ZKIT®, 2015, rom 148, Borm. 6 (12), crp. 1137-1145

© 2015

DRAG OF BALLISTIC ELECTRONS BY AN ION BEAM
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Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is consid-
ered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The
ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns
out to be a nonmonotonic function of velocity V. It has a sharp maximum for V' near v,r /2, where n is the
number of the uppermost electron miniband (channel) taking part in conductance and v, r is the corresponding
Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron
spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel
quantum wires may be in general complicated by phenomena such as tunneling and phonon drag, the Coulomb
drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free from such spurious effects.
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1. FORMULATION OF THE PROBLEM

Drag as a physical phenomenon in solids can be de-
scribed as follows. We consider a solid with two types
of quasiparticles (type 1 and type 2) and create a flux
of the quasiparticles of type 2, the so-called active, or
driving current. As a result of the interaction between
particles, a current of quasiparticles of type 1, the so-
called passive, or drag current is excited. An example
of this phenomenon is the Coulomb drag, where due to
Coulomb interaction between the electrons, a current
in a conductor creates a current in an adjacent conduc-
tor. This phenomenon was predicted in seminal papers
by Pogrebinskii [1] and Price [2].

In this paper, we consider a physically entirely dif-
ferent situation where the driving current is created by
real heavy particles outside the conductor (rather than
by Fermi degenerate quasiparticles within another con-
ductor).

Two formulations of the problem are feasible.

1. The dragging flux consists of heavy ions of almost
the same velocity V.

2. A flux of weakly ionized gas is in thermal equilib-
rium, having some temperature 7" and hydrodynamical
velocity V (cf. with Ref. [3]).
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In this paper, we treat the first possibility. In other
words, we consider an ion beam, i. e., a flux of ions hav-
ing the same velocity V. For the simplest situation, the
value of velocity V is determined by the accelerating
voltage U and the ion mass M as

MV?
2

where ey is the charge of an ion.

It is interesting to compare in advance the situa-
tion we discuss in this paper with the drag in the case
where both conductors are one-dimensional (1D) struc-
tures with the electrons performing ballistic (collision-
less) motion. Such nanoscale systems may have rather
low electron densities, which can be varied by means of
the gate voltage. The e—e (electron—electron) interac-
tion can be treated as e—e collisions between the elec-
trons belonging to the drive (active) and drag (passive)
wires (see Refs. [4-11]).

Experimentally, in our opinion, the situation with
two 1D quantum wires cannot be considered settled.
Two 1D quantum wires interacting via a Coulomb po-
tential are usually created in solids artificially (e. g., by
split gates), and therefore special care should be taken
in order that there be no tunneling between the wires,
because tunneling can hamper observation of the drag.
On the other hand, a change in the split gate voltage
may result not only in the shift of the chemical po-
tentials of individual nanowires but also in variation of
the barrier width (or a spatial distance) between the

=er'y, (1)
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wires. In some cases, even a change in the Coulomb
drag current direction is observed [9]. Furthermore, a
phonon-mediated contribution [12, 13] to the drag is
in general inevitable for two nanowires formed by split
gates.

It is usually assumed that the electrons of the quan-
tum wires are degenerate and the temperature is low
compared to the electron Fermi energy. The collision-
less quantum wires act as waveguides for the electron
de Broglie waves. For a strong Fermi degeneracy

T < p, (2)

where pu is the Fermi energy (we use the energy units
for the temperature T assuming kg = 1), each mini-
band of transverse quantization (channel) makes the
contribution to the conductance given by [14]

62

Go= 2 3)

(e being the electron charge), and hence the total con-
ductance of a quantum wire is

G = NGy,

where A is the number of active channels, i.e., mini-
bands with bottoms €, (0) below the Fermi level . It is
assumed that each quantum wire is connected to ideal
electronic reservoirs attached to its ends. The relax-
ation processes in the reservoirs are considered to be
so fast that each of them is in thermal equilibrium.
The e—e interaction within a single quantum wire does
not result in a current variation because of the quasi-
momentum conservation in e—e collisions in a semicon-
ductor. However, if two such wires, 1 and 2, are near
one another and are parallel, the Coulomb interaction
of electrons belonging to different wires can transfer
quasimomentum between the wires, which eventually
gives rise to a drag effect. The drag force due to the
ballistic current in wire 2 creates a sort of permanent
acceleration on the electrons of wire 1. As wire 1 has
a finite length L, a steady drag current J; is estab-
lished. Within the Fermi-liquid approach, we should
restrict ourselves to direct e—e collisions mediated by
the Coulomb interaction.

