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DRAG OF BALLISTIC ELECTRONS BY AN ION BEAMV. L. Gurevi
h, M. I. Muradov *Io�e Institute, Russian A
ademy of S
ien
es194021, Saint Petersburg, RussiaRe
eived January 27, 2015Drag of ele
trons of a one-dimensional ballisti
 nanowire by a nearby one-dimensional beam of ions is 
onsid-ered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velo
ity V. Theratio of the drag 
urrent to the primary 
urrent 
arried by the ion beam is 
al
ulated. The drag 
urrent turnsout to be a nonmonotoni
 fun
tion of velo
ity V . It has a sharp maximum for V near vnF =2, where n is thenumber of the uppermost ele
tron miniband (
hannel) taking part in 
ondu
tan
e and vnF is the 
orrespondingFermi velo
ity. This means that the phenomenon of ion beam drag 
an be used for investigation of the ele
tronspe
tra of ballisti
 nanostru
tures. We note that whereas observation of the Coulomb drag between two parallelquantum wires may be in general 
ompli
ated by phenomena su
h as tunneling and phonon drag, the Coulombdrag of ele
trons of a one-dimensional ballisti
 nanowire by an ion beam is free from su
h spurious e�e
ts.DOI: 10.7868/S00444510151200931. FORMULATION OF THE PROBLEMDrag as a physi
al phenomenon in solids 
an be de-s
ribed as follows. We 
onsider a solid with two typesof quasiparti
les (type 1 and type 2) and 
reate a �uxof the quasiparti
les of type 2, the so-
alled a
tive, ordriving 
urrent. As a result of the intera
tion betweenparti
les, a 
urrent of quasiparti
les of type 1, the so-
alled passive, or drag 
urrent is ex
ited. An exampleof this phenomenon is the Coulomb drag, where due toCoulomb intera
tion between the ele
trons, a 
urrentin a 
ondu
tor 
reates a 
urrent in an adja
ent 
ondu
-tor. This phenomenon was predi
ted in seminal papersby Pogrebinskii [1℄ and Pri
e [2℄.In this paper, we 
onsider a physi
ally entirely dif-ferent situation where the driving 
urrent is 
reated byreal heavy parti
les outside the 
ondu
tor (rather thanby Fermi degenerate quasiparti
les within another 
on-du
tor).Two formulations of the problem are feasible.1. The dragging �ux 
onsists of heavy ions of almostthe same velo
ity V.2. A �ux of weakly ionized gas is in thermal equilib-rium, having some temperature T and hydrodynami
alvelo
ity V (
f. with Ref. [3℄).*E-mail: mag.muradov�mail.io�e.ru

In this paper, we treat the �rst possibility. In otherwords, we 
onsider an ion beam, i. e., a �ux of ions hav-ing the same velo
ityV. For the simplest situation, thevalue of velo
ity V is determined by the a

