), we expet some linear ombination ofvariations Æ(�)�� and ��Æ(�) to give the desired result. Indeed,��1 + 2�� Æ(�)�� +�1� 2�� ��Æ(�)� �D[2℄(�)Z = ��2 �3� + 1g2 �T[2℄(�)� �D[2℄(�)Z = 0; (4.48)where �T[2℄(�) is a ontribution from the potential V :�T[2℄(�) = �1� 2������ �P (�) + V 0(�)2 �2����1 + 2�� �P (�)�� ++ 2�V 0(�)�1 + �2 �2� + 1g2 �P (�) + V 0(�)2g2 ��� : (4.49)The operators OR are ounterparts of the linear group (Shur) haraters for the orresponding represen-tations R. To larify this point, we �rst assume that the �at onnetion A is not quantized. Then the naiveasymptoti form is TrR Pexp 1~ I A � PR0�exp8<:1~ I �(i)9=;1A ; (4.50)where �(i) are solutions of the equation detR(� �A) = 0 (4.51)and the polynomial PR depends only on the representation R. We an use this last fat and assume that A isa onstant �eld. Hene, we an substitute the ordered exponential by the ordinary exponential and omit theintegral, rewriting this equation as TrR expn�~Ao = PR expn�~�(i)o ; (4.52)where � is a onstant, the �length� of the integration ontour . We note that this relation is nothing but theWeyl determinant formula relating haraters to the Shur polynomials:PR expn�~ �(i)o = �R tk = 1kXi exp�k�~ �(i)�! ; (4.53)�R(t) = detij s�i�i+j(t); exp(Xk tkzk) =Xk sk(t)zk: (4.54)638



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsThe integrals over  2 �0 of the eigenvalues �(i) are thought of as integrals over di�erent pre-image ontours ~on the spetral over � of the SW di�erential �I �(i) := I~(i) �; �(~(i)) = : (4.55)As regards the exponential of the last expression, we de�ne it as the Fok�Gonharov oordinate (luster vari-able): w~ := exp8<:1~ I~ �9=; : (4.56)Thus, by analogy, we write a naive asymptoti form asTrR Pexp 1~ I A � �R 24tk = 1k X~j�(~)= wk~35 : (4.57)The basi example is a line in the fundamental representation of SU(2). In this ase, the over is 2-fold, andthe ontour  has two pre-images ~1 = ~ and ~2 = �~. The fundamental harater is then given byTr[1℄Pexp 1~ I A = �[1℄(t) = t1 = w~ + w�~ = w~ + 1w~ : (4.58)This expression should be ompared with the usual sl2 haraterTr[1℄ y�3 = y1=2 + 1y1=2 : (4.59)We note that this asymptoti form holds when we onsider the quantized onnetion and the di�erentialon the spetral urve, although it misses two important e�ets: the Stokes phenomenon and the measureontributions, respetively desribed in Se. 2 and Se. 4.3.A similar approah with the instanton orretions from the quantum mehanis desription of integrablesystems taken into aount is developed in Ref. [26℄. Unfortunately, alulations are done in the Nekrasov�Shatashvili limit (~0 = 0 in our language), although nonperturbative Stokes orretions are applied to onstrutan extra nonperturbative ontribution to the prepotential in this limit. It is natural to assume onsequentnonperturbative orretions to the Nekrasov partition funtion for N = 2 SUSY gauge theory.A similar deformation of haraters an be enountered under similar irumstanes in Ref. [33℄ (so alledqq-haraters).To onsider not only symmetri representations, we need to introdue multiple overs representing hig-her-rank groups or multi-matrix models.In suh models, eigenvalues z(j)i aquire an extra ��avor� index (j) ranging from 1 to n� 1 for SU(n). Wethen expet the following kind of expression for the determinant operator:�D[r1;::: ;rn�1℄(�) � *n�1Yj=1Yi (� � z(j)i )rj+ : (4.60)5. KNOT INVARIANTS FROM WKB MORPHISMS5.1. Reidemeister invariants from quantum �eld theoryWe onsider the Chern�Simons theory with a gauge group G [34℄, and the Wilson averages in this theory,whih are knot polynomials that an be assoiated with onformal bloks of two-dimensional onformal theory639



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015with positions of points hanging in time [2℄. Sine the theory is topologial, we an onsider just monodromiesof the onformal bloks. The onformal theory that orresponds to this gauge theory is the Wess�Zumino�Wit-ten�Novikov (WZWN) model [35℄, its orrelators satisfy the Knizhnik�Zamolodhikov equation [36℄, and theyan be onsidered a wave funtion in the Chern�Simons theory [58℄.This piture of Wilson averages allows onneting knots with the Knizhnik�Zamolodhikov equation. In-deed, we onsider a knot on a 3-manifold M3 = C � [0; 1℄ in a braid representation. The braid is given by ntrajetories i : zi(t) 2 C, t 2 [0; 1℄. The wave funtion on a time slie t depends on the positions of the strandsin the braid zi. We onsider a Nj QjNj �Qj bundle over the on�guration spae Cn with the onnetionDj = �zj �A(zj): (5.1)If the onnetion is �at, [Di;Dj ℄ = 0; (5.2)we an onstrut the wave funtion as its �at setion:Di	 = 0: (5.3)The evolution operators an be interpreted as open Wilson lines in the ambient 3D theory:I = Pexp 1Z0 dtMj A (zj(t)) _zj(t): (5.4)They are braid invariants (due to the �atness ondition):ÆÆj(t)I = 0: (5.5)The Wilson operators have a natural struture of a Hopf algebra. Correspondingly, the spae of wave funtionsan be endowed with the struture of a tensor ategory:Oj Rj = MQ`Pj jRj jMQ 
Q: (5.6)The Wilson operators diagonalize under this deomposition:I(Oj Rj) = MQ`Pj jRj j I(MQ)
 1(Q): (5.7)There are two generating elements of the braid group that represent the following two obordisms:
Trajectory

Q1 Q2 Q3

Cobordism

Ti,i+1

Si,i+1,i+2

Q1 Q2 Q2 Q1

DiagramRepresentations

(V1(z1) ⊗ V2(z2)) → (V1(z2) ⊗ V2(z1))

