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Multiphoton resonant excitation of a three-state quantum system (a qutrit) with a single-mode photonic field is
considered in the ultrastrong coupling regime, when the qutrit—photonic field coupling rate is comparable to ap-
preciable fractions of the photon frequency. For ultrastrong couplings, the obtained solutions of the Schrddinger
equation reveal multiphoton Rabi oscillations in qutrits with the interference effects leading to the collapse and
revival of atomic excitation probabilities at the direct multiphoton resonant transitions.
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1. INTRODUCTION

The behavior of quantum systems with a few en-
ergy levels in a quantized photonic field and the evo-
lution of resonant transitions with coherent dynamic
effects in diverse interaction regimes are the subject of
intensive investigations of the last two decades. Be-
sides the natural atoms, such quantum systems include
a large class of artificial atoms with different elements
and configurations of cavity/circuit quantum electro-
dynamics (QED), which exhibit various coherent ef-
fects with specific quantum dynamics, like the collapse
and revival of atomic inversion population with Rabi
oscillations, the formation of photon entangled states,
squeezing, manifestation of the purely quantum statis-
tics of light, and so on [1-3]. Among these quantum
systems, the two-level and the three-level systems —
so called qubits or qutrits — are of great importance
for modern quantum physics. In the case of two-level
quantum systems, there is a well-known model, the so-
called Jaynes—Cummings (JC) model [4, 5], which de-
scribes the resonant interaction of such systems with
strong and quantized radiation fields, as well as the
single-photon interaction processes with the vacuum
fluctuations in quantum microcavities. The coupling
of such atomic systems to quantum radiation modes
in the simple scheme of a quantum harmonic oscillator
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have important applications in many significant fields
of contemporary physics, specifically, in quantum op-
tics and informatics [6-8] and in condensed matter phy-
sics [9-11].

Regarding the three-state quantum systems,
qutrits, we note their role in coherent manipulation
with two-level atoms (qubits) and, in general, quantum
systems via an additional third quantum state, which
allows revealing a large class of coherent interference
effects, as well as the use of the qutrits in composing
of many quantum protocols and in storing quantum
information [12]. The various cases of three-state
atoms, such as the ladder (Z), the vee (V), and the
lambda (A), coupled to a quantized field have been
treated by many authors (see [1, 2] and the references
therein). As has been shown in Refs. [13, 14], there is a
three-state configuration — which can be referred to as
the I' configuration — where multiphoton transitions
in the quantum dynamics of the system subjected
to a classical strong radiation field are very effective
compared to the =, V, and A configurations. The
configuration inverse to I is the L configuration, which
is unitarily equivalent to the polar-A configuration (see
below). The aforementioned investigations [13, 14]
have been carried out for a given classical radiation
field. It is of interest to study the interaction of
a polar-A/V atom with a single-mode quantized
radiation field, where new pure quantum multiphoton
effects are expected.
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Thanks to the recent achievements in cavity /circuit
QED [15], it has become possible to achieve interaction-
dominated regimes in which multiphoton effects are ex-
pected. This occurs in the ultrastrong coupling regime
when the atom—photon coupling rate is comparable to
appreciable fractions of the oscillator frequency [15].
There, nonresonant terms of the interaction Hamilto-
nian, usually accounted for in external strong fields, be-
come relevant even at the interaction with vacuum fluc-
tuations. In this regime, new nonlinear and multipho-
ton effects [16-22] are predicted that are not present in
the weak-or strong-coupling regimes [23]. In particular,
the ground state is predicted to be a squeezed vacuum
containing a finite number of virtual photons [16]. Real
photons can be created from the vacuum fluctuations
via the dynamical Casimir [17] or other effects [18].
In the ultrastrong coupling regime, nonclassical pho-
tonic states including squeezed states, Schrodinger-cat
states, and entangled states can be created [19]. The
electron coupling to photons in the field-dressed nanos-
tructures can result in the ground electron—photon
state with a nonzero electric current [20]. The inter-
action of the nanostructure with vacuum fluctuations
of an optical cavity can open gaps within the valence
band of a semiconductor [21]. At the breaking of the
inversion symmetry in two-level systems, it is possible
to realize Rabi oscillations, the collapse and revival of
the initial population with the periodic multiphoton ex-
change between the atom and the radiation field [22].
Hence, investigating new systems with effective multi-
photon transitions in the quantized photonic field at
ultrastrong light—matter couplings is of interest.