eleratingvoltage V and the ion mass M asMV 22 = eIV; (1)where eI is the 
harge of an ion.It is interesting to 
ompare in advan
e the situa-tion we dis
uss in this paper with the drag in the 
asewhere both 
ondu
tors are one-dimensional (1D) stru
-tures with the ele
trons performing ballisti
 (
ollision-less) motion. Su
h nanos
ale systems may have ratherlow ele
tron densities, whi
h 
an be varied by means ofthe gate voltage. The e�e (ele
tron�ele
tron) intera
-tion 
an be treated as e�e 
ollisions between the ele
-trons belonging to the drive (a
tive) and drag (passive)wires (see Refs. [4�11℄).Experimentally, in our opinion, the situation withtwo 1D quantum wires 
annot be 
onsidered settled.Two 1D quantum wires intera
ting via a Coulomb po-tential are usually 
reated in solids arti�
ially (e. g., bysplit gates), and therefore spe
ial 
are should be takenin order that there be no tunneling between the wires,be
ause tunneling 
an hamper observation of the drag.On the other hand, a 
hange in the split gate voltagemay result not only in the shift of the 
hemi
al po-tentials of individual nanowires but also in variation ofthe barrier width (or a spatial distan
e) between the6 ÆÝÒÔ, âûï. 6 (12) 1137
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h, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015wires. In some 
ases, even a 
hange in the Coulombdrag 
urrent dire
tion is observed [9℄. Furthermore, aphonon-mediated 
ontribution [12, 13℄ to the drag isin general inevitable for two nanowires formed by splitgates.It is usually assumed that the ele
trons of the quan-tum wires are degenerate and the temperature is low
ompared to the ele
tron Fermi energy. The 
ollision-less quantum wires a
t as waveguides for the ele
tronde Broglie waves. For a strong Fermi degenera
yT � �; (2)where � is the Fermi energy (we use the energy unitsfor the temperature T assuming kB � 1), ea
h mini-band of transverse quantization (
hannel) makes the
ontribution to the 
ondu
tan
e given by [14℄G0 = e2�~ (3)(e being the ele
tron 
harge), and hen
e the total 
on-du
tan
e of a quantum wire isG = NG0;where N is the number of a
tive 
hannels, i. e., mini-bands with bottoms �n(0) below the Fermi level �. It isassumed that ea
h quantum wire is 
onne
ted to idealele
troni
 reservoirs atta
hed to its ends. The relax-ation pro
esses in the reservoirs are 
onsidered to beso fast that ea
h of them is in thermal equilibrium.The e�e intera
tion within a single quantum wire doesnot result in a 
urrent variation be
ause of the quasi-momentum 
onservation in e�e 
ollisions in a semi
on-du
tor. However, if two su
h wires, 1 and 2, are nearone another and are parallel, the Coulomb intera
tionof ele
trons belonging to di�erent wires 
an transferquasimomentum between the wires, whi
h eventuallygives rise to a drag e�e
t. The drag for
e due to theballisti
 
urrent in wire 2 
reates a sort of permanenta

eleration on the ele
trons of wire 1. As wire 1 hasa �nite length L, a steady drag 
urrent Jd is estab-lished. Within the Fermi-liquid approa
h, we shouldrestri
t ourselves to dire
t e�e 
ollisions mediated bythe Coulomb intera
tion.For su
h e�e 
ollision to be possible, the absolutevalues of the four ele
tron energies should be withinthe stripes of width approximately equal to T near the
orresponding Fermi levels, �d and �a. This meansthat the relation j�a � �dj . T (4)

should hold. In other words, be
ause of the 
onserva-tion of the ele
tron energy and quasimomentum in 
om-bination with the Fermi degenera
y, the drag 
urrentexists only if the Fermi levels of the ele
trons of bothwires 
oin
ide within the a

ura
y of thermal broaden-ing. A 1D quantum wire 
an have several minibandsof transverse quantization (
hannels), and there is aFermi level asso
iated with ea
h su
h 
hannel. The 
o-in
iden
e of any pair of Fermi levels of the a
tive (drive)and drag wires should result in a sharp spike of the drag
urrent [4℄.The primary aim of this paper is to 
onsider the sit-uation where many (or some) of the above-mentionedexperimental di�
ulties do not arise and the pi
ture isas 
lear as possible, su
h that the Coulomb drag 
ouldbe investigated exa
tly, retaining the prin
ipal featuresof the 1D drag situation as 
losely as possible. As re-gards the drag by an ion beam, quite unlike the situa-tion with two Fermi-degenerate 
ondu
tors, the velo
-ity of ions V 
an be varied in experiment. As we see inwhat follows, this possibility provides a tool to investi-gate the ele
tron spe
trum of a ballisti
 1D 
ondu
tor.We see below that varying the velo
ity V allows ob-serving a maximum of the drag 
urrent Jd(V ). Theposition of the maximum 
orresponds to the 
onditionV = vF =2; (5)where vF is the Fermi velo
ity 
orresponding not toany miniband (as in the 
ase of two quantum wiresoutlined above) but to the uppermost miniband takingpart in 
ondu
tion of the drag 
urrent. The point is ina di�erent physi
s behind these two types of os
illatorybehavior.Our purpose is to investigate the main features ofthis drag phenomenon. We assume that the distan
e dbetween the ion beam and the wire is mu
h larger thanthe width of the wire, and hen
e the Coulomb intera
-tion of ions and ele
trons is a smooth fun
tion on thes
ale of this width. Then the sele
tion rules for the 
or-responding matrix elements require that the ele
tronsinvolved in the transitions 
hange their quasimomentaand remain in the �rst approximation within the initialtransverse quantized 
hannel n. We 
an vary the velo
-ity V of the ions with the a

