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GRAVITATING HOPFIONSYa. M. Shnir *Joint Institute for Nulear Researh141980, Dubna, Mosow Region, RussiaReeived May 30, 2015We onstrut solutions of the 3 + 1 dimensional Faddeev�Skyrme model oupled to Einstein gravity. The solu-tions are stati and asymptotially �at. They are haraterized by a topologial Hopf number. We investigatethe dependene of the ADM masses of gravitating Hop�ons on the gravitational oupling. When gravity isoupled to �at spae solutions, a branh of gravitating Hop�on solutions arises and merges at a maximal valueof the oupling onstant with a seond branh of solutions. This upper branh has no �at spae limit. Instead,in the limit of a vanishing oupling onstant, it onnets to either the Bartnik�MKinnon or a generalizedBartnik�MKinnon solution. We further �nd that in the strong-oupling limit, there is no di�erene betweenthe gravitating solitons of the Skyrme model and the Faddeev�Skyrme model.DOI: 10.7868/S00444510151200811. INTRODUCTIONThere are many nonlinear lassial �eld theories in�at spaetime that admit topologially stable solitonsolutions. These are partile-like, globally regular lo-alized �eld on�gurations with �nite energy. Interes-ting examples in d = 3 + 1 dimensions are the originalSkyrme model [1℄ and the Faddeev�Skyrme model [2℄.The Skyrme model is a nonlinear salar O(4) sigmamodel; under ertain assumptions it an be derivedby expanding a low-energy e�etive Lagrangian in thelarge-N limit [3℄, with the topologial harge of themultisoliton on�guration set in orrespondene withthe physial baryon number. The Faddeev�Skyrmemodel is a modi�ed O(3) sigma model, and hene thetopologial properties of the orresponding solitons,so-alled Hop�ons, are quite di�erent from those ofSkyrme-model solutions: the Hop�ons are string-likeon�gurations lassi�ed by the linking number, the �rstHopf map S3 ! S2 [4�6℄.The struture of both models looks similar: the or-responding Lagrangian inludes the usual sigma-modelterm, the Skyrme term, whih is quarti in derivativesof the �eld, and a potential term that does not ontainderivatives. Reently, some modi�ations of both mod-els were proposed to approah the topologial bound*E-mail: shnir�theor.jinr.ru

[7, 8℄ preserving topologial properties of the orre-sponding solitons.When gravity is oupled to the Skyrme model, thishas a signi�ant e�et on the solutions. It turns outthat there are hairy blak hole solutions of the Ein-stein�Skyrme theory [9�11℄. Historially, that was the�rst example of onstrutions of hairy blak holes.These solutions are stable, asymptotially �at, andhave a regular horizon; furthermore, they an be viewedas bound states of Skyrmions and Shwarzshild blakholes [12℄. Axially symmetri stati solutions of theEinstein�Skyrme model with topologial harge twowere studied in [13℄. Reently, in [14℄, self-gravitatingBPS Skyrmions were used in desribing bulk propertiesof neutron stars.The globally regular gravitating Skyrmions in anasymptotially �at spae were studied in [10, 11℄.It was shown that there are two branhes of solu-tions, one of whih emerges smoothly from the �atspae Skyrmion on�guration. As the e�etive grav-itational oupling onstant is inreased from zero, thisbranh terminates at some ritial value of the ou-pling, beyond whih gravity beomes too strong forself-gravitating Skyrmions to persist. There, it mergeswith a seond branh, whih extends all the waybak to the vanishing oupling onstant. Along thisbranh, the mass of the gravitating Skyrmion rapidlyinreases and the solution beomes unstable. Surpris-ingly, it was shown in [11℄ that in the limit of van-ishing oupling, the gravitating Skyrmion approahes1130