In this paper, we consider the multiphoton resonant
interaction of an artificial qutrit atom with a quan-
tized radiation field. To be specific, we assume the
qutrit to be in a polar-A configuration, in which diag-
onal matrix elements of the dipole moment operator
have nonzero values for two lower states. The results
can also be applied to the polar-V configuration. We
consider direct multiphoton resonant transitions in the
ultrastrong coupling regime. We study the effect of
permanent dipole moments of stationary states on the
quantum dynamics of a three-level system interacting
with a quantized radiation field. In particular, we con-
sider the eigenstates and eigenenergies of the general-
ized JC Hamiltonian, and the dynamics of Rabi oscilla-
tions, collapse, and revival. It is shown that due to the
permanent dipole moments, direct multiphoton tran-
sitions occur, and, as a consequence, Rabi oscillations
arise with a periodic exchange of several photons be-
tween the emitter and the radiation (boson) field. The
quantum dynamics of the considered system is investi-

gated using the multiphoton resonant approximation.
As a specific example, we do numerical calculations
for an artificial atom realized via a three-Josephson-
junction loop.

This paper is organized as follows. In Sec. 2, the
model Hamiltonian is introduced and diagonalized in
the scope of the multiphoton resonant approximation.
In Sec. 3, we consider temporal quantum dynamics of
the considered system and present the corresponding
numerical simulations. Finally, conclusions are given
in Sec. 4.

2. BASIC HAMILTONIAN AND THE
RESONANT APPROXIMATION

We consider a three-state quantum system —
qutrit — interacting with the single-mode radiation
field of a frequency w. The system is schematically
illustrated in Fig. 1. We assume the qutrit to be in the
polar-A configuration, in which two lower states |g1)
and |g2) with permanent dipole moments are coupled
to a single upper state |e). An other possible three-le-
vel scheme is shown in the lower part of Fig. 1, re-
ferred to as the L configuration. In that case, the up-
per state is coupled to a lower state, which is in turn

Qutrit Oscillator
— e
/ N
/ N
7/ \
/ N\
/
7/
- ~ — -
lg1) hw
S—
|
|
|
|
|
|
Fig.1. Schematic of the system under consideration.

A qutrit in the polar-A configuration is coupled to a
quantized single-mode field, represented as a harmonic
oscillator with the characteristic frequency w. Two
lower states |g1) and |g2) with the permanent dipole
moments are coupled to a single upper level |e). The
considered configuration is unitarily equivalent to the L
configuration shown in the lower part of the diagram.
In this case, the upper level is coupled to the lower
level, which in turn is coupled to an adjacent level
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above coupled to an adjacent state. For the L, confi-
guration the permanent dipole moment is zero for sta-
tionary states. The polar-A configuration is unitarily
equivalent to the L configuration. A more in-depth
discussion of this point can be found in the Appendix.
The above qutrit configuration can be realized, for ex-
ample, in a symmetric double-well potential for solid-
state semiconductor or superconductor systems [24]. In
particular, the effective potential landscape reduces to
a double-well potential for the superconducting quan-
tum interference device loop [25] and the three-Joseph-
son-junction loop [26, 27].

We assume a coupling to a bosonic field, with the
transition selection rules equivalent to the ones for the
electric-dipole transitions in usual atoms. For the ar-
tificial atom based on the superconducting quantum
circuit, the eigenstates involve a macroscopic number
of electrons. However, as was shown in Ref. [28], the
optical selection rules of microwave-assisted transitions
in a flux qubit superconducting quantum circuit are
the same as for the electric-dipole transitions in usual
atoms when the effective potential landscape reduces
to a symmetric double-well potential.