elerating voltage V andmeasure the resulting variation of the drag 
urrent (ordrag voltage). We let Vr denote the volume o

upiedby the nanowire and VR denote the volume where the�ux of ions propagates and intera
ts with the ele
tronsof the nanowire. We assume both Vr and VR to have a1D shape of length L parallel to the z axis.For the treatment of our problem, we use the Boltz-mann equation for the one-parti
le ele
tron distribu-1138
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 ele
trons by an ion beamtion fun
tion. As is well known, due to e�e intera
-tion, a single-
hannel state may be unstable, whi
h forN = 1 gives rise to the so-
alled Tomonaga�Luttingerliquid [15, 16℄ for the drag wire. This means that theresults of this paper are valid forN > 1; the 
aseN = 1may be not 
overed by the theory we work out below.We 
an give the following qualitative 
onsidera-tions 
on
erning the drag by an ion beam. Dueto the 
onservation of quantities su
h as the energy,the transverse quantized 
hannel number n, and the(quasi)momentum in ele
tron�ion 
ollisions, we have to
onsider in the Born approximation the transition of anele
tron from an jn; pi to an jn; p+qzi state (where p isthe z-
omponent of the ele
tron quasimomentum) andthat of the ion from a jPi to a jP� qi state a

ordingto the relationp22m + P22M = (p+ qz)22m + (P� q)22M ; (6)wherem is the e�e
tive mass of the 
ondu
tion ele
tronandM is the mass of an ion. The Æ-fun
tion des
ribingthe energy 
onservation 
an therefore be written asÆ � q2z2m �1 + mM �+ qzm (p�mV ) + q2?2M � �� 2mjqzjÆ [qz � 2(mV � p)℄ ; (7)where Pz � P = MV . In what follows, we take intoa

ount that m=M � 1 and negle
t m=M 
omparedto unity and (m=M)q2? 
ompared to q2z . Therefore, thetransferred (quasi)momentum is qz = 2(mV � p) andthe probability of su
h a transition in
ludes the fa
torfn(p)[1� fn(p+ qz)℄� fn(p+ qz)[1� fn(p)℄ == fn(p)� fn(2mV � p) (8)as well as the ele
tron�ion Coulomb intera
tion matrixelement squared. For the 1D situation under 
onsider-ation, it has a fa
tor proportional toK20 (jqzjd=~)��qz=2(mV�p) ; (9)where d is the distan
e between the ion beam andthe wire and K0 is the M
Donald fun
tion (see belowEq. (19)). For it, we 
an use the approximate equationsK0(s) � ln 2
s ; s� 1; (10)K0(s) �r �2se�s; s� 1; (11)

p

−pF
2mV − p2mV − pF

µ

Fig. 1. Momenta from �pF to 2mV �pF are involvedin transitions. For V > vF =2, all negative momenta p
ontribute to the drag 
urrentwhere ln 
 = 0:577. The drag 
urrent is proportional tothe sum over ele
tron quasimomenta p of the produ
tsin Eqs. (7)�(9). We 
onsider p < 0 and require thestate p to be o

upied, whi
h leads to �pF < p < 0.The requirement that the �nal state with the momen-tum 2mV �p is empty gives 2mV �p > pF if V < vF =2(Fig. 1). If V > vF =2, there is no additional restri
-tion ex
ept �pF < p < 0, i. e., all o

