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GRAVITATING HOPFIONSYa. M. Shnir *Joint Institute for Nu
lear Resear
h141980, Dubna, Mos
ow Region, RussiaRe
eived May 30, 2015We 
onstru
t solutions of the 3 + 1 dimensional Faddeev�Skyrme model 
oupled to Einstein gravity. The solu-tions are stati
 and asymptoti
ally �at. They are 
hara
terized by a topologi
al Hopf number. We investigatethe dependen
e of the ADM masses of gravitating Hop�ons on the gravitational 
oupling. When gravity is
oupled to �at spa
e solutions, a bran
h of gravitating Hop�on solutions arises and merges at a maximal valueof the 
oupling 
onstant with a se
ond bran
h of solutions. This upper bran
h has no �at spa
e limit. Instead,in the limit of a vanishing 
oupling 
onstant, it 
onne
ts to either the Bartnik�M
Kinnon or a generalizedBartnik�M
Kinnon solution. We further �nd that in the strong-
oupling limit, there is no di�eren
e betweenthe gravitating solitons of the Skyrme model and the Faddeev�Skyrme model.DOI: 10.7868/S00444510151200811. INTRODUCTIONThere are many nonlinear 
lassi
al �eld theories in�at spa
etime that admit topologi
ally stable solitonsolutions. These are parti
le-like, globally regular lo-
alized �eld 
on�gurations with �nite energy. Interes-ting examples in d = 3 + 1 dimensions are the originalSkyrme model [1℄ and the Faddeev�Skyrme model [2℄.The Skyrme model is a nonlinear s
alar O(4) sigmamodel; under 
ertain assumptions it 
an be derivedby expanding a low-energy e�e
tive Lagrangian in thelarge-N
 limit [3℄, with the topologi
al 
harge of themultisoliton 
on�guration set in 
orresponden
e withthe physi
al baryon number. The Faddeev�Skyrmemodel is a modi�ed O(3) sigma model, and hen
e thetopologi
al properties of the 
orresponding solitons,so-
alled Hop�ons, are quite di�erent from those ofSkyrme-model solutions: the Hop�ons are string-like
on�gurations 
lassi�ed by the linking number, the �rstHopf map S3 ! S2 [4�6℄.The stru
ture of both models looks similar: the 
or-responding Lagrangian in
ludes the usual sigma-modelterm, the Skyrme term, whi
h is quarti
 in derivativesof the �eld, and a potential term that does not 
ontainderivatives. Re
ently, some modi�
ations of both mod-els were proposed to approa
h the topologi
al bound*E-mail: shnir�theor.jinr.ru

