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We construct solutions of the 3 + 1 dimensional Faddeev—Skyrme model coupled to Einstein gravity. The solu-
tions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate
the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is
coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value
of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead,
in the limit of a vanishing coupling constant, it connects to either the Bartnik—McKinnon or a generalized
Bartnik—McKinnon solution. We further find that in the strong-coupling limit, there is no difference between
the gravitating solitons of the Skyrme model and the Faddeev—Skyrme model.
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1. INTRODUCTION

There are many nonlinear classical field theories in
flat spacetime that admit topologically stable soliton
solutions. These are particle-like, globally regular lo-
calized field configurations with finite energy. Interes-
ting examples in d = 3 + 1 dimensions are the original
Skyrme model [1] and the Faddeev-Skyrme model [2].
The Skyrme model is a nonlinear scalar O(4) sigma
model; under certain assumptions it can be derived
by expanding a low-energy effective Lagrangian in the
large- N, limit [3], with the topological charge of the
multisoliton configuration set in correspondence with
the physical baryon number. The Faddeev—Skyrme
model is a modified O(3) sigma model, and hence the
topological properties of the corresponding solitons,
so-called Hopfions, are quite different from those of
Skyrme-model solutions: the Hopfions are string-like
configurations classified by the linking number, the first
Hopf map S? — 52 [4-6].

The structure of both models looks similar: the cor-
responding Lagrangian includes the usual sigma-model
term, the Skyrme term, which is quartic in derivatives
of the field, and a potential term that does not contain
derivatives. Recently, some modifications of both mod-
els were proposed to approach the topological bound
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[7, 8] preserving topological properties of the corre-
sponding solitons.

When gravity is coupled to the Skyrme model, this
has a significant effect on the solutions. It turns out
that there are hairy black hole solutions of the Ein-
stein—Skyrme theory [9-11]. Historically, that was the
first example of constructions of hairy black holes.
These solutions are stable, asymptotically flat, and
have a regular horizon; furthermore, they can be viewed
as bound states of Skyrmions and Schwarzschild black
holes [12]. Axially symmetric static solutions of the
Einstein-Skyrme model with topological charge two
were studied in [13]. Recently, in [14], self-gravitating
BPS Skyrmions were used in describing bulk properties
of neutron stars.

The globally regular gravitating Skyrmions in an
asymptotically flat space were studied in [10, 11].
It was shown that there are two branches of solu-
tions, one of which emerges smoothly from the flat
space Skyrmion configuration. As the effective grav-
itational coupling constant is increased from zero, this
branch terminates at some critical value of the cou-
pling, beyond which gravity becomes too strong for
self-gravitating Skyrmions to persist. There, it merges
with a second branch, which extends all the way
back to the vanishing coupling constant. Along this
branch, the mass of the gravitating Skyrmion rapidly
increases and the solution becomes unstable. Surpris-
ingly, it was shown in [11] that in the limit of van-
ishing coupling, the gravitating Skyrmion approaches
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the lowest Bartnik—-McKinnon (BM) solution of the
SU(2) Einstein—Yang-Mills theory [15]. This pattern
is rather similar to the branch structure of gravita-
ting monopole-antimonopole chains and vortex rings
in Einstein—Yang-Mills—Higgs theory [16, 17], although
the reason for its existence is different.

The properties of gravitating Skyrmions were con-
sidered in many works, for example, configurations
with discrete symmetry were investigated in [18] and
spinning gravitating Skyrmions were studied in [19].
Modifications of the Einstein—Skyrme model with cos-
mological constant were investigated in [20, 21]. How-
ever, to the best of our knowledge, the analysis of prop-
erties of gravitating solitons of the Einstein—Faddeev—
Skyrme system has not yet been done, although the
Hopfions in flat space have been intensively studied
over recent years [4-6].