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Gravitating Hop�onsthe lowest Bartnik�MKinnon (BM) solution of theSU(2) Einstein�Yang�Mills theory [15℄. This patternis rather similar to the branh struture of gravita-ting monopole�antimonopole hains and vortex ringsin Einstein�Yang�Mills�Higgs theory [16, 17℄, althoughthe reason for its existene is di�erent.The properties of gravitating Skyrmions were on-sidered in many works, for example, on�gurationswith disrete symmetry were investigated in [18℄ andspinning gravitating Skyrmions were studied in [19℄.Modi�ations of the Einstein�Skyrme model with os-mologial onstant were investigated in [20, 21℄. How-ever, to the best of our knowledge, the analysis of prop-erties of gravitating solitons of the Einstein�Faddeev�Skyrme system has not yet been done, although theHop�ons in �at spae have been intensively studiedover reent years [4�6℄.In this paper, we onstrut globally regular gravi-tating Hop�ons. Beause the onsistent onsiderationof solitons with higher Hopf harges is related to theompliated task of full numerial simulations in 3D [6℄,we restrit ourself to the ase of stati Hop�ons of de-grees Q � 4. Using the rational map parameterizationof the salar �eld, we produe an initial on�gurationof a given degree, to be used as an input �le in ournumerial sheme. We study the orresponding �eldon�gurations in the Einstein�Faddeev�Skyrme modelnumerially. We show that the general pattern of evo-lution of the on�guration is very similar to the branhstruture of the Einstein�Skyrme system that links the�at spae Skyrmions and the BM solution.2. THE MODELThe Einstein�Faddeev�Skyrme model in asymptoti-ally �at 3+1 dimensional spae is de�ned by the ationS = 132�2 Z �2�RG �� �e2(���a���a) + 14�2F��F�� + V [�℄����p�gd4x; (1)where the gravity part of the ation is the usual Ein-stein�Hilbert ation with the urvature salar R, g de-notes the determinant of the metri, G and M arethe gravitational onstant and the mass of the Fadde-ev�Skyrme �eld, and e and � are the Hop�on ouplingonstants. We note that in the natural units in whih = ~ = 1, the parameter e2 has the dimension [e2℄ == [ml�1℄ = MeV2 while the onstant [�2℄ = [m�1l�1℄is dimensionless.

We next de�neF�� = "ab�a���b���;whih is the pullbak of the area form on the tar-get spae S2. An additional potential term V [�℄ == M2[1 � (�3)2℄ breaks down the global SO(3) sym-metry of the model. We note that this term is optional:the existene of stati soliton solutions of model (1) isallowed by the Derrik theorem even if the mass pa-rameter M = 0. However, this term is neessary inorder to stabilize the isospinning Hop�ons [22, 23℄.The triplet of the real salar �eld omponents �a == (�1;�2;�3) is restrited to the unit sphere, �a ��a == 1, and hene the �eld is a map � : R3 ! S2. A topo-logial restrition on the �eld �a is that it approahesits vauum value at the spaial boundary, �! (0; 0; 1)as r ! 1, and therefore the one-point ompati�a-tion of the domain spae R3 to S3 de�nes stati �nite-energy solutions of the model as the �rst Hopf map� : S3! S2 that belongs to an equivalene lass har-aterized by the third homotopy group �3(S2) = Z.Expliitly, the integer-valued Hopf invariant is de�nednonloally as Q = 116�2 ZR3 "ijkFijAk; (2)where the one-form A = Akdxk is de�ned via F = dA,i. e., the two-form F is losed, dF = 0. Invariant (2)an be interpreted geometrially as the linking num-ber of two loops obtained as the preimages of any twogeneri distint points on the target spae S2.Similarly to the ase of the Einstein�Skyrme model[11℄, we an resale the model by introduing the di-mensionless radial oordinate x = e�r, the gravita-tional oupling onstant �2 = Ge2=2�, and the resaledmass parameter M̂ = M=e2�. Then ation (1) beomesS = e32��2 Z � R�2 � (���a���a ++ 14F��F�� + M̂2(1� (�3)2)����p�g d4x: (3)To obtain gravitating stati axially symmetri so-lutions, we use the usual Lewis�Papapetrou metri inisotropi oordinates:ds2 = �fdt2+mf dr2+mr2f d�2+ lr2 sin2 �f d'2; (4)where the metri funtions f , m, and l are funtions ofthe radial variable r and the polar angle � only. The zaxis (� = 0; �) represents the symmetry axis.1131



Ya. M. Shnir ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015
Fig. 1. Energy density isosurfaes of the Hop�ons ofdegrees 1 to 4 (from left to right)For the lowest values of the orresponding Hopfharge Q = 1; 2, the simplest soliton solutions an beonstruted using the axially symmetri ansatz [4℄ writ-ten in terms of the funtions X = X(r; �); Y = Y (r; �),and Z = Z(r; �):�1 + i�2 = F (r; �)ei(m	(r;�)+n') �� [X(r; �) + iY (r; �)℄ein';�3 = Z(r; �);where n;m 2 Z.An axially symmetri on�guration of the matter�eld of this type is ommonly referred to as Am;n,where the �rst subsript orresponds to the number oftwists along the loop and the seond label is the usualO(3) sigma-model winding number assoiated with themap S2 ! S2. The Hopf invariant of this on�gurationis Q = mn.However, for higher-degree Hop�ons, twisted, knot-ted, and linked on�gurations our [5, 6℄, and further-more, the number of loal energy minima on�gura-tions grows with Q. Here we onsider the twisted on-�guration eA3;1 of degree 3 and the A2;2 axially symmet-ri solution of degree 4. The latter on�guration, whihis a global minimum in this setor, may be thought ofas two adjaent Hop�ons A2;1. The energy isosurfaesof these �at-spae on�gurations are shown in Fig. 1.Using the rational map projetion from the sphereS3 � C 2 onto the omplex projetive line C P1 [6℄, wean parameterize the initial on�guration asW = �1 + i�21 + �3 � Z�1 Z�0Za1 + Zb0 ; (5)where(Z1; Z0) == �(x+ iy) sinh(r)r ; osh(r) + iz sinh(r)r � (6)and h(r) is some monotoni funtion of the radial vari-able r = px2 + y2 + z2 with the boundary onditionsh(0) = � and h(1) = 0. Suh a map has the degree