Hence, in the basis

1 0
|gl> = 0 ) |g?> = 1 )
0 0
(1)
0
ley=1 0 [,
1

the Hamiltonian for the polar-A system coupled to a
bosonic field can be represented in the form

. 1 N
H:hw(a'fa+ 5) + Hy +
+1 (48 +28) @ +a). ()
The first term in Eq. (2) corresponds to the free har-

monic oscillator of the frequency w (a single-mode ra-
diation field). The second term,

gg A 0
Hi=| A ¢ 0 |, (3)
0 0 &,

corresponds to the three-level system. Here, the nondi-
agonal elements A describe transitions between lower-
lying states (tunnel transitions). The last term in
Eq. (2) gives the interaction between the single-mode

radiation field and the qutrit. Creation and annihila-
tion operators afand @, satisfy the bosonic commuta-
tion rules. The operator

-1 0 0
Sp=—lg1) (g1l +1g2) {92/ =] 0 1 0 (4)
0 0 0
is the result of the permanent dipole moments in states
of indefinite parity. The term with Sz, in Eq. (2) de-
scribes the self-energy oscillating levels and is responsi-
ble for the direct multiphoton resonances [13, 14]. The
operator

0 0 1
Sy =|gi)le| = |g2)e| +He.=] 0 0 -1 | (5)
1 -1 0

describes transitions between excited and lower-lying
states. At p = 0, we have the usual Hamiltonian
for the A model. At A = 0, the excited state decou-
ples, and after unitary transformation (A.5) (see Ap-
pendix), we obtain the usual Hamiltonian for the JC
model (also including counter-rotating terms) with the
coupling Ay and atomic energy 2A. Hence, to empha-
size the three-state structure in this paper, we consider
the case |A| € hw < &, —&4.

Here, we consider interaction of an artificial atom
with a single mode of the resonator. In general, the re-
sonator supports other eigenmodes. Usually, in cavity
and circuit QED setups, one can engineer the device to
limit the spectral proximity of and couplings to higher
modes of the cavity [29, 30]. In many cases [15-22], it is
sufficient to characterize the behavior of the circuit only
in the vicinity of the fundamental frequency, where the
general Hamiltonian reduces to the single-mode Hamil-
tonian. This is justified especially at the resonant inter-
action, where the single-mode approximation provides
a sufficient understanding of the quantum dynamics.
The higher modes of the cavity and other levels of the
artificial atom cause the AC—Stark shift of the conside-
red levels, which can be taken into account for a specific
system by the calibration of transition frequencies.

We first diagonalize Hamiltonian (2) for moderately
strong couplings, which is straightforward in the reso-
nant case. For A = 0, Hamiltonian (2) can be rewritten
in the form

where
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represents three noncoupled oscillators. Here, 1391 =

= |g1){(g1; Pyo = lg2)(g2|, and P = |e)(e| are projec-
tion operators. The excited state is associated with the
normal oscillator with the Hamiltonian

(8)

and the other two are associated with position-displa-
ced oscillators

~ w1
H,s. = hw (aTa + 5) + ee,

~

PUS| SR
H_ =hw <aTa+§) +eg—hu(@ +a), (9

~ 1
H+=hw(a'fa+ 5) +e,+hu(@+a).  (10)

The interaction part
V =n\S; (@' +a) (11)

in Eq. (6) couples H,s to H_ and H,. Hamiltoni-
ans (8), (9), and (10) admit exact diagonalization. It
is easy to see that the corresponding eigenstates are

le, N*9) = |e) @ |N),

)y = Hoat — g
g1, NO) =g oexp [E@ -] V), g
192, N ) = |g2) @ exp [~E(@F - )] ),
with the energies
1
E.n = e + hw <N+§>,
(13)

1 1>
Eg1N:EggN:Eg+hw N+§ —FLU

Here, D (a) = exp[a(al — @)] is the displacement op-
erator, and the quantum number is N = 0,1,...
The states |[N(1)), |[N()) are position-displaced Fock
states:

NG = exp [~Eat —a)] |v) =
=Y Inwm (M—Z> | M),
v (14)
V) = exp [(u/w)(@" = )] IN) =
=S 1w (1) 1),
>t (5)

where Iy (a) is the Laguerre function defined in
terms of generalized Laguerre polynomials L, (a) as

s'! o g .
I o (o) = ”E exp (—5) a2 (o) =
= (_1)3_5’ Iy s (), (15)
1 o dr o,
L (a) = Heo‘a ldoz—” (e=>a"Tt).