[7, 8℄ preserving topologi
al properties of the 
orre-sponding solitons.When gravity is 
oupled to the Skyrme model, thishas a signi�
ant e�e
t on the solutions. It turns outthat there are hairy bla
k hole solutions of the Ein-stein�Skyrme theory [9�11℄. Histori
ally, that was the�rst example of 
onstru
tions of hairy bla
k holes.These solutions are stable, asymptoti
ally �at, andhave a regular horizon; furthermore, they 
an be viewedas bound states of Skyrmions and S
hwarzs
hild bla
kholes [12℄. Axially symmetri
 stati
 solutions of theEinstein�Skyrme model with topologi
al 
harge twowere studied in [13℄. Re
ently, in [14℄, self-gravitatingBPS Skyrmions were used in des
ribing bulk propertiesof neutron stars.The globally regular gravitating Skyrmions in anasymptoti
ally �at spa
e were studied in [10, 11℄.It was shown that there are two bran
hes of solu-tions, one of whi
h emerges smoothly from the �atspa
e Skyrmion 
on�guration. As the e�e
tive grav-itational 
oupling 
onstant is in
reased from zero, thisbran
h terminates at some 
riti
al value of the 
ou-pling, beyond whi
h gravity be
omes too strong forself-gravitating Skyrmions to persist. There, it mergeswith a se
ond bran
h, whi
h extends all the wayba
k to the vanishing 
oupling 
onstant. Along thisbran
h, the mass of the gravitating Skyrmion rapidlyin
reases and the solution be
omes unstable. Surpris-ingly, it was shown in [11℄ that in the limit of van-ishing 
oupling, the gravitating Skyrmion approa
hes1130
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Kinnon (BM) solution of theSU(2) Einstein�Yang�Mills theory [15℄. This patternis rather similar to the bran
h stru
ture of gravita-ting monopole�antimonopole 
hains and vortex ringsin Einstein�Yang�Mills�Higgs theory [16, 17℄, althoughthe reason for its existen
e is di�erent.The properties of gravitating Skyrmions were 
on-sidered in many works, for example, 
on�gurationswith dis
rete symmetry were investigated in [18℄ andspinning gravitating Skyrmions were studied in [19℄.Modi�
ations of the Einstein�Skyrme model with 
os-mologi
al 
onstant were investigated in [20, 21℄. How-ever, to the best of our knowledge, the analysis of prop-erties of gravitating solitons of the Einstein�Faddeev�Skyrme system has not yet been done, although theHop�ons in �at spa
e have been intensively studiedover re
ent years [4�6℄.In this paper, we 
onstru
t globally regular gravi-tating Hop�ons. Be
ause the 
onsistent 
onsiderationof solitons with higher Hopf 
harges is related to the
ompli
ated task of full numeri
al simulations in 3D [6℄,we restri
t ourself to the 
ase of stati
 Hop�ons of de-grees Q � 4. Using the rational map parameterizationof the s
alar �eld, we produ
e an initial 
on�gurationof a given degree, to be used as an input �le in ournumeri
al s
heme. We study the 
orresponding �eld
on�gurations in the Einstein�Faddeev�Skyrme modelnumeri
ally. We show that the general pattern of evo-lution of the 
on�guration is very similar to the bran
hstru
ture of the Einstein�Skyrme system that links the�at spa
e Skyrmions and the BM solution.2. THE MODELThe Einstein�Faddeev�Skyrme model in asymptoti-
ally �at 3+1 dimensional spa
e is de�ned by the a
tionS = 132�2 Z �2�RG �� �e2(���a���a) + 14�2F��F�� + V [�℄����p�gd4x; (1)where the gravity part of the a
tion is the usual Ein-stein�Hilbert a
tion with the 
urvature s
alar R, g de-notes the determinant of the metri
, G and M arethe gravitational 
onstant and the mass of the Fadde-ev�Skyrme �eld, and e and � are the Hop�on 
oupling
onstants. We note that in the natural units in whi
h
 = ~ = 1, the parameter e2 has the dimension [e2℄ == [ml�1℄ = MeV2 while the 
onstant [�2℄ = [m�1l�1℄is dimensionless.

We next de�neF�� = "ab
�a���b���
;whi
h is the pullba
k of the area form on the tar-get spa
e S2. An additional potential term V [�℄ == M2[1 � (�3)2℄ breaks down the global SO(3) sym-metry of the model. We note that this term is optional:the existen
e of stati
 soliton solutions of model (1) isallowed by the Derri
k theorem even if the mass pa-rameter M = 0. However, this term is ne
essary inorder to stabilize the isospinning Hop�ons [22, 23℄.The triplet of the real s
alar �eld 
omponents �a == (�1;�2;�3) is restri
ted to the unit sphere, �a ��a == 1, and hen
e the �eld is a map � : R3 ! S2. A topo-logi
al restri
tion on the �eld �a is that it approa
hesits va
uum value at the spa
ial boundary, �! (0; 0; 1)as r ! 1, and therefore the one-point 
ompa
ti�
a-tion of the domain spa
e R3 to S3 de�nes stati
 �nite-energy solutions of the model as the �rst Hopf map� : S3! S2 that belongs to an equivalen
e 
lass 
har-a
terized by the third homotopy group �3(S2) = Z.Expli
itly, the integer-valued Hopf invariant is de�nednonlo
ally as Q = 116�2 ZR3 "ijkFijAk; (2)where the one-form A = Akdxk is de�ned via F = dA,i. e., the two-form F is 
losed, dF = 0. Invariant (2)
an be interpreted geometri
ally as the linking num-ber of two loops obtained as the preimages of any twogeneri
 distin
t points on the target spa
e S2.Similarly to the 
ase of the Einstein�Skyrme model[11℄, we 
an res
ale the model by introdu
ing the di-mensionless radial 
oordinate x = e�r, the gravita-tional 
oupling 
onstant �2 = Ge2=2�, and the res
aledmass parameter M̂ = M=e2�. Then a
tion (1) be
omesS = e32��2 Z � R�2 � (���a���a ++ 14F��F�� + M̂2(1� (�3)2)����p�g d4x: (3)To obtain gravitating stati
 axially symmetri
 so-lutions, we use the usual Lewis�Papapetrou metri
 inisotropi
 