upied states areinvolved in transitions. Therefore, if V < vF =2, weobtain for the drag 
urrentJd / �pF+2mVZ�pF dpK20 [2(mV � p)d=~℄mV � p == pF+mVZpF�mV dpK20 (2pd=~)p ; (12)and we see that an in
rease in V de
reases the mini-mal transferred momentum and in
reases the e�e
tiveCoulomb intera
tion K0(2pd=~). If V > vF =2, we haveJd / 0Z�pF dpK20 [2(mV � p)d=~℄mV � p == pF+mVZmV dpK20 (2pd=~)p ; (13)and an in
rease in V results in a de
rease in the drag
urrent. These equations provide an adequate des
rip-tion of the drag 
urrent dependen
e on the ion beamvelo
ity, as 
an be readily seen in our quantitative ap-proa
h below.One more 
omment 
on
erning 
onservation law (6)is 
alled for. The point is that p is the z-
omponent ofthe ele
tron quasimomentum rather than the true mo-mentum. This means that it is 
onserved within the1139 6*
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ura
y of ~ times the additional ve
tor of the re
ip-ro
al latti
e. It 
an be veri�ed, however, that in the
ase of a simple ele
tron spe
trum (one minimum inthe 
enter of the Brillouin zone), the 
onservation lawis given by Eq. (6).2. INTERACTION OF AN ION BEAM WITHELECTRONS OF A NANOSTRUCTUREFor simpli
ity, we assume the width of the beam tobe 
onstant (a
tually, it may slightly vary in the 
ourseof beam propagation). Then we 
an write the distribu-tion of the ions within the beam asFP = N(2�~)3Æ(Px)Æ(Py)Æ(Pz � P ); (14)where N is the ion 
on
entration.The 
ollision term of the Boltzmann equation for1D ele
trons and 3D ions in the Born approximation isgiven by��fnp�t �
oll � Iff; Fg = Z VRd3P(2�~)3 Z VRd3q(2�~)3 �� 2�~ jhp; n;PjU jp+ qz ; n;P� qij2 �� Æ(�np +EP � �n;p+qz �EP�q)�� [fnp(1�fn;p+qz )FP�fn;p+qz(1�fnp)FP�q℄ ; (15)where �n(p) = �n(0) + p2=2m: (16)Here, n is the number of the 
hannel, i. e., of the mini-band of 1D transverse quantization (a

ording to theassumption made above, this number does not 
hangein the 
ourse of ele
tron transitions), q is the trans-ferred (quasi)momentum, andU = 21 + � eeIjR� rj (17)des
ribes the Coulomb intera
tion of an ion with a
harge eI and an ele
tron in the wire, with � being thediele
tri
 
onstant of the wire. For the matrix elementin Eq. (15), we havehp; n;PjU jp+ qz ; n;P�qi = ZVr d3r ZVR d3R �n(r?)��	�P 2eeIL(1+�)jr�Rj n(r?)	P�q exp� iqzz~ � : (18)