In particular, [0(*)) and |0(-)) are the Glauber or co-
herent states with the mean number of photons z?/w?.
Thus, we have three ladders, two of them are crossed,
and one ladder shifted by the energy

hweg = h (wo + p?/w) (16)
where wy = (¢ —4) /h. The coupling term (11), Vo~
~ S, induces transitions between these manifolds. At
the resonance,

|0n| < w, (17)

WN — Weg = O,

where n = 1,2, ..., the equidistant ladders are crossed,
Ecn = Ey N+n = Eg,N4n, and the energy levels of the
upper harmonic oscillators starting from the ground
state are nearly threefold degenerate. The coupling
(11) removes this degeneracy, leading to “qutrit—pho-
ton” entangled states. The splitting of levels is defined
by the vacuum multiphoton Rabi frequency. In this
case, we should apply the secular perturbation theory.
Taking into account that

(g1, NONV|e,N=n) = (=1)" (g2, N |V |e, N—n),

and seeking the solution in the form

o, N) = C{ g1, NO) + C§2ga, ND) +
+C@)e,N —n), (18)
we obtain the eigenenergies
1 u>
E17N=€g+ho.) N+§ —hz, (19)
Esn = Ein +V2|Vy (n)], (20)
By n =By n — V2|V (n)] (21)

and corresponding eigenstates
1

|L,N) = NG

(lor, MO+ (=1 g2, N, (22)

1 1
12, N) = §|91,N(_)> +(=1) §|g2,N(+)) +

N exp(—ipvy )

e,N—n), (23
NG | ), (23)
1 1
|3»N>:§|917N(7)>+(—1) §|92,N(+)>—
—ww,]\f—n). (24)
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In Egs. (20)—(24), the transition matrix element is

(g1, NO|V]e,N = n) =
2
= IAWN —nlx noan (%) +

VN (n)

2
+ BN —n+1In pii N (%) , (25)

and ¢y, = arg[Vn (n)]. Thus, starting from the level
N = n, we have qutrit—photon entangled states (23)
and (24), while for N =0,1,... ,n—1, we have twofold
degenerate eigenenergies F) y with the states |g;, N())
and |go, NP, At g = 0, similarly to the conventional
JC model, there is a selection rule: Vi (n) # 0 only for
n = £1. In this case, only one photon Rabi oscillation
occurs. In our model with p # 0, there are transitions
with arbitrary n, giving rise to multiphoton coherent
transitions. Solutions (22)—(24) are valid close to the
multiphoton resonance we, ~ nw and at weak coupling:

Vv ()] < o, (26)

3. MULTIPHOTON RABI OSCILLATIONS IN
THE ULTRASTRONG COUPLING REGIME

In this section, we consider temporal evolution of
the qutrit—photonic-field system. This is of particu-
lar interest for applications in quantum information
processing. We also present numerical solutions of
the time-dependent Schrodinger equation with the full
Hamiltonian (2).

We first consider the quantum dynamics of the
qutrit coupled to a photonic field starting from an ini-
tial state that is not an eigenstate of Hamiltonian (2).
For an arbitrary initial state |¥o) of the system, the
state vector for times ¢t > 0 is given by the expansion
over the basis obtained above:

n—1
= 3 (g1, N |[) x
N=0

i
X exp <_ﬁE91Nt> |gl7N(_)> +

n—1

i
+ Z (92, N ||Wo) exp (‘ﬁEgth> g2, NP+
N=0
+Z Z . N||¥) exp( hEa Nt) la, N).  (27)
a=1 N=n

To be specific, we consider two common initial con-
ditions for the photonic field: the Fock state and the
coherent, state. We calculate the time dependence of
the three-level system population inversion

(1) 21 (1) (28)

at the exact n-photon resonance (17), where

Wy (t) = (¥

-1 0 0
.= 0 -1 0 |. (29)
0 0

For the field in the vacuum state and the qutrit

in the excited state |¥g) le, 0y, it follows from
Eqs. (22)—(24), and (27) that
|\p(t)>:wexp —iEgnt %

V2 ho

x{[2,n) = exp i, (n) 1] 13,n)},  (30)
where

22 |Vy (n

y (n) = 22 (31)

is the multiphoton vacuum Rabi frequency. From

Eqgs. (28)—(30), we obtain the population inversion
W, (t) = cos (2, (n) 1), (32)

which corresponds to Rabi oscillations with a periodic
exchange of n photons between the qutrit and the ra-
diation field.