For such e—e collision to be possible, the absolute
values of the four electron energies should be within
the stripes of width approximately equal to T near the
corresponding Fermi levels, pug and p,. This means
that the relation

lpa = pal ST (4)

should hold. In other words, because of the conserva-
tion of the electron energy and quasimomentum in com-
bination with the Fermi degeneracy, the drag current
exists only if the Fermi levels of the electrons of both
wires coincide within the accuracy of thermal broaden-
ing. A 1D quantum wire can have several minibands
of transverse quantization (channels), and there is a
Fermi level associated with each such channel. The co-
incidence of any pair of Fermi levels of the active (drive)
and drag wires should result in a sharp spike of the drag
current [4].

The primary aim of this paper is to consider the sit-
uation where many (or some) of the above-mentioned
experimental difficulties do not arise and the picture is
as clear as possible, such that the Coulomb drag could
be investigated exactly, retaining the principal features
of the 1D drag situation as closely as possible. As re-
gards the drag by an ion beam, quite unlike the situa-
tion with two Fermi-degenerate conductors, the veloc-
ity of ions V' can be varied in experiment. As we see in
what follows, this possibility provides a tool to investi-
gate the electron spectrum of a ballistic 1D conductor.
We see below that varying the velocity V' allows ob-
serving a maximum of the drag current J4(V'). The
position of the maximum corresponds to the condition

V =uvr/2, (5)

where vp is the Fermi velocity corresponding not to
any miniband (as in the case of two quantum wires
outlined above) but to the uppermost miniband taking
part in conduction of the drag current. The point is in
a different physics behind these two types of oscillatory
behavior.

Our purpose is to investigate the main features of
this drag phenomenon. We assume that the distance d
between the ion beam and the wire is much larger than
the width of the wire, and hence the Coulomb interac-
tion of ions and electrons is a smooth function on the
scale of this width. Then the selection rules for the cor-
responding matrix elements require that the electrons
involved in the transitions change their quasimomenta
and remain in the first approximation within the initial
transverse quantized channel n. We can vary the veloc-
ity V of the ions with the accelerating voltage U and
measure the resulting variation of the drag current (or
drag voltage). We let V, denote the volume occupied
by the nanowire and Vg denote the volume where the
flux of ions propagates and interacts with the electrons
of the nanowire. We assume both V., and Vg to have a
1D shape of length L parallel to the z axis.

For the treatment of our problem, we use the Boltz-
mann equation for the one-particle electron distribu-
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tion function. As is well known, due to e—e interac-
tion, a single-channel state may be unstable, which for
N =1 gives rise to the so-called Tomonaga—Luttinger
liquid [15, 16] for the drag wire. This means that the
results of this paper are valid for NV > 1; the case V' = 1
may be not covered by the theory we work out below.

We can give the following qualitative considera-
tions concerning the drag by an ion beam. Due
to the conservation of quantities such as the energy,
the transverse quantized channel number n, and the
(quasi)momentum in electron—ion collisions, we have to
consider in the Born approximation the transition of an
electron from an |n,p) to an |n, p+¢.) state (where p is
the z-component of the electron quasimomentum) and
that of the ion from a |P) to a |P — q) state according
to the relation

¥ PP (p+tq)  (P-q)

o= om T o O

where m is the effective mass of the conduction electron
and M is the mass of an ion. The d-function describing
the energy conservation can therefore be written as