Be
auseZ dZdzLjr�Rj exp� iqz(z � Z)~ � == 2K0� jqz jj�r?j~ � ; (19)where j�r?j �p(x�X)2 + (y � Y )2;we 
an writehp; n;PjU jp+ qz ; n;P� qi == 4eeI(1 + �)VR Z dR? Z dr?j n(r?)j2 �� exp�� iq?R?~ �K0(jqz jj�r?j=~): (20)The Boltzmann equation for ele
trons isv �fnp�z = ���fnp�t �
oll ; (21)where v = d�npdp = pm (22)is the ele
tron velo
ity.To 
al
ulate the 
urrent in the wire, we iterate theBoltzmann equation for the ele
trons of the wire inthe term des
ribing 
ollisions between ele
trons of thewire and ions. In the zeroth approximation, we 
an
hoose the ele
tron distribution fun
tion in the 
olli-sion term to be the equilibrium one. In what follows,fnp � fF (�np � �) is assumed, where fF is the Fermidistribution fun
tion and � is the Fermi level. The �rstiteration of Eq. (21) gives the nonequilibrium part ofthe distribution fun
tion in the form�fnp = ��z � L2� 1vnp Iff; Fg (23)with the two signs 
orresponding to p > 0 and p < 0.Here, Iff; Fg is a shorthand notation for the 
ollisionterm. Using the parti
le 
onservation property of thes
attering integralXn Z dp Iff; Fg = 0; (24)we obtain the drag 
urrent Jd in the form (
f. Ref. [17℄)Jd = �2eLXn 1Z0 dp2�~Iff; Fg: (25)1140
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 ele
trons by an ion beamWith the distribution fun
tion given by Eq. (14), wehaveJd = �2eNV2RLXn 1Z0 dp2�~ Z d3q(2�~)3 �� 2�~ njhp; n; PezjU jp+ qz; n; Pez � qij2 ��Æ(�np+EPez��n;p+qz�EPez�q)fnp(1�fn;p+qz )�� jhp; n; Pez + qjU jp+ qz ; n; Pezij2 �� Æ(�np +EPez+q � �n;p+qz �EPez )�� fn;p+qz(1� fnp)o ; (26)where ez is the unit ve
tor along the z axis. In the �rstterm in the integrand, we 
hange q ! �q and shiftthe integration variable p by qz . ThenJd = �2eNV2RLXn Z d3q(2�~)3 qzZ0 dp2�~ �� 2�~ jhp; n; Pez + qjU jp+ qz ; n; Pezij2 �� Æ(�np +EPez+q � �n;p�qz �EPez )�� fn;p�qz (1� fnp); (27)and hen
e the drag 
urrent isJd = �J0 2MSRm�2~2 Xn Z dqz qzZ0 dp fn;p�qz(1� fnp)�� Z dq?g(q?; jqzj)�� Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm + P�� :Here, we introdu
eJ0 = e(2eeI)2LNmSR(1 + �)2�~3and a dimensionless quantity g(q?; jqzj) a

ording toS2Rg(q?; jqz j) = ����Z dR?dr? exp�� iq?R?~ � �� j n(r?)j2K0� jqz jj�r?j~ �����2 ; (28)where SR is the 
ross-se
tional area of the ion beam.We obtain

Jd = J0 2MSRm�2~2 Xn 1Z0 dqz qzZ0 dp fn;p�qz(1� fnp)�� Z dq?g(q?; qz)���Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm � P�� �� Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm + P��� : (29)2.1. Linear responseIn the linear response regimeV � T=pnF ; where pnF =p2m[�� �n(0)℄; (30)the di�eren
e of Æ-fun
tions in Eq. (29) 
an be ex-panded as (we again take into a