oordinates:ds2 = �fdt2+mf dr2+mr2f d�2+ lr2 sin2 �f d'2; (4)where the metri
 fun
tions f , m, and l are fun
tions ofthe radial variable r and the polar angle � only. The zaxis (� = 0; �) represents the symmetry axis.1131
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Fig. 1. Energy density isosurfa
es of the Hop�ons ofdegrees 1 to 4 (from left to right)For the lowest values of the 
orresponding Hopf
harge Q = 1; 2, the simplest soliton solutions 
an be
onstru
ted using the axially symmetri
 ansatz [4℄ writ-ten in terms of the fun
tions X = X(r; �); Y = Y (r; �),and Z = Z(r; �):�1 + i�2 = F (r; �)ei(m	(r;�)+n') �� [X(r; �) + iY (r; �)℄ein';�3 = Z(r; �);where n;m 2 Z.An axially symmetri
 
on�guration of the matter�eld of this type is 
ommonly referred to as Am;n,where the �rst subs
ript 
orresponds to the number oftwists along the loop and the se
ond label is the usualO(3) sigma-model winding number asso
iated with themap S2 ! S2. The Hopf invariant of this 
on�gurationis Q = mn.However, for higher-degree Hop�ons, twisted, knot-ted, and linked 
on�gurations o

ur [5, 6℄, and further-more, the number of lo
al energy minima 
on�gura-tions grows with Q. Here we 
onsider the twisted 
on-�guration eA3;1 of degree 3 and the A2;2 axially symmet-ri
 solution of degree 4. The latter 
on�guration, whi
his a global minimum in this se
tor, may be thought ofas two adja
ent Hop�ons A2;1. The energy isosurfa
esof these �at-spa
e 
on�gurations are shown in Fig. 1.Using the rational map proje
tion from the sphereS3 � C 2 onto the 
omplex proje
tive line C P1 [6℄, we
an parameterize the initial 
on�guration asW = �1 + i�21 + �3 � Z�1 Z�0Za1 + Zb0 ; (5)where(Z1; Z0) == �(x+ iy) sinh(r)r ; 
osh(r) + iz sinh(r)r � (6)and h(r) is some monotoni
 fun
tion of the radial vari-able r = px2 + y2 + z2 with the boundary 
onditionsh(0) = � and h(1) = 0. Su
h a map has the degree

Q = ��+ab, and it therefore allows us to 
onstru
t aninitial 
on�guration of any degree.A pe
uliar feature of the Faddeev�Skyrme modelis that for a given degree Q, there are usually severaldi�erent stable stati
 soliton solutions of rather sim-ilar energy. In parti
ular, there are two solutions inthe se
tor of degree three, ~A3;1 and an axially symmet-ri
 