We next turn to the case where the qutrit begins in
an excited state, with the photonic field prepared in a
coherent state with a mean photon number N:

@0) = le) @ exp [VN(@! - )] o). (33)

Taking Eqs. (27) and (33) into account, we obtain the

wave function

Wiy =3 Sy () x
N=n

X [exp <—%E2’Nt) |2, N) —
— exp <—%E37Nt> |3,N>} . (34)

which for population inversion (28) gives
o N

W (t) = N

N=0

S v cos [QUn4n (n)t]. (35)

In this case, we have superposition of Rabi oscillations
with the amplitudes given by the Poisson distribution
Py = e_NNN/N!. As a consequence, we have the col-
lapse and revival phenomena of the multiphoton Rabi

1063



H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian, O. V. Kibis

MKOT®, Tom 148, Bom. 6 (12), 2015

oscillations. There are dominant frequencies in Eq. (35)
as a result of the spread of probabilities about N for
photon numbers in the range N £ VN. When these
terms oscillate out of phase with each other in sum (35),
their cancelation is expected (the collapse of Rabi os-
cillations). Hence, for large photon numbers N >> \/ﬁ,
the collapse time can be estimated as

Recalling Eq. (25), we see that in contrast to the con-
ventional JC model, collapse time (36) strongly de-
pends on the mean photon number.

We now consider numerical solutions of the time-
dependent Schrédinger equation with the full Hamilto-
nian (2) in the Fock basis:

t" &~

Nmaz

S Con@®lo) @ IN).  (37)

0=g1,92,¢ N=0

W () =

The set of equations for the probability amplitudes
Cy.n (t) has been solved using a standard fourth-order
Runge—Kutta algorithm, considering up to Ny,q. = 200
excitations. The Schrodinger equation with the full
Hamiltonian (2) was solved numerically with the pa-
rameters corresponding to the setup considered in [4]
(see Appendix). The tunneling parameter and the ra-
tio of the permanent dipole moment to the transition
one are taken to be wo/A ~ 25 and |u/\| ~ 5.75.

To show the periodic multiphoton exchange be-
tween the qutrit and the radiation field, we have calcu-
lated population inversion (28) and the photon number
probability:

Py(t)= Y (o N|TONT ()]0, N). (38)

0=g1,92,€

In Fig. 2, the photon number probability Py (t) is
shown as a function of scaled time ¢/T (where T =
= 27 /w is the mode period) for the two-and three-pho-
ton resonances. For the initial state, we assume the
qutrit to be in the excited state and the field in va-
cuum state, |e) ®|0). As can be seen from Fig. 2, due to
the permanent dipole moment, multiphoton Fock states
are excited. Figure 3 displays collapse and revival of
the multiphoton Rabi oscillations. Here, the qutrit
population inversion is shown with the field initially
in a coherent state with two-, three-, and four-photon
resonances for different mean photon numbers. As is
seen from these figures, the numerical simulations are
in agreement with analytic treatment in the multipho-
ton resonant approximation and confirm the revealed
physical picture described above.