(V1(z1) ⊗ V2(z2)) ⊗ V3(z3) → V1(z1) ⊗ (V2(z2) ⊗ V3(z3))

Q1 Q2 Q3

640
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WQ =Fig. 6Now, in order to onstrut a knot invariant olored by a representation Q from the braid, we have toonstrut a projetor onto Q: PQ MR MR 
R! =MQ 
Q (5.8)and then to �remove� the free ends of the braid either by taking trae or by gluing �aps� to its pairwise ends:the wave funtions with vauum quantum numbers 	Q(z1; z2) P?(Q
Q).There is another set of important operators inserting a Wilson line into a �xed time slie. Sine the linesare ompletely within the slie, these operators are olorless and at on the wave funtions asWQ = TrQ �Pexp I A(z) dz Q
� = UnknotQ P?�Q
Pexp I A(z) dz Q�
 : (5.9)By the trae, we here mean only the trae over the representation of the gauge group, and hene the operatoris a well-de�ned salar. Deorating knots with operations of this kind was onsidered in detail in Ref. [37℄. Infat, it is easy to understand that for the one-point onformal blok (or for the operatorWQ that inserts a loopsurrounding only one point), WQ	Q0 = HQ;Q0dimq(Q0)	Q0 ; (5.10)whereHQ;Q0 is a Hopf link HOMFLY polynomial and dimq(Q) is the quantum dimension of Q, whih is the sameas the (unredued=nonnormalized) HOMFLY polynomial of the unknot. If we now apply suh an operator toa few strands, it an be expanded into the luster oordinates, whih are a kind of basis in the Hilbert spae.Then, generalizing [24; 38℄, we an expet that WQ is a polynomial in these oordinates and is a harater, infull analogy with Se. 4.4, WQ = �Q(Y1; : : : ; Yk); (5.11)and Yk are the Darboux oordinates on the moduli spae of �at onnetions.In the next two subsetions, we present two di�erent realizations of the desribed sheme, whih are basiallyrelated to two di�erent realizations of R-matries.5.2. Knot invariants from the RTW representation via duality kernels5.2.1. The basi ideaOne of the possibilities to realize this general onstrution due to Witten [2℄ is the Reshetikhin�Turaevsheme [3℄, whih was realized in detail in Ref. [39℄ and in Refs. [6; 40℄ for di�erent braid representations ofknots/links. The approah is based on assigning any ross of the braid the R-matrix of Uq(G). This R-matrixan either ome as a monodromy (modular) matrix of the WZWN theory [39℄ or be treated as just a numeriR-matrix from representation theory [6℄. Here, we propose a third possibility: to reprodue the R-matrix by themodular kernel from onformal �eld theory. Sine this ase is desribed by the Virasoro algebra, the obtainedR-matrix is assoiated with SUq(2) and the orresponding knot invariants are the Jones polynomials.17 ÆÝÒÔ, âûï. 3 641



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015We explain how to apply modular transformations to the evaluation of knot polynomials. The idea is that,if there are three strands, we an desribe the rossing of the �rst two strands and the seond and the thirdstrands respetively as R
 I = T; I 
R = STSy ; (5.12)i. e., the modular matrix T plays the role of an R-matrix ating in the spae of intertwining operators MQin (5.6) and S plays the role of the mixing matrix in the RTW formalism (see details in Ref. [6℄). Thesetransformations S and T are known to form a Moore�Seiberg grouppoid [42; 58℄.Now we have to hek the Reidemeister moves:� 3rd Reidemeister move = YB relation�I 
R��R
 I��I 
R� = �R 
 I��I 
R��R
 I�; (5.13)i. e., STSyTSTSy = TSTSyT (5.14)is solved by the anzatz SSy = 1;STSyTST = I (5.15)beause it an be rewritten as �STSyTST�Sy = T�STSyTST�T�1S�1: (5.16)In the simplest situation (the four-point spherial onformal blok), we additionally have Sy = S, andtherefore Eqs. (5.15) redue to S2 = 1 and (ST )3 = 1: (5.17)� 2nd Reidemeister move: TT�1 = 1� 1st Reidemeister move: T ijklP ki = P jl ; (5.18)where P is the ap projetor.The simplest nontrivial solution of (5.17) is in 2� 2 matries. If T is diagonalized, then S is the elementarymixing matrix of [6℄: T = 0� q 00 �1q 1A ; S = 0BBB� 1[2℄ p[3℄[2℄p[3℄[2℄ � 1[2℄ 1CCCA (5.19)with the quantum integers [2℄ = q + q�1 and [3℄ = q2 + 1 + q�2.5.2.2. S in (5.19) as the Raah matrixWe onsider the representation-produt diagrams from Ref. [6℄ for a partiular hoie of external legs (see topof the next page). Both sets of intermediate states are 2-dimensional, but di�erent: i = [2℄; [11℄ and J = 0; Adj,i. e., J = [0℄, [21N�1℄. We also note that the onjugate fundamental representation is [1℄ = [1N�1℄. For N = 2,there are oinidenes: [1℄ = [1℄, Adj = [2℄, [11℄ = [0℄, and therefore the two diagrams are the same; moreover,the matrix SiJ oinides with that for the Raah matrix for [1℄
3 ! [1℄, whih is known from Ref. [6℄ to beexatly (5.19). 642