Q = ��+ab, and it therefore allows us to onstrut aninitial on�guration of any degree.A peuliar feature of the Faddeev�Skyrme modelis that for a given degree Q, there are usually severaldi�erent stable stati soliton solutions of rather sim-ilar energy. In partiular, there are two solutions inthe setor of degree three, ~A3;1 and an axially symmet-ri on�guration A3;1. The energy of the latter soli-ton is slightly higher, but the inlusion of the massterm and/or exitation of the isorotational degrees offreedom may hange the situation [23℄. Hereafter, werestrit our onsideration to the axially symmetri so-lutions of degrees Q � 4.The omplete set of �eld equations that follow fromthe variation of the ation of Einstein�Faddeev�Skyrmemodel (1) an be solved when we impose the boundaryonditions and use the parameterization of the metriin (4). Then the �eld equations redue to a set of sixoupled partial di�erential equations, to be solved nu-merially.As usual, they follow from the regularity on thesymmetry axis and symmetry requirements as well asthe ondition for the energy to be �nite. In partiular,we have to take into aount that the asymptoti valueof the Hop�on �eld is restrited to the unit sphere andthe metri funtions must approah unity at the spaialboundary. Expliitly, we impose the onditions�1����r!1! 0 ; �2����r!1! 0 ; �3����r!1! 1;f ����r!1! 1; m����r!1! 1; l����r!1! 1 (7)at in�nity and�1����r!0! 0 ; �2����r!0! 0 ; �3����r!0! 1;�rf ����r!0! 0 ; �rm����r!0! 0 ; �rl����r!0! 0 (8)at the origin.The regularity ondition for the funtions on thesymmetry axis yields�1�����!0;�! 0 ; �2�����!0;�! 0 ; �3�����!0;�! 1;��f �����!0;�! 0 ; ��m�����!0;�! 0 ; ��l�����!0;�! 0: (9)To satisfy the regularity ondition m(r; 0) = l(r; 0), weintrodue the auxiliary funtiong(r; �) = l(r; �)=m(r; �)1132



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Gravitating Hop�onswith the boundary onditionsg(0; �) = g(1; �) = g(r; 0) = 1; ��g(r; �=2) = 0:We hek this ondition as a test for orretness of ournumerial results.3. NUMERICAL RESULTSThe numerial alulations are mainly performed onan equidistant grid in spherial oordinates r and �, us-ing the ompat radial oordinate x = r=(1+r) 2 [0 : 1℄and � 2 [0; �℄. To �nd solutions of the Euler�Lagrangeequations that follow from resaled ation (3) and de-pend parametrially on the e�etive gravity onstant �,we used the software pakage CADSOL based on theNewton�Raphson algorithm [24℄. This ode solves agiven system of nonlinear partial di�erential equationssubjet to a set of boundary onditions on a retangulardomain. Typial grids we used have sizes 90� 70. Theresulting system is solved iteratively until onvergeneis ahieved.Apart from some initial guess for the solution,CADSOL also requires the Jaobian matries for theequations with respet to the unknown funtions andtheir �rst and seond derivatives, and the boundaryonditions. This software pakage also provides errorestimates for eah funtion, whih allows judging thequality of the omputed solution. The relative errors ofthe solutions we found are of the order 10�4 or smaller.We also introdue an additional Lagrangian multiplierto onstrain the �eld to the surfae of a unit sphere and�x the value of the mass parameter M = 1.We note that the dimensionless gravitational ou-pling onstant �2 = Ge2=2� vanishes if (i) the Newtononstant G ! 0, or, (ii) e ! 0. In the former ase,we reover the usual solitons of the Faddeev�Skyrmemodel in �at spae, and in the seond ase, the Dirih-let term in ation (1) vanishes. Thus, similarly to thease of self-gravitating monopole�antimonopole sys-tems in the asymptotially �at Einstein�Yang�Mills�Higgs theory [16, 17℄, Yang�Mills sphalerons in theAdS4 spaetime [25℄, and solitons of the Einstein�Skyrme model [11, 26℄, we expet that there are twobranhes of solutions of the Einstein�Faddeev�Skyrmemodel.We have found numerial evidene that when grav-ity is oupled to the Faddeev�Skyrme model, a branhof gravitating Hop�ons emerges from the �at-spaeHop�on solution and extends to a maximal value �rwhere it merges with the upper mass branh. Indeed,as the gravitational oupling onstant inreases, the