2
9z
0 [Qm

ﬁ ~/
oM

my | g

1 —) Ly

(1+37) + Ep-mv) +
2m
||

~ —0¢: —2(mV —p)], (7)
where P, = P = MV. In what follows, we take into
account that m/M < 1 and neglect m/M compared
to unity and (m/M)q¢% compared to ¢>. Therefore, the
transferred (quasi)momentum is ¢, = 2(mV — p) and
the probability of such a transition includes the factor

fn(p)[]- - fn(p + QZ)] - fn(p+ QZ)[]- - fn(p)] =
= fap) — fa(2mV —p) (8)

as well as the electron—ion Coulomb interaction matrix
element squared. For the 1D situation under consider-
ation, it has a factor proportional to

A TATI | 9)

where d is the distance between the ion beam and
the wire and Ky is the McDonald function (see below
Eq. (19)). For it, we can use the approximate equations

51, (10)

Ko(s) ~ ,/218673, s> 1, (11)

2
Ko(s) ~#1ln—,
Vs

2mV —p

—pF 2mV — prp

Fig.1. Momenta from —pr to 2mV — pp are involved
in transitions. For V' > vp/2, all negative momenta p
contribute to the drag current

where Iny = 0.577. The drag current is proportional to
the sum over electron quasimomenta p of the products
in Egs. (7)—(9). We consider p < 0 and require the
state p to be occupied, which leads to —pr < p < 0.
The requirement that the final state with the momen-
tum 2mV —p is empty gives 2mV —p > pp if V < vp/2
(Fig. 1). If V. > vp/2, there is no additional restric-
tion except —pr < p < 0, i.e., all occupied states are
involved in transitions. Therefore, if V' < vp/2, we
obtain for the drag current

—pr+2mV 5
K32 —
. 820V /] _
mV —p
—DPF
Y K2 pdsh
— / dp ‘0(17/ )7 (12)
p
pr—mV

and we see that an increase in V' decreases the mini-
mal transferred momentum and increases the effective
Coulomb interaction Ko(2pd/h). If V > vp /2, we have

. / 458200V = p)d/ ] _

mV —p
—PF
Y k2 apd/h
— / dp ‘0(17/ )7 (13)
p
mV

and an increase in V results in a decrease in the drag
current. These equations provide an adequate descrip-
tion of the drag current dependence on the ion beam
velocity, as can be readily seen in our quantitative ap-
proach below.

One more comment concerning conservation law (6)
is called for. The point is that p is the z-component of
the electron quasimomentum rather than the true mo-
mentum. This means that it is conserved within the
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accuracy of i times the additional vector of the recip-
rocal lattice. It can be verified, however, that in the
case of a simple electron spectrum (one minimum in
the center of the Brillouin zone), the conservation law
is given by Eq. (6).

2. INTERACTION OF AN ION BEAM WITH
ELECTRONS OF A NANOSTRUCTURE

For simplicity, we assume the width of the beam to
be constant (actually, it may slightly vary in the course
of beam propagation). Then we can write the distribu-
tion of the ions within the beam as

Fp = N(2xh)*§(P,)3(P,)S(P. — P),  (14)

where N is the ion concentration.

The collision term of the Boltzmann equation for
1D electrons and 3D ions in the Born approximation is
given by

VrRd*P / Vrd3q

0w\  _ _
(875 )coll:I{f’F}_ (2rh)® | (27h)3

2
X E |<p7n7P|U|p+q27n7P - q>|2 X

X 6(€np + Ep — €nptq. — Ep—q) X
X [frp(1=Frpta. ) FP—Frpta. (1= fnp) Fp—q],  (15)

where

en(p) = €,(0) + p?/2m. (16)
Here, n is the number of the channel, i.e., of the mini-
band of 1D transverse quantization (according to the
assumption made above, this number does not change
in the course of electron transitions), q is the trans-
ferred (quasi)momentum, and

2 eer

== =T 1
1+ |R—r| (17)

describes the Coulomb interaction of an ion with a
charge ey and an electron in the wire, with k being the
dielectric constant of the wire. For the matrix element,
in Eq. (15), we have