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knots[1℄ [1℄[1℄[1℄ [1℄J[1℄ [1℄[1℄ i =PJ SiJ 24 [1℄ [1℄[1℄ [1℄ 355.2.3. S and T matries from onformal theoryInstead of trying to �nd solutions of Eqs. (5.17) within the group theory framework, one an use anotherpossibility: the same equations are solved by the modular kernels that ontrol modular transformations of on-formal bloks. In the generi ase, these transformations are given by integral kernels. However, in the ase ofdegenerate �elds, they beome matries. Sine the Virasoro algebra is assoiated with SU(2), one expets theS- and T -matries obtained in this way to generate the olored Jones polynomials, while going further to SU(N)with N > 2 would require modular transformations of onformal bloks of the orresponding WN -algebras.Therefore, we onsider onformal bloks with the �elds �(m;n) degenerate at a level m �n, with the onformaldimensions [41℄ �(m;n) = �(m;n)��(m;n) � b+ 1b� ;�(m;n) = 12 �m� 1b � (n� 1)b� ; (5.20)where b parameterizes the entral harge of the onformal theory:  = 1 � 6(b � 1=b)2. At the same time,hoosing di�erent n hanges the spin of the representation (of the olored Jones polynomial).We now read o� the matrix S from the modular transformationBjs " j2 j3j1 j4 # (x) =Xjt Sjs jt " j2 j3j1 j4 #Bjt " j2 j1j3 j4 # (1� x): (5.21)The fundamental representation. We onsider the simplest example, the fundamental representationof SU(2). In this ase, we an expet that the end of the Wilson line in the fundamental representation [1℄behaves as �(1;2) in the onformal theory:�(1;2) 
 �(1;2) = �(1;3) � �(1;1): (5.22)Then we have (here, the index means the projetion on the orresponding state in the intermediate hannel)B[11℄(x) = 
�(1;2)(0)�(1;2)(x)��(1;1)�(1;2)(1)�(1;2)(1)E = xÆ(1� x)Æ2F1 " �; � # (x); (5.23)B[2℄(x) = 
�(1;2)(0)�(1;2)(x)��(1;3)�(1;2)(1)�(1;2)(1)E = x�Æ(1� x)Æ2F1 " ��  + 1; � �  + 12�  # (x); (5.24)where � = 32b2 + 72 ; � = 12b2 + 32 ;  = 1b2 + 3;Æ = 3b24 + 14b2 + 32 ; �Æ = 3b24 � 34b2 � 12 : (5.25)643 17*



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015Then the matrix S (with S2 = 1) is given by
S = 0BBBBBBBBBBBB�

��2 + 2b2���� 2b2 � 1���1 + 1b2���� 1b2� ��2 + 2b2��� 2b2 + 1���1 + 1b2��� 3b2 + 2���� 2b2���� 2b2 � 1���� 1b2���� 3b2 � 1� ��� 2b2��� 2b2 + 1���� 1b2��� 1b2 + 1�
1CCCCCCCCCCCCA =

= ei�0BBB� 1[2℄ p[3℄[2℄ 2p[3℄[2℄ �2 � 1[2℄ 1CCCA = U �0BBB� 1[2℄ p[3℄[2℄p[3℄[2℄ � 1[2℄ 1CCCA � U�1; (5.26)where 2 = (2 + b2) [2℄p[3℄ �2�1 + 2b2��� 1b2���2 + 3b2� ; (5.27)and U = e i�2   00 �1 ! (5.28)while the matrix T is2) ((ST )3 � 1) T � 0� q 00 �1q 1A : (5.29)The overall normalization of the matrix T is an inessential overall state spae phase and an be �xed from therequirement (ST )3 = 1. When verifying various relations here, we used equations�(z)�(1� z) = �sin�z ; os(��b�2) = q� + q��2 ;sin(��b�2) = q� � q��2i : (5.30)We note that this matrix S di�ers from that in Eq. (5.19) by the additional U -onjugation (5.28). However,this onjugation in�uenes neither the relation (ST )3 = 1 nor S2 = 1, and does not hange the answers for theknot polynomials.Higher spin representations. So far, we onsidered only we fundamental representation of SU(2). Simi-larly, we an onsider representations of higher spins. For this, we have to use �(1;2)
�(1;2)
�(1;s+1)
�(1;s+1)with the fusion matries2) In this setion, q = e�ib�2 . 644
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S = 0BBBBBBBBBBBB�

��2 + 2b2����s+ 2b2 + 1b2 � 1���1 + 1b2����s+ 2b2 + 2b2� ��2 + 2b2���s+ 2b2 � 1b2 + 1���1 + 1b2���s+ 2b2 + 2���� 2b2����s+ 2b2 + 1b2 � 1���� 1b2����s+ 2b2 � 1� ��� 2b2���s+ 2b2 � 1b2 + 1���� 1b2���s+ 2b2 � 2b2 + 1�
1CCCCCCCCCCCCA ; (5.31)

T =  q s+12 e i�2 00 q� s+12 e� i�2 ! : (5.32)These matries an be obtained either diretly from the equations for the degenerate onformal �elds, or fromthe general expression for the modular kernel due to Ponsot and Teshner [42℄. This latter proedure is disussedin the Appendix.Using these S and T matries, we an easily generate the Jones polynomials as it was explained above. Wenote that it is easy to onstrut the most generi modular kernel S, when only one �eld is degenerate at theseond level: the general degenerate onformal blok with j2 = 1 is desribed by the hypergeometri funtionB(x) � 2F1 264 2 + b�22 (3 + j1 + j3 + j4) 1 + b�22 (1 + j1 + j3 � j4)2 + b�2(1 + j1) 375 (x): (5.33)The orresponding monodromy matrix is3)S(j1; 1; j3; j4) == 0BBBBBBBBBBBB�
�� j1+1b2 +2����b2+j3+1b2 ���2b2+j1�j3+j4+12b2 ����1�j1+j3+j42b2 � ��j1+1b2 +2��� b2+j3+1b2 ���2b2+j1+j3�j4+12b2 ���4b2+j1+j3+j4+32b2 ���� j1+1b2 ���� b2+j3+1b2 ���� j1+j3�j4+12b2 ����2b2+j1+j3+j4+32b2 � ��� j1+1b2 ��� b2+j3+1b2 ���� j1�j3+j4+12b2 ���2b2�j1+j3+j4+12b2 �

1CCCCCCCCCCCCA : (5.35)
The higher spin matrix is generated from the reursion formula derived in Ref. [43℄ from the �abling� proedure([r℄ 
 [1℄ = [r + 1℄� [r � 1℄):Sq;q0 " r + 1 j3j1 j4 # =Xs;p Sr+1;s " 1 qr j1 #Sq;p " 1 j3s j4 #Ss;q0 " r pj1 j4 #Sp;r+1 " r 1q0 j3 # : (5.36)5.2.4. Plat representation of link diagrams (spherial onformal blok)Sine the operators S and T satisfying (5.15) naturally arise as modular transformations of onformal bloks,we an assoiate them with link diagrams in the plat representation in the following way.3) To be preise, this matrix is related to the modular kernel asSjs jt " 1 j3j1 j4 # = Xh;h0=�1 Æ(js � j1 � h)Æ(jt � j3 � h0)S(j1; 1; j3; j4)h;h0 : (5.34)645