In this paper, we construct globally regular gravi-
tating Hopfions. Because the consistent consideration
of solitons with higher Hopf charges is related to the
complicated task of full numerical simulations in 3D [6],
we restrict ourself to the case of static Hopfions of de-
grees @ < 4. Using the rational map parameterization
of the scalar field, we produce an initial configuration
of a given degree, to be used as an input file in our
numerical scheme. We study the corresponding field
configurations in the Einstein-Faddeev-Skyrme model
numerically. We show that the general pattern of evo-
lution of the configuration is very similar to the branch
structure of the Einstein—Skyrme system that links the
flat space Skyrmions and the BM solution.

2. THE MODEL

The Einstein—Faddeev—Skyrme model in asymptoti-
cally flat 341 dimensional space is defined by the action

1 2R
S_327r2/{ G

1
- {e2(8u<1>“8“<1>‘1) + g Fu P+ V[<I>]] } X

x v/=gd'z, (1)

where the gravity part of the action is the usual Ein-
stein-Hilbert action with the curvature scalar R, g de-
notes the determinant of the metric, G and M are
the gravitational constant and the mass of the Fadde-
ev—Skyrme field, and e and k are the Hopfion coupling
constants. We note that in the natural units in which
¢ = h = 1, the parameter ¢ has the dimension [¢?] =
= [mi~'] = MeV? while the constant [x?] = [m~'17"]
is dimensionless.

We next define
Fluy = €ape®20,®%9,®°,

which is the pullback of the area form on the tar-
get space S%. An additional potential term V[®] =
= M?[1 — (®3)?] breaks down the global SO(3) sym-
metry of the model. We note that this term is optional:
the existence of static soliton solutions of model (1) is
allowed by the Derrick theorem even if the mass pa-
rameter M = 0. However, this term is necessary in
order to stabilize the isospinning Hopfions [22, 23].

The triplet of the real scalar field components ®* =
= (@, Py, ®3) is restricted to the unit sphere, *-d* =
= 1, and hence the field is a map ® : R* — S2. A topo-
logical restriction on the field ¢* is that it approaches
its vacuum value at the spacial boundary, ® — (0,0, 1)
as r — oo, and therefore the one-point compactifica-
tion of the domain space R? to S® defines static finite-
energy solutions of the model as the first Hopf map
® : S? — S? that belongs to an equivalence class char-
acterized by the third homotopy group m3(S?) = Z.
Explicitly, the integer-valued Hopf invariant is defined
nonlocally as

1
Q= W/&jk}_ijflk, (2)

R3

where the one-form A = Adz* is defined via F = dA,
i.e., the two-form F is closed, dF = 0. Invariant (2)
can be interpreted geometrically as the linking num-
ber of two loops obtained as the preimages of any two
generic distinct points on the target space S2.
Similarly to the case of the Einstein—Skyrme model
[11], we can rescale the model by introducing the di-
mensionless radial coordinate © = exr, the gravita-
tional coupling constant a® = Ge? /27, and the rescaled
mass parameter M = M/e?k. Then action (1) becomes

e R
- I a i Fa
S=s /{a2 (0,803 +
1 ~
bR 3P0 (829 | x

x /—gdtz. (3)

To obtain gravitating static axially symmetric so-
lutions, we use the usual Lewis—Papapetrou metric in
isotropic coordinates:

2 2 2
mr Ir® sin® @
do®+
f f
where the metric functions f, m, and [ are functions of

the radial variable r and the polar angle # only. The z
axis (f = 0, 7) represents the symmetry axis.

ds? = — fdt2+?dr2+ dp?,  (4)
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Fig.1. Energy density isosurfaces of the Hopfions of

degrees 1 to 4 (from left to right)

For the lowest values of the corresponding Hopf
charge @@ = 1,2, the simplest soliton solutions can be
constructed using the axially symmetric ansatz [4] writ-
ten in terms of the functions X = X (r,0),Y =Y (r,0),
and Z = Z(r,0):

&y +i®y = F(r,0)e mVr0+n9) =
= [X(r,0) +iY (r,0)]e™?,

q)S = Z(T,H),

where n,m € Z.