on�guration A3;1. The energy of the latter soli-ton is slightly higher, but the in
lusion of the massterm and/or ex
itation of the isorotational degrees offreedom may 
hange the situation [23℄. Hereafter, werestri
t our 
onsideration to the axially symmetri
 so-lutions of degrees Q � 4.The 
omplete set of �eld equations that follow fromthe variation of the a
tion of Einstein�Faddeev�Skyrmemodel (1) 
an be solved when we impose the boundary
onditions and use the parameterization of the metri
in (4). Then the �eld equations redu
e to a set of six
oupled partial di�erential equations, to be solved nu-meri
ally.As usual, they follow from the regularity on thesymmetry axis and symmetry requirements as well asthe 
ondition for the energy to be �nite. In parti
ular,we have to take into a

ount that the asymptoti
 valueof the Hop�on �eld is restri
ted to the unit sphere andthe metri
 fun
tions must approa
h unity at the spa
ialboundary. Expli
itly, we impose the 
onditions�1����r!1! 0 ; �2����r!1! 0 ; �3����r!1! 1;f ����r!1! 1; m����r!1! 1; l����r!1! 1 (7)at in�nity and�1����r!0! 0 ; �2����r!0! 0 ; �3����r!0! 1;�rf ����r!0! 0 ; �rm����r!0! 0 ; �rl����r!0! 0 (8)at the origin.The regularity 
ondition for the fun
tions on thesymmetry axis yields�1�����!0;�! 0 ; �2�����!0;�! 0 ; �3�����!0;�! 1;��f �����!0;�! 0 ; ��m�����!0;�! 0 ; ��l�����!0;�! 0: (9)To satisfy the regularity 
ondition m(r; 0) = l(r; 0), weintrodu
e the auxiliary fun
tiong(r; �) = l(r; �)=m(r; �)1132



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Gravitating Hop�onswith the boundary 
onditionsg(0; �) = g(1; �) = g(r; 0) = 1; ��g(r; �=2) = 0:We 
he
k this 
ondition as a test for 
orre
tness of ournumeri
al results.3. NUMERICAL RESULTSThe numeri
al 
al
ulations are mainly performed onan equidistant grid in spheri
al 
oordinates r and �, us-ing the 
ompa
t radial 
oordinate x = r=(1+r) 2 [0 : 1℄and � 2 [0; �℄. To �nd solutions of the Euler�Lagrangeequations that follow from res
aled a
tion (3) and de-pend parametri
ally on the e�e
tive gravity 
onstant �,we used the software pa
kage CADSOL based on theNewton�Raphson algorithm [24℄. This 
ode solves agiven system of nonlinear partial di�erential equationssubje
t to a set of boundary 
onditions on a re
tangulardomain. Typi
al grids we used have sizes 90� 70. Theresulting system is solved iteratively until 
onvergen
eis a
hieved.Apart from some initial guess for the solution,CADSOL also requires the Ja
obian matri
es for theequations with respe
t to the unknown fun
tions andtheir �rst and se
ond derivatives, and the boundary
onditions. This software pa
kage also provides errorestimates for ea
h fun
tion, whi
h allows judging thequality of the 
omputed solution. The relative errors ofthe solutions we found are of the order 10�4 or smaller.We also introdu
e an additional Lagrangian multiplierto 
onstrain the �eld to the surfa
e of a unit sphere and�x the value of the mass parameter M = 1.We note that the dimensionless gravitational 
ou-pling 
onstant �2 = Ge2=2� vanishes if (i) the Newton
onstant G ! 0, or, (ii) e ! 0. In the former 
ase,we re
over the usual solitons of the Faddeev�Skyrmemodel in �at spa
e, and in the se
ond 
ase, the Diri
h-let term in a
tion (1) vanishes. Thus, similarly to the
ase of self-gravitating monopole�antimonopole sys-tems in the asymptoti
ally �at Einstein�Yang�Mills�Higgs theory [16, 17℄, Yang�Mills sphalerons in theAdS4 spa
etime [25℄, and solitons of the Einstein�Skyrme model [11, 26℄, we expe
t that there are twobran
hes of solutions of the Einstein�Faddeev�Skyrmemodel.We have found numeri
al eviden
e that when grav-ity is 
oupled to the Faddeev�Skyrme model, a bran
hof gravitating Hop�ons emerges from the �at-spa
eHop�on solution and extends to a maximal value �
rwhere it merges with the upper mass bran
h. Indeed,as the gravitational 
oupling 
onstant in
reases, the