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015We begin with examples.1 ap: There is nothing to onsider in the ase of one ap: independently of the number of interweavingsbetween two strands, it is always the unknot: (Tn)22 = (�q)�n: (5.37)2 aps: Our notation should be lear from the piture, where the bottom pitures present the onformalblok we start with, the middle pitures present the monodromy of points in the onformal blok, and the toppitures present the resulting onformal blok:
0

0

r̄1 r̄2r2r1

r̄2

r2

r̄1

r1

⊕j j

r2

r̄2

r1

r̄1

r̄1 r1 r2 r̄2

r2

r̄2

r1

r̄1

0

Expressions for the two operations are respetively T0(�r1; r1) and Sj0 r1 �r2�r1 r2 !.A generi knot/link in this setor is a sequene of T -twists between parallel strands in the hannel 23 andantiparallel strands in the hannel 12 (the numbers 1; 2; 3; 4 here label the vertial lines in the piture). Thisfamily inludes 2-strand links and knots, twist knots, antiparallel 2-strand links, double braids from Ref. [44℄,and is known in general as the family of 2-bridge links.Two unknotsIf no S operators are applied, we obtain two disonneted unknots. The answer for two fundamental repre-sentations of SU(2) is obtained with the help of Eq. (5.19):�Tn1�22�Tn2�22 = (�q)�n1�n2 : (5.38)Up to the framing fator, this is the fully redued knot polynomial (i. e., unredued expression [2℄2 is dividedby the square of the quantum dimension [2℄).2-strand torus linksThe plat diagram and the sequene of modular transformations in this ase are
: : :

0r1�r1 r2�r2S0jT 2kjr1 r2�r2�r1 jSj0 r2�r2�r1r1 0�j�r1 �r2r1 r2The orresponding analyti expression is 646



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsXj S0j " �r1 �r2r1 r2 # Tj�r1; r2�2k Sj0 " r1 r2�r1 �r2 # : (5.39)In the ase of two fundamental representations of SU(2), r1 = r2 = [1℄, we an use matries (5.19) and obtainST 2kS (5:19)= 1[2℄2 0� q2k + q�2k[3℄ �q2k � q�2k�p[3℄�q2k � q�2k�p[3℄ q2k[3℄ + q�2k 1A : (5.40)The expression in the lower right orner (the matrix element 22) is exatly the redued Jones polynomialJ [2;2k℄[1℄;[1℄ = 1[N ℄2 �q2k [N ℄[N + 1℄[2℄ + q�2k [N ℄[N � 1℄[2℄ �����N=2 = 1[2℄2�[3℄q2k + q�2k� (5.41)for the 2-strand torus links (in the Rosso�Jones framing [45℄).2-strand torus knotsThe only di�erene in this ase is that the even power 2k is substituted by the odd one 2k + 1, but this isonly possible for two oinident representations r1 = r2. This restrition is obvious from the plat diagram onthe left-hand side of the above piture; on the right-hand side, we obtain the top piture in the form of thediagram
0

r1

r̄2

r2

r̄1and again this is possible (the singlet an run in the intermediate line) only if r1 = r2.As regards formula (5.40), it remains just the same, with the obvious hange 2k ! 2k + 1, and the 22thelement of the matrix reprodues the redued Jones polynomialST 2k+1S (5:19)= 1[2℄2 0B� q2k+1 � q�2k�1[3℄ (q2k+1 � q�2k�1)p[3℄(q2k+1 � q�2k�1)p[3℄ q2k+1[3℄� q�2k�1 1CA == 0BB� : : : : : :: : : 1[2℄J [2;2k+1℄[1℄ 1CCA ; (5.42)where J [2;2k+1℄[1℄ = 1[N ℄ �q2k+1 [N ℄[N + 1℄[2℄ � q�2k�1 [N ℄[N � 1℄[2℄ �����N=2 = 1[2℄�[3℄q2k+1 � q�2k�1�: (5.43)We note that in ontrast to links, only one of the two fators [2℄ is eliminated by expressing the answer throughthe redued knot polynomial. Also, like in Eq. (5.41), the Jones polynomial appeared in the Rosso�Jonesframing rather than in the topologial one.Twist knots di�er by an insertion of two additional twists in the hannel 12:647
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. . .
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r
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T 2
l

We note that in order to have a losed oriented line, we should not hange the order in whih the representationand its onjugate appear in the last two vertial lines.The analyti expression is nowXl;j S0l " r �r�r r # Tl�r; r�2 Slj " r �r�r r # Tj�r; �r�2k Sj0 " r �r�r r # : (5.44)In the ase of the fundamental representation of SU(2), r = [1℄ = [1℄, we an use (5.19) to obtainST 2ST 2kS (5:19)= 1[2℄2 0B� q2k�1(q2 + q�2) + q�2kfq3g �q2k�1(q2 + q�2)� q�2kfqg�p[3℄�q2kfqg+ q1�2k(q2 + q�2)�p[3℄ q2kfq3g � q1�2k(q2 + q�2) 1CA =
= 0BBB� : : : : : :: : : �q�2k�2[2℄ JTw(k)[1℄ 1CCCA ; (5.45)

JTw(k)[1℄ = 1 + Ak+1fA�kgfAg fAqgfA=qg����A=q2 = 1[2℄�� q4k+2fq3g+ q3(q2 + q�2)� == �q2k+2[2℄ �q2kfq3g � q1�2k(q2 + q�2)�: (5.46)3 aps: The initial state in this ase an be represented as648
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0 0

0

This piture shows one of the possible mutual orientations of the three lines, whih is suitable for the fol-lowing example. We an now apply a hain of modular transformations (it should be lear from the above2-ap examples what the assoiated link diagram is, but analyti expressions an be read o� from the hain ofmodular transformations): 0 0j Sk0 
 Sl0Sj0Smj j lkk lm
00 0