An axially symmetric configuration of the matter
field of this type is commonly referred to as A, p,
where the first subscript corresponds to the number of
twists along the loop and the second label is the usual
0(3) sigma-model winding number associated with the
map S2 = S2. The Hopf invariant of this configuration
is Q = mn.

However, for higher-degree Hopfions, twisted, knot-
ted, and linked configurations occur [5, 6], and further-
more, the number of local energy minima configura-
tions grows with ). Here we consider the twisted con-
figuration ,3371 of degree 3 and the A, » axially symmet-
ric solution of degree 4. The latter configuration, which
is a global minimum in this sector, may be thought of
as two adjacent Hopfions A, 1. The energy isosurfaces
of these flat-space configurations are shown in Fig. 1.

Using the rational map projection from the sphere
S$3 C C? onto the complex projective line CP! [6], we
can parameterize the initial configuration as

B +i®y 207

W = = , 5
1+ @5 Z8+ 74 (5)

where
(Z1, Zy) =

= <(x +iy)

sin h(r) cosh(r) +
r r

izsinh(r)) ©

and h(r) is some monotonic function of the radial vari-

able r = /22 + y2 + 22 with the boundary conditions
h(0) = 7 and h(co) = 0. Such a map has the degree

Q) = af + ab, and it therefore allows us to construct an
initial configuration of any degree.

A peculiar feature of the Faddeev—Skyrme model
is that for a given degree (@, there are usually several
different stable static soliton solutions of rather sim-
ilar energy. In particular, there are two solutions in
the sector of degree three, fig,l and an axially symmet-
ric configuration Az ;. The energy of the latter soli-
ton is slightly higher, but the inclusion of the mass
term and/or excitation of the isorotational degrees of
freedom may change the situation [23]. Hereafter, we
restrict our consideration to the axially symmetric so-
lutions of degrees @ < 4.

The complete set of field equations that follow from
the variation of the action of Einstein—Faddeev—Skyrme
model (1) can be solved when we impose the boundary
conditions and use the parameterization of the metric
in (4). Then the field equations reduce to a set of six
coupled partial differential equations, to be solved nu-
merically.

As usual, they follow from the regularity on the
symmetry axis and symmetry requirements as well as
the condition for the energy to be finite. In particular,
we have to take into account that the asymptotic value
of the Hopfion field is restricted to the unit sphere and
the metric functions must approach unity at the spacial
boundary. Explicitly, we impose the conditions

P, =0, o, -0, &5 =1,
r—0o0 T—00 r—o0 (7)
f =1, m =1, 1 =1
r—oo r—00 r—o0o
at infinity and
b, — 0, d, — 0, O3 — ]-7
r—0 r—0 r—0 (8)
o f -0, Jm -0, 0l -0
r—0 r—0 r—0

at the origin.
The regularity condition for the functions on the
symmetry axis yields

P, — 07 b, — 0, (I>3 — 1,
0—0,7 60—0,7 0—0,7
(9)
89f -0, 89m -0, agl — 0.
0—0,7 0—0,7 0—0,7

To satisfy the regularity condition m(r,0) = I(r,0), we
introduce the auxiliary function

g(r,0) =1(r,0)/m(r,8)
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with the boundary conditions

9(070) = g(oo,e) = g(r,O) =1 699(7‘771-/2) =0.

We check this condition as a test for correctness of our
numerical results.

3. NUMERICAL RESULTS

The numerical calculations are mainly performed on
an equidistant grid in spherical coordinates r and 6, us-
ing the compact radial coordinate z = r/(14r) € [0 : 1]
and # € [0, 7]. To find solutions of the Euler-Lagrange
equations that follow from rescaled action (3) and de-
pend parametrically on the effective gravity constant «,
we used the software package CADSOL based on the
Newton-Raphson algorithm [24]. This code solves a
given system of nonlinear partial differential equations
subject to a set of boundary conditions on a rectangular
domain. Typical grids we used have sizes 90 x 70. The
resulting system is solved iteratively until convergence
is achieved.