ba
kground be
omes more and more deformed and, atsome 
riti
al value of the 
oupling, gravity be
omes toostrong for solutions to persist. The 
riti
al value �
rat whi
h a ba
kbending is observed slightly de
reasesas the topologi
al 
harge of the Hop�on ins
reases (
f.Figs. 2 and 3).Parameterization (4) allows us to �nd the dimen-sionless ADM mass of the 
on�guration �, de�ned bythe value of the derivative of the metri
 fun
tion f atthe boundary: � = 12�2 limx!1 �xf: (10)To perform another 
he
k of our numeri
s for 
orre
t-ness, we 
ompare this value with the results of dire
tevaluation of the integral over the T00 
omponent of thetotal energy�momentum tensor of matter and gravity.Along the �rst (lower) bran
h, the mass of thegravitating Hop�ons de
reases with in
reasing �, sin
ethe attra
tion in the system in
reases with in
reasingthe gravitational strength. Along the se
ond (upper)bran
h, by 
ontrast, mass (10) in
reases strongly withde
reasing the 
oupling �, and the solutions shrink 
or-respondingly. In the limit of a vanishing 
oupling 
on-stant, the mass � then diverges and the solutions shrinkto zero size. We illustrate this pattern in Fig. 2. Also,the gravitational intera
tion along this bran
h remainsstrong. In Fig. 3, we exhibit the value of the metri
fun
tions f and l at the origin for 
on�gurations of de-grees 1 to 4; both fun
tions remains �nite in this limit.This pattern is similar to the well-known pi
tureof the evolution of self-gravitating skyrmions [9�11; 19℄and monopole�antiminopole pairs [16, 17℄, whi
h onthe upper unstable bran
h are linked to the spheri
allysymmetri
 Bartnik�M
Kinnon limit solution [15℄.In the 
ase of self-gravitating Hop�ons, the stru
-ture of the e2 ! 0 limit solution 
an be better un-derstood when we introdu
e the res
aled radial 
oordi-nate x̂ = x=� and the res
aled mass �̂ = �� [11℄. Wethen observe that the res
aled mass remains �nite inthe limit � ! 0, as shown in Fig. 2b. Furthermore,the value of the limit mass is approa
hing the mass ofthe 
orresponding generalized Bartnik�M
Kinnon so-lution [27℄. Indeed, in the limit e ! 0, the remainingSkyrme term in a
tion (1) has a stru
ture that is identi-
al to the Yang�Mills theory a
tion expressed in termsof the �eld strength tensor F�� .We note that a similar trun
ated Faddeev�Skyrmemodel without the Diri
hlet term was re
ently 
onsid-ered on the spa
e S3� R [8℄. It turns out that it sup-ports the existen
e of 
ompa
ton solutions that satu-rate the topologi
al bound. These 
on�gurations are1133
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Fig. 2. The mass � (a) and the s
aled mass �̂ (b ) of the gravitating Hop�ons of degrees 1 through 4 are shown as fun
tionsof the 
oupling 
onstant � at M = 1. The dotted lines extend the Hop�on 
urves of the s
aled mass to the mass of the
orresponding generalized Bartnik�M
Kinnon solution
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Fig. 3. The values of the metri
 fun
tions f(0) (a) and l(0) (b ) of the gravitating Hop�ons of degrees 1 through 4 at theorigin are shown as fun
tions of the gravitational 
oupling 
onstant � at M = 1di�erent from the va
uum only on some �nite domainof the 
oordinate spa
e. Furthermore, this model is in-tegrable. Thus, these 
ompa
tons 
an be regarded asan approximation to the strongly gravitating Hop�onsin the limit �! 0.To 
larify this observation, in Fig. 4a, we plot themetri
 fun
tion f of the upper bran
h A1;1 solutionat �2 = 0:0004 and the 
orresponding �eld 
omponent�3 in the 
oordinates log r, �. Clearly, we 
an iden-tify three distin
t regions. In the �rst region, as 
anbe seen in Fig. 4 the metri
 fun
tion f remains verysmall but 
onstant without any angular dependen
e.
The 
orresponding matter �elds of the Hop�on are ap-proximately trivial in this inner region. In the se
ondtransition region, the metri
 varies up to the maximumvalue f = 1; this is a small region where the energy ofthe matter �eld is lo
ated. In Fig. 5, we presented thesurfa
es of 
onstant energy density of the gravitatingA1;1 and A2;1 Hop�ons. For the Q = 1 Hop�on, the en-ergy density exhibits a stru
ture of a pumpkin-shapedsphere with a maximum at the origin, and for Q = 2,the 
on�guration it is a deformed sphere surroundedby a torus-like ring (
f. the 
orresponding �at-spa
e
on�gurations in Fig. 1). Finally, in the third outer re-1134
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Fig. 4. The metri
 fun
tion f(r; �) (a) and the third 
omponent of the �eld of the gravitating Hop�on of degree 1 on theupper bran
h (b ) are shown in the logarithmi
 radial 
oordinate log r at �2 = 0:0004 at M = 1
Fig. 5. The isosurfa
es of the energy density (� == 4 �106) of the gravitating axially symmetri
 Hop�onsof degrees 1 and 2 on the upper bran
h are shown at�2 = 0:0004 and M = 1. The 
hara
teristi
 size ofthe 
on�gurations is about r
ore � 0:8 in the res
aledradial 
oordinate ~r = �rgion, the metri
 fun
tions are approa
hing the �at-spa-
e limit values while the 
omponents of the Hop�on�eld are approximately in the va
uum. Clearly, thispattern agrees with the 
orresponding behavior of theBartnik�M
Kinnon solutions [15, 26℄ and the regularsolutions of the Einstein�Skyrme model [11℄. Hen
e,this behavior is generi
, being independent of the topo-logi
al properties of the matter �eld.4. CONCLUSIONSThe main purpose of this paper was to present newtype of self-gravitating solitons in the Einstein�Fad-deev�Skyrme theory. We have fo
used on the 
on�gu-rations of lower degrees up to Q = 4. These solutionsare asymptoti
ally �at and globally regular.