Now we an apply T transformations in any of the hannels, moving bak and forth along this hain.The typial analyti expression begins from: : : Tm�r; �r�a Smj " k l�t r # Tk�r; �r�b Tl�r; �r� Sl0 " �r �r�j �r #Sk0 " r r�r �j #Sj0 " r �r0 0 # : (5.47)As usual, it is read from right to left, and we an add arbitrarily many S transformations and their onjugatesof the same type to the left.We note that the obvious seletion rule ditates that j = r, and hene, atually, there is no sum involvingarguments (not just indies) of the matrix S. However, suh sums an appear after additional appliations of S.5.3. Hikami knot invariants from hek-operatorsThere is another, alternative onstrution of R-matries, whih has a geometri origin and is assoiatedwith the tetrahedron volume [46�49℄. It is basially assoiated with Chern�Simons theory with a omplex gaugegroup GC [50℄. 5.3.1. Quantum spetral urve in Chern�Simons theoryThe Chern�Simons theory on a 3d manifold M with a omplex gauge group SL(2; C ) is de�ned by theation [51℄ S(A; ~A) = t+8� ZM Tr�A^ dA+ 23A^ A ^ A�+ t�8� ZM Tr� ~A ^ d ~A+ 23 ~A ^ ~A ^ ~A� ; (5.48)where t� = k � is; k 2 Z; s 2 R (5.49)649



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015and the path integral is taken with respet to both A and �A:Z DAD �A eiS(A; �A): (5.50)Here, we deal with orrelation funtions of only �elds A. Sine we are interested in onstruting knot polyno-mials in this theory, i. e., the Wilson averages, we follow the logi in Se. 5.1: onsider a monodromy of thewave funtion as a time evolution. We onsider the ase where C is a sphere and the gauge group is SL(2; C ).Fixing the representations along the Wilson lines, we an represent the average of the Wilson lines that beginat points vi and end at points xi as the tensor�24*Oi Pexp xiZvi A+35 =Oi �i(g(xi))Oj �j(g�1(xj))	(x1; : : : ; xn; v1; : : : ; vn): (5.51)The tensor-valued wave funtion 	 here is a onformal blok of the WZWN theory, whih satis�es the Knizhnik�Zamolodhikov equation with respet to both sets of variables vi and xi:(t+ � 2)�xi	 =Xj 6=i �i(�a)
 �j(�a)xi � xj 	: (5.52)We let one of the representations be fundamental and let the orresponding end-point be denoted by z, and theremaining ones by xi. Then, (t+ � 2)�z	 = �(z)	; �(z) :=Xi �a 
 �i(�a)z � xi ; (5.53)where �a are the Pauli matries. The equation for the �rst omponent 	1 is~�2z	1 = �11�z log��11�12� �	1 + ~�z log�12 � �z	1 + 1~��2�11 �	1 (5.54)with ~ = t+ � 2. In the semilassial limit, only the last term in the r.h.s. of this equation survives, and henewe �nally obtain ~�2z	1 =Xi 2(�i)(z � xi)2	1 +Xi 1z � xi Xj 6=i �i(�a)
 �j(�a)xi � xj| {z }~�xi 	1; (5.55)where 2(�) is the seond Casimir element. This is the spetral urve equation of form (4.34), with the poten-tial parameterized by zi, and hene the hek-operator ats on zi. The potential itself an be restored fromomparing this equation and (4.34). This similarity of (5.55) and (4.34) allows ��-ensemble interpretations�in Chern�Simons theory. The derivative �z is de�nitely replaed in the semilassial approximation with thespetral parameter �. 5.3.2. Verlinde operatorsWe onsider an operator that ats on the Hilbert spae in Chern�Simons theory,O(R) : HCS ! HCS (5.56)and we use Knizhnik�Zamolodhikov equation (5.52) to de�ne an �evolution� operator that moves points of thewave funtion, or of the onformal blok, from their initial positions zi (the initial instant of the evolution,t = 0) to the �nal positions vi after the monodromy transformation (the �nal instant of the evolution, t = T ):U(Knot) :=Oi Pexp Zith strand Aid�i =Oi Pexp viZzi d�i 1~Xj 6=i �i(�a)
 �j(�a)�i � �j : (5.57)650



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsWe an then generate knots invariants by evaluating either the trae of this operator inNi Ri or its projetion.In the Heisenberg representation, U(Knot)�1O(R) (0) U(Knot) = O(R) (T ); (5.58)and if we know both O(R) (0) and O(R) (T ), it is possible to evaluate U(Knot) from the equationO(R) (0) U(Knot) = U(Knot) O(R) (T ) : (5.59)We introdue a set of �Verlinde operators� ating on the spae of onformal bloks HCS as the monodromytrae (diret analogs of WR in Se. 5.1):O(R) := TrR Pexp I d� 1~Xi � 
 �i� � zi : (5.60)They an be rewritten following �the �-ensemble interpretation� in terms of hek-operators as the trae ofmonodromy: O(R) = TrR exp8<:1~ I �r9=; (5.61)while the ounterparts of monodromy itself are the (Fok�Gonharov) luster oordinatesw := exp8<:1~ I �r9=; ; (5.62)whih form a Heisenberg algebra: ww0 = qh;0iw+0 : (5.63)We an then solve Eq. (5.59) in terms of this algebra:U(Knot) = f(w) : (5.64)This algebra admits a realization in the spae of onformal bloks [38℄ with the manifest realization wA = ea,wB = q�a , whene the evolution operator is realized as U(Knot) = f(ea; q�a) and redues to a modular trans-formation of the onformal blok in terms of S- and T -matries/kernels.5.3.3. Knots and �ipsSemilassial limit. As we desribed, with eah WZWN onformal blok, we an assoiate the orrespon-ding Knizhnik�Zamolodhikov equation (and its derivative (5.55)), and with this latter, a WKB network. Whenthe points of the onformal blok are subjet to monodromy transformations, this Chern�Simons evolution anbe desribed by reonstrutions of the WKB network by a series of �ips (mutations). In terms of Heisenbergalgebra (5.63) assoiated with the Stokes lines , we reinterpret �ips as the ation of some evolution operatorsu on w , and the disretized smooth evolution is nowU(Knot) Y2ipsu(X): (5.65)Therefore, we an onsider the spetral urve that emerges in the �semilassial� limit ~ ! 0, Eq. (5.55):�r2(z)� T (z) = 0 and the Stokes lines Im ~�1 �r = 0 (see (2.2)), suh that we are able to present semilassialexpressions for the operators: O(R) � Xsheets exp8<:I �r9=;+ Stokes detours: (5.66)651