Apart from some initial guess for the solution,
CADSOL also requires the Jacobian matrices for the
equations with respect to the unknown functions and
their first and second derivatives, and the boundary
conditions. This software package also provides error
estimates for each function, which allows judging the
quality of the computed solution. The relative errors of
the solutions we found are of the order 10~* or smaller.
We also introduce an additional Lagrangian multiplier
to constrain the field to the surface of a unit sphere and
fix the value of the mass parameter M = 1.

We note that the dimensionless gravitational cou-
pling constant a? = Ge?/2r vanishes if (i) the Newton
constant G — 0, or, (ii) e — 0. In the former case,
we recover the usual solitons of the Faddeev—Skyrme
model in flat space, and in the second case, the Dirich-
let term in action (1) vanishes. Thus, similarly to the
case of self-gravitating monopole—antimonopole sys-
tems in the asymptotically flat Einstein—Yang—Mills—
Higgs theory [16, 17], Yang-Mills sphalerons in the
AdSs spacetime [25], and solitons of the Einstein—
Skyrme model [11, 26], we expect that there are two
branches of solutions of the Einstein—Faddeev—Skyrme
model.

We have found numerical evidence that when grav-
ity is coupled to the Faddeev—Skyrme model, a branch
of gravitating Hopfions emerges from the flat-space
Hopfion solution and extends to a maximal value e,
where it merges with the upper mass branch. Indeed,
as the gravitational coupling constant increases, the

background becomes more and more deformed and, at
some critical value of the coupling, gravity becomes too
strong for solutions to persist. The critical value a.,
at which a backbending is observed slightly decreases
as the topological charge of the Hopfion inscreases (cf.
Figs. 2 and 3).

Parameterization (4) allows us to find the dimen-
sionless ADM mass of the configuration p, defined by
the value of the derivative of the metric function f at
the boundary:

N (10)

T 202 100

I

To perform another check of our numerics for correct-
ness, we compare this value with the results of direct
evaluation of the integral over the Tyg component of the
total energy—momentum tensor of matter and gravity.

Along the first (lower) branch, the mass of the
gravitating Hopfions decreases with increasing «, since
the attraction in the system increases with increasing
the gravitational strength. Along the second (upper)
branch, by contrast, mass (10) increases strongly with
decreasing the coupling «, and the solutions shrink cor-
respondingly. In the limit of a vanishing coupling con-
stant, the mass p then diverges and the solutions shrink
to zero size. We illustrate this pattern in Fig. 2. Also,
the gravitational interaction along this branch remains
strong. In Fig. 3, we exhibit the value of the metric
functions f and [ at the origin for configurations of de-
grees 1 to 4; both functions remains finite in this limit.

This pattern is similar to the well-known picture
of the evolution of self-gravitating skyrmions [9-11, 19|
and monopole—antiminopole pairs [16, 17], which on
the upper unstable branch are linked to the spherically
symmetric Bartnik-McKinnon limit solution [15].

In the case of self-gravitating Hopfions, the struc-
ture of the e> — 0 limit solution can be better un-
derstood when we introduce the rescaled radial coordi-
nate # = x/a and the rescaled mass i = apu [11]. We
then observe that the rescaled mass remains finite in
the limit @ — 0, as shown in Fig. 2b. Furthermore,
the value of the limit mass is approaching the mass of
the corresponding generalized Bartnik—McKinnon so-
lution [27]. Indeed, in the limit e — 0, the remaining
Skyrme term in action (1) has a structure that is identi-
cal to the Yang—Mills theory action expressed in terms
of the field strength tensor Fj,,.

We note that a similar truncated Faddeev—Skyrme
model without the Dirichlet term was recently consid-
ered on the space S® x R [8]. It turns out that it sup-
ports the existence of compacton solutions that satu-
rate the topological bound. These configurations are
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Fig.2. The mass p (a) and the scaled mass ji (b) of the gravitating Hopfions of degrees 1 through 4 are shown as functions
of the coupling constant o at M = 1. The dotted lines extend the Hopfion curves of the scaled mass to the mass of the
corresponding generalized Bartnik—McKinnon solution
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Fig.3. The values of the metric functions f(0) (a) and 1(0) (b) of the gravitating Hopfions of degrees 1 through 4 at the
origin are shown as functions of the gravitational coupling constant o at M =1

different from the vacuum only on some finite domain
of the coordinate space. Furthermore, this model is in-
tegrable. Thus, these compactons can be regarded as
an approximation to the strongly gravitating Hopfions
in the limit o — 0.