Py
1.0 T T T T T T T T

0.8 P .
- P2 ~
0.6 4

0.4 - 4

0.2 | 4

0 100 200 300 400

1-0 T T T T T T T T T

0.8 + i
L P

0.6 + i
Ps

04 | 4

0.2

0 100 200 300 400
t)T

Fig.2. Photon number probability Py (¢) as a function

of the scaled time at (a) two-photon and (b) three-

photon resonances. Here, p/w = 0.1 (a), 0.2 (b)

and the detuning is taken to be d2/w = —0.073 (a),
0.065 (b)

We have also examined the consequence of the col-
lapse and revival of the multiphoton Rabi oscillations
on the statistical properties of the photons. For this
propose, we calculated Mandel’s Q-factor defined as [6]

N2-N'-N

Q= ~ . (39)
The statistics is sub-Poissonian for —1 < ) < 0, super-
Poissonian for @ > 0, and ) = 0 corresponds to the
Poisson statistics that occurs for coherent states. As
is seen from Fig. 4, during the collapse and revival
of the multiphoton Rabi oscillations, the antibunching
(Q < 0) of photons takes place.

To conclude, note that we here consider the coher-
ent interaction of an artificial atom with cavity pho-
tons, which is correct only for the times ¢ < Ty,i,, where
Tmin 18 the minimum of all relaxation times. For the
considered setup, there are three types of relaxation
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1.0 T T T T ™

\ a
0.5 ‘
<0

-0.5

-1.0
1.0

0 50 100 150 200 25
t)T

Fig.3. Collapse and revival of the multiphoton Rabi
oscillations. Population inversion of a three-level sys-
tem with the photonic field initially in a coherent state
is shown. (a) Two-photon resonance with the coupling
parameter pu/w = 0.1 and the mean photon number
‘N =20. (b) Three-photon resonance withyu/w = 0.2
and the mean photon number N = 30. (¢) Four-pho-
ton resonance, but for y/w = 0.25 and N = 50

Q
06 T T T T T T T

04 - 4

0.2 4

—0.2 H 4

0 20 40 60 80 100 120 140
t/T

Fig.4. Mandel's Q-factor versus the scaled time for

the setup in Fig. 3b

processes that need to be considered. The first pro-
cess is the loss of photons from the resonator at a rate
k= w/Q, where ); is the loaded quality factor of the
cavity. The typical values of @Q; for high-quality cavities
are Q; = 10°-10° [3, 10, 29, 30]. Therefore, the average
photon lifetime in the cavity, 1/, exceeds 10*T. The
next two processes are the energy relaxation and state
dephasing of the artificial atom. Dephasing is usually
the dominant mechanism for relaxation. The dephasing
time T, depends on the experimental conditions. Re-

cent advances in this field [30] make superconducting
qubits available with the coherence time approaching
10° ns. Even for moderate values T,, ~ 100 ns, in the
frequency range w/27 ~ 10 GHz, one can coherently
manipulate with artificial atoms on time scales of 10°T".
This is sufficient for the multiphoton Rabi oscillations
considered above.

4. CONCLUSION

We have presented a theoretical treatment of the
quantum dynamics of a qutrit in a polar-A configura-
tion interacting with a single-mode photonic field in
the ultrastrong coupling regime. For the ultrastrong
couplings, we have solved the Schrodinger equation in
the multiphoton resonant approximation and obtained
simple analytic expressions for the eigenstates and
eigenenergies. For the n-photon resonance, we then
have entangled states of a qutrit and position-displaced
Fock states. We have also investigated the temporal
quantum dynamics of the considered system at the
multiphoton resonance and showed that due to the
permanent dipole moments in the lower states, Rabi
oscillations of population inversion are possible with a
periodic multiphoton exchange between the qutrit and
the photonic field. For the quantized field prepared
initially in a coherent state, the collapse/revival of
multiphoton Rabi oscillations and photon antibunch-
ing occur. The obtained results are also applicable
to atoms with the T' configuration, which is unitarily
equivalent to the polar-V configuration. The proposed
model may have diverse applications in QED with
artificial atoms, especially, in the circuit QED where
the considered qutrit configuration and ultrastrong
coupling regime are achievable.

This paper was supported by State Committee of
Science, Republic of Armenia (Project No.13RF-002)
and the RFBR (Project No. 13-02-90600).