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015A single �ip along the edge  is alulated as in Se. 2.2 and is equal to (see Eq. (2.12))Flip(w0) = ( w0 ; h; 0i = 0;w0(1 + w); h; 0i = 1: (5.67)Quantization. Similarly to Se. 4.1, using the tehnique presented in Ref. [20℄, we an alulate thequantum �ip. The result isFlip(w0) = 8>>>><>>>>: w0 ; h; 0i = 0;w0 jh;0ijYa=1 �1 + q2a�1wh;0i �h;0i; jh; 0ij = 1: (5.68)This �ip is desribed by the adjoint ation of u :w0u(w) = u(w)Flip(w0) (5.69)whih means that u(w) � �(logw) ; (5.70)where the quantum dilogarithm is de�ned as [52℄�(zj�) = exp0��14 ZR+i0 dww e�2iwzsh b�1w � sh bw1A : (5.71)5.3.4. Hikami invariant as a KS invariantThus, the evolution operator U(Knot) an be rewritten as a produt of R-matries, eah of whih, in itsturn, is a produt of mutations: R =:Yi ui : : (5.72)Having the manifest expression for u in terms of quantum dilogarithm (5.71), we an onstrut a manifestrepresentation for the R-matrix. This an be done either by using our manifest realization of luster oor-dinates (5.62), or in a more formal way [49℄, with the answer for the R-matrix being a produt of ratios ofquantum dilogarithms. To obtain the knot polynomial, we still have to alulate the trae of a produt ofR-matries.Afterwards, the R-matrix an be rewritten in terms of tensor ategories after the substitution of values forluster oordinates in terms of tensor ategories. From this standpoint, Vir and Uq(sl2) are equivalent tensorategories [42℄4).Semilassial limit [48℄. As was demonstrated in Refs. [48; 49℄, the R-matrix an be assoiated with anideal hyperboli otahedron. This is not surprising beause quantum dilogarithm (5.71) in the semilassiallimit (q ! 1) is related to the hyperboli volume of an ideal tetrahedron �, and hene the R-matrix has theasymptoti form R � exp( 1~2 Xi �i) : (5.73)4) Indeed, this equivalene an be expliitly demonstrated [38℄, and on general grounds it is a onsequene of a mythial mirrorsymmetry in a mythial Virq;t-tensor ategory. 652



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knots5.4. Stokes phenomenon in onformal bloks5.4.1. WKB approximationAs we have seen, the spetral urve for a braid of n strands plaed at xi is given by (5.55)�2 = nXi=1 � 2(�i)(z � xi)2 + uiz � xi� dz2: (5.74)The web of WKB lines is onstruted as trajetories of solutions of Eq. (2.2)Im ~�1� = 0: (5.75)Here, we present the evolution of WKB lines for six strands assoiated with the premutation of two middlestrands in order to mimi the ation of the R-matrix. The blue dots mark positions of zeroes of the disrimi-nant, while the red ones mark positions of the strands (singularities of the urve).In Fig. 8, it is easy to observe four simple �ips assoiated with the yles 1, 2, 3, 4 in the order they arementioned.Hene, the ation of the R-matrix is mimiked by the following operator (f. [49, Eq. (3.15)℄)R � �(w4)�(w3 )�(w2)�(w1): (5.76)To larify the relation to what is disussed in Ref. [49℄, we mention the relation between the Fok�Gonharovand Kashaev oordinates on triangulations. We onsider a triangulation of a puntured Riemann surfae de-pited in Fig. 9. Here, the singularities are marked with red dots, branhing points are marked with purplerosses, and the WKB lines are dashed lines. We then restore the triangulation edges, as shown by the blue lines.We an assoiate the Kashaev oordinates with these edges. The Fok�Gonharov oordinates are assoiatedwith the yles that are projeted to the green lines onneting the branhing points, the enters of triangles.In other words, the Fok�Gonharov oordinates are assoiated with the graph dual to the triangulation andare dual to the Kashaev oordinates orrespondingly.The antisymmetri matrix Bij assoiated with a quiver (see [49, Eq. (2.1)℄ represents an intersetion pairingmatrix assoiated with the orresponding yles.In Fig. 10, we present the WKB triangulation of the spetral urve under onsideration and �ips of itsedges assoiated with 1, 2, 3, and 4 respetively marked by the orresponding olors (the initial edge ismarked by a solid line, the mutated edge is marked by a dashed line.) Comparing this triangulation with thatpresented in [49, Fig. 2℄, we note that all the horizontal edges are �ipped from the very beginning in that paperas ompared with the present ones, and the top and bottom tips are not glued together.6. CONCLUSION AND DISCUSSIONIn this review, we tried to give a simple intuitive desription for various new interesting phenomena reentlydesribed in the literature. The story inludes suh issues as quantum spetral urves, Teihmüller theory,luster varieties, moduli spae of �at onnetions, di�erent theories produed by M5-brane ompati�ation,and so on.Many of these subjets are related to a 2D Coulomb gas system (�-ensemble), maybe via di�erent hainsof dualities or orrespondenes. The usual tehnique to derive orrelators in the �-ensemble system, the topo-logial reursion, gives rise to an in�nite hain of linked equations: the loop equations. We argued that theloop equations arising within this approah are similar to those arising within the WKB approah to solvingdi�erential equations. The major modi�ation is that in �-ensembles, there are two deformation oe�ients: g,a string oupling onstant, and �. This an be reinterpreted suh that, to the usual Plank onstant ~ ontrol-ling the WKB expansion of, say, the Shrödinger equation, one should add another deformation parameter ~0that ontrols ommutation relations of eikonals. Thus, the eikonals beome nonommutative operators atingon some modi�ed Hilbert spae, where the �-ensemble partition funtion behaves as a wave funtion on themoduli spae. 653
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Fig. 9. Triangulation
gluedtogether
Fig. 10. Flips of the triangulation assoiated with the onformal blok spetral urveAs we disussed, the main haraters of this onstrution are as follows: a �at onnetion on Riemannsurfae, the holonomy of this onnetion, the spetral parameter or eikonal, the luster oordinates arising asholonomies of this eikonal, and the Hilbert spae assoiated with the partition fation playing the role of a wavefuntion. Also, many theories are tightly related to some dualities. Here, we present various avatars of the samenotions emerging in di�erent theories. Some of the avatars have not yet been disussed in the literature, andwe therefore leave the orresponding boxes blank:To omplete this table with referenes, we present the following list and web of orrespondenes betweendi�erent theories and referenes:1. 2D CFTs: [27; 28℄.2. CS/topologial strings: [57℄.3. CS/KZB equations: [58℄.4. �-ensembles: [59℄.5. Quantum integrable systems (q-Hithin, Painlevé): [60; 61℄.6. R-twisted tt�-equations: [19; 53; 57℄.7. Quantum Teihmühler theory: [62℄.8. N = 2 4D theory in the 
-bakground: [27; 28℄.9. Representations of quantum groups: [42℄.In this review, we only tried to touh the tip of this ieberg by applying the desribed framework, inpartiular, to onstruting the Hikami invariants for knots. Nevertheless, the framework seems to be general655