To clarify this observation, in Fig. 4a, we plot the
metric function f of the upper branch A ; solution
at a® = 0.0004 and the corresponding field component
®? in the coordinates logr, #. Clearly, we can iden-
tify three distinct regions. In the first region, as can
be seen in Fig. 4 the metric function f remains very
small but constant without any angular dependence.

The corresponding matter fields of the Hopfion are ap-
proximately trivial in this inner region. In the second
transition region, the metric varies up to the maximum
value f = 1; this is a small region where the energy of
the matter field is located. In Fig. 5, we presented the
surfaces of constant energy density of the gravitating
A1,1 and As ; Hopfions. For the @ = 1 Hopfion, the en-
ergy density exhibits a structure of a pumpkin-shaped
sphere with a maximum at the origin, and for @ = 2,
the configuration it is a deformed sphere surrounded
by a torus-like ring (cf. the corresponding flat-space
configurations in Fig. 1). Finally, in the third outer re-
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Fig.4. The metric function f(r,6) (a) and the third component of the field of the gravitating Hopfion of degree 1 on the
upper branch () are shown in the logarithmic radial coordinate logr at o = 0.0004 at M =1

Fig.5.
= 4-10°) of the gravitating axially symmetric Hopfions
of degrees 1 and 2 on the upper branch are shown at
a? = 0.0004 and M = 1. The characteristic size of

The isosurfaces of the energy density (¢ =

the configurations is about 7core ~ 0.8 in the rescaled
radial coordinate 7 = ar

gion, the metric functions are approaching the flat-spa-
ce limit values while the components of the Hopfion
field are approximately in the vacuum. Clearly, this
pattern agrees with the corresponding behavior of the
Bartnik—McKinnon solutions [15, 26] and the regular
solutions of the Einstein—Skyrme model [11]. Hence,
this behavior is generic, being independent of the topo-
logical properties of the matter field.

4. CONCLUSIONS

The main purpose of this paper was to present new
type of self-gravitating solitons in the Einstein—Fad-
deev—Skyrme theory. We have focused on the configu-
rations of lower degrees up to Q = 4. These solutions
are asymptotically flat and globally regular.

As regards the dependence of the gravitating Hop-
fions on the gravity coupling constant, we observe the
same general pattern as for solitons of the Einstein—
Skyrme model and the sphaleron solutions of the
Einstein—Yang-Mills-Higgs theory. In all these cases,
a lower branch of gravitating solitons emerges from
the corresponding flat-space configurations, and merges
with the upper branch at a maximal value of the grav-
itational coupling. The upper branch extends back to
the limit o — 0, where solutions approach the corre-
sponding (generalized) Bartnik—-McKinnon solutions of
the SU(2) Einstein—Yang-Mills theory. Hence, we can
conclude that the topological characteristics of the mat-
ter field do not affect the limit behavior of gravitating
solitons.

One question we did not address concerns the sta-
bility of the gravitating Hopfions. However, it is known
that the solitons of the Einstein—Skyrme model are sta-
ble on the lower branch and are unstable on the upper
branch, and there is a reason to believe that the gravi-
tating Hopfions on the upper branch are also unstable.

There are various possible extensions of the solu-
tions discussed in this paper. First, our preliminary re-
sults indicate the existence of static axially symmetric
black hole solutions with Hopfion hair. But construc-
ting gravitating Hopfion solutions of higher degrees cur-
rently remains a numerical challenge. It would also be
interesting to address the question of how inclusions of
a cosmological constant affect the properties of a gra-
vitating Hopfion.
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