APPENDIX

Implementation of a polar-A system and its
equivalence to the L configuration

Here, we outline how to implement a polar-A sys-
tem in circuit QED. Then we prove the equivalence of
the polar-A and L configurations. As an illustrative
physical system, we consider a three-Josephson-junc-
tion loop [26, 27]. For a superconducting loop that
contains three Josephson junctions (with the Joseph-
son energies Ejy = Ejy = E;, Ej3 = aEy) and with
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—0.2 —0.1 0 0.1 0.2 x

Fig.5. Cut along the ¢, = 0 axis of the double well
potential U (z) = Uy (0,27x) (solid bold line) with the
first, 4 (dotted line), second, ¥_ (dashed line), and
third, ¥, (dash-dotted line), eigenstates. Here, f = 1/2,
Br = 0.5, a = 0.8, and the energy FE is in units of E;
and is measured from the local maximum of U ()

an external magnetic flux ®, piercing the loop, the ef-
fective potential landscape can be represented as [27]

Uj (¢p, om) = Ey {2+ a — 2¢0Ss ¢p COS Py, —

2w LT

0

— acos (27rf + + 2¢m)] + %L0I2. (A.1)
Here, Ly is the total inductance, ®, = wh/e is the flux
quantum, f = &, /P is the reduced magnetic flux, and
I = (2rE;/®)sin (¢p + ¢m) is the supercurrent. The
quantities ¢, and ¢, are phase variables. At f = 0.5
for the inductance ratio §;, = Lo/L; values from zero
to one (where L; = (®9/2r)° /E; is the Josephson
junction inductance), a symmetric double-well poten-
tial structure exists. In Fig. 5, we show a double-well
potential U (z) = Uy (0,27rz) with three eigenstates.
As was shown in Ref. [28], the optical selection rules
of microwave-assisted transitions in this potential are
the same as the ones for the electric-dipole transitions
for an electron in a symmetric 1D double-well poten-
tial, that is, the matrix element of the electric dipole
moment is nonzero for states of different parity. For
the chosen parameters, the first two eigenstates are lo-
calized in the wells of the potential, while the higher
eigenstate is delocalized. The ground eigenstate is an
even function, the eigenstate corresponding to the ad-
jacent level is an odd function, and the eigenstate of
the excited state is an even function. According to the
selection rule, we have the L configuration and in the

single-mode photonic field we can write the Hamilto-
nian

~ PSR 1 ~
Hypn = Iw <afa-|- 5) + Hyi, +

tedi Sioo (@ +a) +ed_.S_o. (@ +a), (A2)

where
E+ 0 0
HL = 0 e 0 9 (A3)
0 0 e

dy— and d_. are transition dipole moments, € (a' + )
is the “electric field” operator, and

010
Siee=| 10 0|,
000
(A.4)
000
S’\fe}e: 0
010

are transition operators. We now apply the unitary
transformation (U FUT) with

) -1 0
U=—=|1 1 o0 A5
7 (A.5)
V2
For the transformed operators, we obtain
Er e ey —e- 0
2 2
H/L _ e —€6- eyp+te- 0 ’ (A.6)
2 2
0 0 Ce
-1 0 0
S = 0 1 0 | =S5, (A.7)
0 0
0 0 1
om0 0 -1 |=-L3 (A.8)
- V2 1 1 0 e t. |

It is easy to see that the transformed Hamiltonian cor-
responds to the polar-A configuration considered in this
paper (see Eq. (2)) with the parameters
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ey te- _Ey —E—
59_ 2 9 A_ 2 ) Ag
_edy )\__L ed_, (A.9)
,Lt— FL 9 - \/i FL

For the setup in Fig. 5, |ec —&,4| /A = 25, and |u/\| ~
~ 5.75. The terms §L and §t describe electric-dipo-
le-moment matrix elements. The diagonal elements are
the permanent dipole moments and are described by
the terms proportional to §L. This is also obvious in
the coordinate picture for an electron in a symmetric
1D double-well potential. If the probability of the tun-
nel transition between the “left” and “right” potential
wells is small (JA| < |e. — &4]), we have a nearly dege-
nerate ground state, and can therefore use two equiva-
lent bases. In the L configuration, the two lowest-ener-
gy eingenstates are |+) = (|left) 4 |right)) /v/2, where
[left) and |right) are the basis wave functions in
the polar-A configuration and represent the situations
where the particle is in the left or right potential well
with the opposite permanent dipole moments.
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