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015Theory Hilbertspae Flat on-netion Holonomy Spetralparameter Cluster o-ordinate Duality2d CFT onf. blok T (z) Verlindeoperator[43; 54℄ hiral ur-rent [55℄ Y-fun-tions fusionrules�-ensemb-les part. fun. resolvent S-dualitytop. strings part. fun. U(1)-Chern�Simons WilsonloopsKnizhnik�Za-molodhi-kov�Bernard onf. blok, CSwave funtion g-on-netion Wilsonloops Reide-meistermovesQuantumHithin Landau�Ginz-burg wave fun. Lax Lax holo-nomies spetralduali-ties MMZZq-Teih-mühler wave fun. spin on-netion spin onn.holo-nomies geodesis Fok�Gon-harov,Kashaev Moore�SeiberggroupoidNekrasov part. fun. 2d de-fet UV 1d de-fet UV 2d de-fet IR 1d de-fet IR S-duality
M-theory

[57]

[57] [56]

[27, 28]

[27, 28]

[27, 28]

[42]

[42]

[64]
[61][63]

[22, 65, 66, 38, 67]

[42]

[60]

CS/topological strings R-twisted tt*-equation q-Hitchtin (Peinlevé)

β-ensembles(2.0) 6d theory

2d CFT

Quantum Teichmühler

CS/KZB-equation

1 = 2 in Ω-background reps of q-groups

enough to be extended to inlude a third deformation allowing quantum W-algebras, 5D SYM theory, anddesirably superpolynomial invariants for knots.D. G. would like to thank S. Arthamonov, P. Longhi, G. W. Moore, and Sh. Shakirov for the valuableand stimulating disussions. Our work is partly supported by the grant NSh-1500.2014.2, by the RFBR grants13-02-00457 (D. G. and A. Mir.), 13-02-00478 (A. Mor.), by joint grants 13-02-91371-ST, 14-01-92691-Ind, by theBrazil National Counsil of Sienti� and Tehnologial Development (A. Mor.), by the program of UFRN-MCTI,Brazil (A. Mir.). The work of D. G. is supported by the DOE under grants SC0010008, ARRA-SC0003883, andDE-SC0007897. 656



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsAPPENDIXIn this Appendix, we demonstrate how manifest expressions for the duality matries an be obtained withinthe approah due to Ponsot and Teshner [42℄. We start with the simpler ase where q = e�ib2 ! 1, whihorresponds to b ! 0,  ! 1 in onformal theory. The answers for a generi q are obtained by just replaingall hypergeometri funtions with q-hypergeometri funtions, and the �-funtions with q-�-funtions.A.1. The speial ase q! 1PreliminariesThe Ponsot�Teshner approah is manifestly invariant with respet to b $ b�1, and hene in this limit weannot use the already obtained formulas diretly. However, we an apply their framework. The ruial pointis that in the limit !1, onformal bloks beome the �onformal bloks� of sl2 (see, e. g., [68; 69℄),	�(x) = B� " �2 �3�1 �4 #! x���1��22F1 " �+�2 ��1; �+�3 ��42� # (x): (A.1)This is an eigenfuntion of the operator"�x ddx +�1 +�2 � 12�2 � x�x ddx +�1 +�2 +�3 ��4��x ddx + 2�1�#	�(x) == ��� 12�2	�(x): (A.2)This operator is self-adjoint with respet to the measured�(x) = x2(�1+�2�1)(x� 1)�1��2+�3��4 : (A.3)Thus, we an alulate the modular kernel asS��0 " �2 �3�1 �4 # = Z d�(x) 	(s)� (x)	(t)�0(1� x): (A.4)Finite-dimensional representationsFinite-dimensional representations are desribed by half-integer spins and orrespond to degenerate �elds,their dimensions being enumerated by the Ka determinant zeroes, Eq. (5.20):�([s℄) = �1;s+1 = b2s24 � s2 ! �s2 : (A.5)For the degenerate �elds, the onformal bloks are just �nite polynomials,	j=2(x) = B[j℄ " [s℄ [s℄[s℄ [s℄ #! xs� j2 2F1 " � j2 ; � j2�j # (x); j=2 = 0; 1; 2; : : : ; s: (A.6)In this ase, the modular kernel is just a �nite matrix, beause	j=2(x) = sXj0=2=0S[2j℄[2j0℄ " [s℄ [s℄[s℄ [s℄ #	j0=2(1� x): (A.7)For instane, S[j=2℄[j0=2℄ " [1℄ [1℄[1℄ [1℄ # = 0BB� �12 134 12 1CCA ; (A.8)18 ÆÝÒÔ, âûï. 3 657
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S[j=2℄[j0=2℄ " [5℄ [5℄[5℄ [5℄ # =

0BBBBBBBBBBBBBBBBBBBBB�
�16 57 �2514 259 �52 1760 �3170 2328 �1118 �14 12� 790 23105 � 112 �2954 712 167100 � 33350 � 87280 79180 1940 120� 110 � 349 1528 95126 14 1701136 275294 13751176 13752268 55504 1252

1CCCCCCCCCCCCCCCCCCCCCA
: (A.9)