As regards the dependen
e of the gravitating Hop-�ons on the gravity 
oupling 
onstant, we observe thesame general pattern as for solitons of the Einstein�Skyrme model and the sphaleron solutions of theEinstein�Yang�Mills�Higgs theory. In all these 
ases,a lower bran
h of gravitating solitons emerges fromthe 
orresponding �at-spa
e 
on�gurations, and mergeswith the upper bran
h at a maximal value of the grav-itational 
oupling. The upper bran
h extends ba
k tothe limit � ! 0, where solutions approa
h the 
orre-sponding (generalized) Bartnik�M
Kinnon solutions ofthe SU(2) Einstein�Yang�Mills theory. Hen
e, we 
an
on
lude that the topologi
al 
hara
teristi
s of the mat-ter �eld do not a�e
t the limit behavior of gravitatingsolitons.One question we did not address 
on
erns the sta-bility of the gravitating Hop�ons. However, it is knownthat the solitons of the Einstein�Skyrme model are sta-ble on the lower bran
h and are unstable on the upperbran
h, and there is a reason to believe that the gravi-tating Hop�ons on the upper bran
h are also unstable.There are various possible extensions of the solu-tions dis
ussed in this paper. First, our preliminary re-sults indi
ate the existen
e of stati
 axially symmetri
bla
k hole solutions with Hop�on hair. But 
onstru
-ting gravitating Hop�on solutions of higher degrees 
ur-rently remains a numeri
al 
hallenge. It would also beinteresting to address the question of how in
lusions ofa 
osmologi
al 
onstant a�e
t the properties of a gra-vitating Hop�on.1135
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