ount that M=m� 1)Æ �q2? � q2zMm + 2qz �Mpm + P���� Æ �q2? � q2zMm + 2qz �Mpm � P�� == m2M jqzj �Æ� mq2?2Mqz � qz2 + p+mV � �� Æ� mq2?2Mqz � qz2 + p�mV �� == mV mM jqzj ��pÆ� mq2?2Mqz � qz2 + p� :Then the integration by parts givesJd = J0 2SR�2~2mV Xn 1Z0 dqzqz qzZ0 dp Z dq?g(q?; qz)�� Æ� mq2?2Mqz � qz2 + p� ��pfn;p�qz (1� fnp): (31)Using��pfn;p�qz(1� fnp) = (1� fnp)�� Æ(qz � p� pnF ) + fn;p�qzÆ(p� pnF ); (32)we haveJd = J0 4SR�2~2mV Xn 1ZpnF dqz Z dq?g(q?; qz)�� �Æ�q2z � 2pnF qz + mq2?M � (1� fn;qz�pnF ) ++ Æ�q2z � 2pnF qz � mq2?M � fn;pnF�qz� : (33)1141
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h, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015Eliminating the Æ-fun
tions yieldsJd = J0 2SR�2~2mV Xn Z dq? ���g(q?; pnF + p1)1�fn;p1p1 +g(q?; pnF + p2)fnp2p2 � ;where p1 = pp2nF �mq2?=M and p2 == pp2nF +mq2?=M . The expression for Jd 
anbe simpli�ed asJd = J0 4SR�2~2mV ��Xn 1pnF Z dq? g(q?; 2pnF )exp (q2?=2MT ) + 1 : (34)If the ion beam 
ross se
tion is of a 
ir
ular formwith radius a, we haveg(q?; 2pnF ) = �2~J1(aq?=~)aq? �2K20 �2pnF d~ � ; (35)where J1(x) is the Bessel fun
tion of the �rst order andd is the distan
e between the 
entral lines of the ion �uxand the wire.Below, we dis
uss the spe
ial 
ase whereg(q?; 2pnF ) is independent of q? in more detail.For instan
e, this is the 
ase ifpMT � ~=a: (36)Then we obtainJd = J0 4a2 ln 4~2 MT VvF K20 �2pF d~ � ; (37)where vF = pF =m is the Fermi velo
ity andJ0 = e(2eeI)2LNma2(1 + �)2~3 : (38)In the opposite 
ase wherepMT � ~=a; (39)the drag is independent of temperature. For the valuesM = 10�22 g (Ga), T = 4 K, and a = 10�5 
m, thisinequality 
an easily be satis�ed. Then, we haveJd = J0 8VvF K20 �2pF d~ � : (40)It is interesting to 
al
ulate the ratio Jd=JI in this
ase: JdJI = eeI 32(eeI)2Lm(1 + �)2�~3vF K20 �2pFd~ � : (41)

Here, we 
an use Eqs. (10) and (11) for K0(s).For an estimate, we assume the values L = 10�4 
m,m = 7 � 10�29 g, vF = 2 � 107 
m/s, � = 10, andpF d=~ = 2, when
e K20 (2pFd=~) = 1:3 � 10�4. Then,for JI = 10�8 A, we have Jd = 2 � 10�9 A and the
orresponding drag voltageVd � 20�V: (42)Naturally, if JI in
reases, Vd also in
reases in pro-portion to JI . 2.2. Nonlinear 
aseWe 
onsider the simplest 
ase of low temperaturesassuming that V � T=pF : (43)In our further 
al
ulation, we assume that T = 0.Then, the integration due to the Fermi fun
tions inEq. (29) is restri
ted and we obtain (the �rst or these
ond Æ-fun
tion 
ontributes for V > 0 and V < 0,respe
tively, and therefore the drag 
urrent 
hanges itssign with V , as it should)Jd = J0 a2�~2 Xn 0� 2pnFZpnF dqzqz qzZpnF dp ++ 1Z2pnF dqzqz qzZqz�pnF dp1AZ dq?g(q?; qz)�� Æ �p�mV � qz2 �1� mM �+ mq2?2qzM � :The result valid forV < vF =2 (44)is Jd = J0 a2�~2 Xn Z dq?� �4PpnF � q2?��� p+Zp� dqzqz g(q?; qz); (45)where � is the step fun
tion andp� = pnF �mV +q(pnF �mV )2 �mq2?=M(other 
ases are 
onsidered in Appendix A).For V � vnF , the integration variable qz is in thevi
inity of 2pnF and we have1142
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 ele
trons by an ion beamJd = J0 a22�~2 Xn Z dq?� �4PpnF � q2?����4mVpnF � mM q2?p2nF � g(q?; 2pnF ): (46)Equation (46) 
an be substantially simpli�ed ifg(q?; 2pnF ) is independent of q?; this is the 
ase ifthe ion �ux 
ross se
tion 
hara
teristi
 width a obeysthe inequality pPpnF a=~� 1: (47)Then, Jd = J1Xn g(2pnF ); (48)where J1 = J0 (2mV )2a22~2 Mm : (49)This expression is valid for V > 0, i. e., when theion �ux is dire
ted �to the right�. Then, the momen-tum transferred to the ele
tron system in the wire isalso dire
ted to the right and the 
urrent (sin
e e < 0)�ows in the opposite dire
tion regardless of the sign ofthe dragging ion 
harge.Assuming that the distan
e d between the ion �uxand the wire is mu
h larger than the 
hara
teristi