The other matrix T is then just T = diag(1;�1; 1;�1; : : : ). In this ase, the measure isd�(x) = x�2(s+1) (A.10)and the orthogonality ondition for 	j is
	j=2;	j0=2� = 1Z1 dx xj=2+j0=2�20B�2F1 264 � j2 ; � j2�j 375 (x)1CA0B�2F1 264 �j02 ; �j02�j0 375 (x)1CA == Æj;j0 (2j)!4(4j)!(4j + 1)! : (A.11)Partiular values of the matrix elements areS[0℄[j=2℄ " [s℄ [s℄[s℄ [s℄ # = 1jj	j=2jj2S[2j℄[0℄ " [s℄ [s℄[s℄ [s℄ # ; (A.12)S[j=2℄[0℄ " [s℄ [s℄[s℄ [s℄ # = 1Z1 dx (1� x)sx�s�j=2�22F1 264 � j2 ; � j2�j 375 (x) == (�1)s 1Xn=0 �(n� j=2)sin�(n� j=2) �(1� j=2 + n)�(1� j + n)�(s+ j=2 + 2� n)n! : (A.13)Expliit alulationsIn (A.7), we onsider the normalized matrix SSkk0 = (�1)k+k0�s 1Z1 dx xk�k0�s�2 2F1 " �k � k�2k # �x�1� 2F1 " �k0 � k0�2k0 # (x)1Z1 dx x�2(k0+1)2F1 " �k0 � k0�2k0 # (x)2 ; k; k0 = 0; : : : ; s: (A.14)The normalizing multiplier is independent of s, and hene, we an evaluate it, for instane, using the OEIS [70℄:1Z1 dx x�2(k0+1)2F1 " �k0 � k0�2k0 # (x)2 = k!4(2k)!(2k + 1)! = �(k + 1)4�(2k + 1)�(2k + 2) : (A.15)658



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Wall-rossing invariants: from quantum mehanis to knotsNow the problem of onstruting the matrix S is redued to evaluating the unnormalized integrals~Skk0 = 1Z1 dx xk�k0�s�2 2F1 " �k � k�2k # �x�1� 2F1 " �k0 � k0�2k0 # (x); k; k0 = 0; : : : ; s: (A.16)In this ase, for instane, at s = 1 ~S = 0BB� 12 11234 � 124 1CCA : (A.17)We use the Barnes integral representation for the hypergeometri funtion,2F1 " � � # (z) = �()�(�)�(�) 12�i i1Z�i1 ds �(�+ s)�(� + s)�(�s)�( + s) (�z)s: (A.18)Thus,~Skk0 = �(�2k)�(�2k0)�(�k)2�(�k0)2 � 12�i�2 i1Z�i1 dt �(t� k)2�(�t)�(t� 2k) i1Z�i1 dt0�(t0 � k0)2�(�t0)�(t0 � 2k0) �� 1Z1 dx xk�k0�s�2 �� 1x�t (�x)t0| {z }(�1)t+t0k � k0 + t0 � t� s� 1 : (A.19)
The last term gives a pole, and hene one of the integrals an be alulated as~Skk0 = (�1)k�k0�s+1�(�2k)�(�2k0)�(�k)2�(�k0)2 i1Z�i1 dt2�i �(t� k0 � s� 1)2�(�t� k + k0 + s+ 1)�(t� k � k0 � s� 1) �� �(t� k0)2 �(�t)�(t� 2k0) : (A.20)The boxed term gives the poles ontributing to the answer. For example,~S11 = �(�2)2�(�1)4 ��(�3)2�(2)�(�4) �(�1)2�(�2) � �(�2)2�(1)�(�3) �(0)2�(�1)� = � 124 : (A.21)Similarly, we an alulate ~Sk0 = (�1)k�s�(�2k)�(�k)2 �(�s� 1)2�(s+ 1� k)�(�s� 1� k) ; (A.22)~S0k = (�1)k+s+1�(�2k)�(�k)2 �(s+ 1)2�(�k � s� 1)�(s+ 1� k) : (A.23)659 18*



D. Galakhov, A. Mironov, A. Morozov ÆÝÒÔ, òîì 147, âûï. 3, 2015A.2. Expliit alulations for q 6= 1Similarly to the previous onsideration,Skk0 = 1Z1 dqx xk�k0�s�2 2�1 " �k � k�2k # (x�1)2�1 " �k0 � k0�2k0 # (x)1Z1 dqx x�2(k0+1) 2�1 " �k0 � k0�2k0 # (x)2 ; (A.24)where 2�1 " � � # (z) = 1Xn=0(�z)n0�n�1Yj=0 [�+ j℄q1A0�n�1Yj=0[� + j℄q1A0�n�1Yj=0 [ + j℄q1A [n℄q ! ; (A.25)
[n℄q = qn � q�nq � q�1 ; (A.26)1Z1 dqx x�n = (�1)n[n� 1℄q : (A.27)Formulas in the ase q ! 1 are generalized straightforwardly:1Z1 dqx x�2(k0+1) 2�1 " �k0 � k0�2k0 # (x)2 = ([k℄q !)4[2k℄q ! [2k + 1℄q ! (A.28)and ~Sk0 = (�1)k�s+1�q(�2k)�q(�k)2 �q(�s� 1)2�q(s+ 1� k)�q(�s� 1� k) ; (A.29)~S0k = (�1)k+s+1�q(�2k)�q(�k)2 �q(s+ 1)2�q(�k � s� 1)�q(s+ 1� k) ; (A.30)where �q(x+ 1) = qx � q�xq � q�1 �q(x): (A.31)REFERENCES1. M. Kontsevih and Y. Soibelman, arXiv:0811.2435; See a review and further referenes in: B. Pioline, 1103.0261.2. E. Witten, Comm. Math. Phys. 121, 351 (1989).3. E. Guadagnini, M. Martellini, and M. Minthev, In Clausthal 1989, Proeedings, Quantum groups, 307; Phys. Lett.B 235, 275 (1990); N. Yu. Reshetikhin and V. G. Turaev, Comm. Math. Phys. 127, 1 (1990).4. A. Morozov and L. Vinet, Int. J. Mod. Phys. A 13, 1651 (1998); arXiv:hep-th/9409093.660
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