bakground beomes more and more deformed and, atsome ritial value of the oupling, gravity beomes toostrong for solutions to persist. The ritial value �rat whih a bakbending is observed slightly dereasesas the topologial harge of the Hop�on insreases (f.Figs. 2 and 3).Parameterization (4) allows us to �nd the dimen-sionless ADM mass of the on�guration �, de�ned bythe value of the derivative of the metri funtion f atthe boundary: � = 12�2 limx!1 �xf: (10)To perform another hek of our numeris for orret-ness, we ompare this value with the results of diretevaluation of the integral over the T00 omponent of thetotal energy�momentum tensor of matter and gravity.Along the �rst (lower) branh, the mass of thegravitating Hop�ons dereases with inreasing �, sinethe attration in the system inreases with inreasingthe gravitational strength. Along the seond (upper)branh, by ontrast, mass (10) inreases strongly withdereasing the oupling �, and the solutions shrink or-respondingly. In the limit of a vanishing oupling on-stant, the mass � then diverges and the solutions shrinkto zero size. We illustrate this pattern in Fig. 2. Also,the gravitational interation along this branh remainsstrong. In Fig. 3, we exhibit the value of the metrifuntions f and l at the origin for on�gurations of de-grees 1 to 4; both funtions remains �nite in this limit.This pattern is similar to the well-known pitureof the evolution of self-gravitating skyrmions [9�11; 19℄and monopole�antiminopole pairs [16, 17℄, whih onthe upper unstable branh are linked to the spheriallysymmetri Bartnik�MKinnon limit solution [15℄.In the ase of self-gravitating Hop�ons, the stru-ture of the e2 ! 0 limit solution an be better un-derstood when we introdue the resaled radial oordi-nate x̂ = x=� and the resaled mass �̂ = �� [11℄. Wethen observe that the resaled mass remains �nite inthe limit � ! 0, as shown in Fig. 2b. Furthermore,the value of the limit mass is approahing the mass ofthe orresponding generalized Bartnik�MKinnon so-lution [27℄. Indeed, in the limit e ! 0, the remainingSkyrme term in ation (1) has a struture that is identi-al to the Yang�Mills theory ation expressed in termsof the �eld strength tensor F�� .We note that a similar trunated Faddeev�Skyrmemodel without the Dirihlet term was reently onsid-ered on the spae S3� R [8℄. It turns out that it sup-ports the existene of ompaton solutions that satu-rate the topologial bound. These on�gurations are1133
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As regards the dependene of the gravitating Hop-�ons on the gravity oupling onstant, we observe thesame general pattern as for solitons of the Einstein�Skyrme model and the sphaleron solutions of theEinstein�Yang�Mills�Higgs theory. In all these ases,a lower branh of gravitating solitons emerges fromthe orresponding �at-spae on�gurations, and mergeswith the upper branh at a maximal value of the grav-itational oupling. The upper branh extends bak tothe limit � ! 0, where solutions approah the orre-sponding (generalized) Bartnik�MKinnon solutions ofthe SU(2) Einstein�Yang�Mills theory. Hene, we anonlude that the topologial harateristis of the mat-ter �eld do not a�et the limit behavior of gravitatingsolitons.One question we did not address onerns the sta-bility of the gravitating Hop�ons. However, it is knownthat the solitons of the Einstein�Skyrme model are sta-ble on the lower branh and are unstable on the upperbranh, and there is a reason to believe that the gravi-tating Hop�ons on the upper branh are also unstable.There are various possible extensions of the solu-tions disussed in this paper. First, our preliminary re-sults indiate the existene of stati axially symmetriblak hole solutions with Hop�on hair. But onstru-ting gravitating Hop�on solutions of higher degrees ur-rently remains a numerial hallenge. It would also beinteresting to address the question of how inlusions ofa osmologial onstant a�et the properties of a gra-vitating Hop�on.1135
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