ross-se
tional length of the wire and the �ux, we 
anwrite g(q?; 2pnF ) � K20 �2pnF d~ � (50)and Jd = J1Xn K20 �2pnFd~ � : (51)Using approximation (11) for the fun
tion K0, we ob-tain Jd = J1Xn 1knF d exp(�4knF d); (52)where knF = pnF =~.In the 
ase apPpnF =~� 1, we haveJd = 4J0MV Xn 1pnF K20 �2pnF d~ � (53)and therefore the drag 
urrent is a linear fun
tion of V .

0:1 0:2 0:3 0:4 0:5 0:6 0:7V=v2F02
468
(Jd=J0)� 103 12
Fig. 2. Drag 
urrent dependen
e on the ion beam ve-lo
ity for two parameter values k2F d = 3 (
urve 1 )and k2F d = 3:2 (
urve 2 ). We take v2F = kv1F andk = 3=2. The �rst peak 
orresponds to V=v2F == 1=2k (i. e., V=v1F = 1=2) and the se
ond peak(to the right) 
orresponds to V=v2F = 1=2. Here,J0 = e(2eeI)2LNma2=(1 + �)2~33. CONCLUDING REMARKSWe have developed a theory of Coulomb drag ofele
trons in a 1D ballisti
 nanostru
ture by an ionbeam. This provides an example of drag of quasipar-ti
les of a nanostru
ture by parti
les of the beam. Itis worth mentioning that su
h a beam may 
onsist notonly of heavy ions but also of free ele
trons. The freeele
tron mass is usually bigger than the e�e
tive massof 
ondu
tion ele
trons, and hen
e the approximationsadopted in our 
al
ulation, M � m, may remain validin this 
ase.The experimental setup should permit varying thevelo
ity V within rather wide limits. We see, however,that to a
hieve a large drag e�e
t, we should 
hoosethe value of V near vnF =2 (Fig. 2). Here, we wishto note that this velo
ity is preferred regardless of theion beam shape or the distan
e from the nanostru
ture(see Appendix B). This means in parti
ular that theion beam drag may be a useful tool in nanostru
turespe
tros
opy. APPENDIX AEvaluation of the drag 
urrent for variousratios � = V=vFWe introdu
e the dimensionless parameters� = mV=pnF = V=vnF1143



V. L. Gurevi
h, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015and b = mq2?=p2nFMand write q instead of q(1�m=M) in the argument ofthe Æ-fun
tion,Jd = J0Xn �pnFa~ �2 �� 1� 0� 2Z1 dq qZ1 dp+ 1Z2 dq qZq�1 dp1A��1q Z dq?g(pnFq?; pnF q)Æ�p���q2+ b2q� ; (A.1)where J0 = e(2eeI)2LNma2=(1 + �)2~3:For � < 1=2, we obtainJd = J0Xn �pnFa~ �2 1� Z dq?�(4�� b)�� A+(�;b)ZA+(��;�b) dq g(pnFq?; pnF q)q ; (A.2)where A�(�; b) = 1 + ��p(1 + �)2 � b.If 1=2 < � < 1, we obtainJd = J0Xn �pnFa~ �2 1� Z dq? ��8><>:�(2��1�b) A+(�;b)ZA+(��1;b) dq +�(b�2�+1)�(4��b)�� A+(�;b)ZA+(��;�b) dq9>=>; g(pnFq?; pnF q)q : (A.3)We do not give the expli
it expressions for larger valuesof V=vF here, but present a simple expression for thedrag 
urrent valid for ~=a� mVpM=m:Jd = 4J0 1Z� dzz K20 �2pF zd~ ���(�exp� ([z � �℄2 � 1)p2F2mT �+ 1��1 �� �exp� ([z + �℄2 � 1)p2F2mT �+ 1��1) : (A.4)

This expression redu
es to Eq. (40) and Eq. (53) in the
orresponding limit 
ases. For mV � T=vF , the dif-feren
e of the Fermi fun
tions restri
ts the integrationregion su
h that we haveJd = 4J0 1+�Z1�� dzz K20 �2pF zd~ � (A.5)for � < 1=2 andJd = 4J0 1+�Z� dzz K20 �2pF zd~ � (A.6)for � > 1=2. The drag 
urrent 
al
ulated a

ord-ing to these simple formulas pra
ti
ally 
oin
ides withthat 
al
ulated from the exa
t expressions, presentedin Fig. 2 for N = 2.APPENDIX BPreferred velo
ity of the beamWe introdu
e the notationj = Jd�2~22J0SRm: (B.1)We di�erentiate Eq. (29) with respe
t to mV and de-termine the sign of the derivative. In the integrand, wethen obtain the sum of Æ-fun
tions,� ddp �Æ�q2?mM � q2z + 2qz(p�mV )� ++ Æ�q2?mM � q2z + 2qz(p+mV )�� : (B.2)We integrate over p by parts to obtaindjdV = 1Z0 dqz Z dq?g(q?; qz)�� qzZ0 dp �Æ�q2?mM � q2z + 2qz(p�mV )� ++ Æ �q2?m=M � q2z + 2qz(p+mV )� ��� ddp [fn;p�qz(1� fn;p)℄�� 1Z0 dqz Z dq?g(q?; qz)(1� fqz)�� �Æ�q2?mM + q2z � 2qzmV � ++ Æ�q2?mM + q2z + 2qzmV �� : (B.3)1144



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Drag of ballisti
 ele
trons by an ion beamWe re
all the strong Fermi degenera
y of the ele
tronsystem, su
h that 1� f0 = 0, f0 = 1. Using Eq. (32),we then havedjdV = 1Z2pnF dqz Z dq?g(q?; qz)�� �Æ�q2?mM + q2z � 2qz(pnF +mV )� ++ Æ�q2?mM + q2z � 2qz(pnF �mV )��� 1ZpnF dqz �� Z dq?g(q?; qz)Æ�q2?mM + q2z � 2qzmV � : (B.4)We again use the relation fqz�pnF = 1 for qz > pnF andtake into a

ount that V > 0, whi
h implies that thelast Æ-fun
tion in Eq. (B.3) does not 
ontribute. These
ond Æ-fun
tion in the �rst integral in the previousexpression does not 
ontribute as well, and we arriveat djdV = I+ � I�;where we introdu
e the notationI+ = Z dq? 1Z2pnF dqzg(q?; qz)�� Æ�q2?mM + q2z � 2qz(pnF +mV )� ; (B.5)I� = Z dq? 1ZpnF dqzg(q?; qz)�� Æ�q2?mM + q2z � 2qzmV � : (B.6)If V=vnF < 1=2, we obtainI+ = Zq2?<4MpnFV dq?g(q?; q1)2p(pnF +mV )2 �mq2?=M ; (B.7)whereq1 = pnF +mV +q(pnF +mV )2 �mq2?=M;and I� = 0, and the drag 
urrent is an in
reasing fun
-tion of the beam velo
ity V .The integral I� takes nonzero values only ifV=vnF > 1=2. If V=vnF < 1, we haveI� == Zq2?<MpnF (2mV�pnF )=m dq?g(q?; q2)2p(mV )2�mq2?=M ; (B.8)where q2 = mV +q(mV )2 �mq2?=M:In this region, I� be
omes larger than I+ (the latter be-ing pra
ti
ally zero due to the exponential dependen
e

on q1) and the drag 
urrent turns into a de
reasingfun
tion of the velo
ity V .If V=vnF > 1,I� = Zq2?<MpnFV dq?g(q?; q2)2p(mV )2 �mq2?=M � (B.9)� Zq2?>MpnF (mV�pnF )=m dq?g(q?; q3)2p(mV )2�mq2?=M ; (B.10)where q3 = mV �q(mV )2 �mq2?=M:We thus see that the drag 
urrent has a maximumas a fun
tion of the beam velo
ity in the vi
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