(1, PUlp+q.n, P —q) = /dSr/d3Rw;§(rL> x
Ve Vr

Yp(rL)¥p_gexp (lqu> . (18)

. 2eer
PL(+k)r —R|

Because

/ dZdz ox ig.(z = 2)] _
Lir—R P n -
— 2K, (%) . (19)

where

|Ar = /(@ - X2+ (y - V)2,

we can write

(p,n, P|U|p+q:,n, P —q)

dee
]_+,‘£I /de/drlhﬁan

iqiR1\ .

X exp { ———— | Ko(l¢:[|Ar|/h). (20)

The Boltzmann equation for electrons is

8fnp 8fnp

= 21

"oz ( ot ).’ (21)

where

denp P

= _ = 22

U= T m (22)

is the electron velocity.

To calculate the current in the wire, we iterate the
Boltzmann equation for the electrons of the wire in
the term describing collisions between electrons of the
wire and ions. In the zeroth approximation, we can
choose the electron distribution function in the colli-
sion term to be the equilibrium one. In what follows,
fop = fr(enp — ) is assumed, where fr is the Fermi
distribution function and p is the Fermi level. The first
iteration of Eq. (21) gives the nonequilibrium part of
the distribution function in the form

L

—) e S BECY

Afnp=—<z:l: 5

with the two signs corresponding to p > 0 and p < 0.
Here, I{f, F'} is a shorthand notation for the collision
term. Using the particle conservation property of the
scattering integral

> / dpI{f,F} =0, (24)

we obtain the drag current J,; in the form (cf. Ref. [17])

= 2 LZ/ SI{f,F} (25)
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With the distribution function given by Eq. (14
have

), we

B _QeNVRLZ/ 27rh/ 2mh)?

2T
X ? {|<p7n7PeZ|U|p+q27n7PeZ _q>|2 X

x(€nptEpe. —€nprq. —EPe.—q) frop(1=frpte.) —
— [{p,n, Pe. + q|U|p + qz,n,PeZ>|2 X

X 0(enp + Epe.+q — €nptq. — Epe.) X
X frpta. (1= fap)} . (26)
where e, is the unit vector along the z axis. In the first

term in the integrand, we change q — —q and shift
the integration variable p by ¢,. Then

2NV L @q_ [ dp
= 2NV ; (2mh) 2h

2T
x — |{p,n, Pe, +q|U|p + qz,n7Pez)|2 X

h
X 0(€np + EPe.+q — — Epe.) X
1- fnp)a (27)

€n,p—q-

X frp—q.(

and hence the drag current is

/dqz/dpfnp g

X /qug(qL,lqzl) X

() om (2]

e(2eer)2 LNmSgr
(14 k)27h3

QMSR

Ja= - m7r2h2

— fnp) X
) [qi —q
Here, we introduce

Jo =

and a dimensionless quantity g(q.,|q:|) according to

iq R
SRg(qL7|qz ‘/dedrlexp< qJ‘h J‘) X

2
< unlr) PR (12155

— e

where Sg is the cross-sectional area of the ion beam.
We obtain

2MS
J 2]; Z/dqz/dpfnm qz( _fnp) X

X /dQLg(QLaq,z) X
ol (o) oo (2 0))
-6 [qi—qz (% —1) + 2¢. (% +P>]}. (29)

2.1. Linear response

In the linear response regime

V <« T/ppr, where p,p=+/2m[u—€,(0)], (30)

the difference of d-functions in Eq. (29) can be ex-
panded as (we again take into account that M/m > 1)

M M
§ [qi—q§—+2qz <—p+P>} —
m m

M M
—5[qL—qz + 2q. (WP_PH

2
m qu_ qx
= 5 & 1%
2M|qz|[ <2Mq p TrTm )

2
(e e )] -
(Gt =500

m 0 (mgl g
% —4 L= .
" Mlq.] op <2qu 5 P

Then the integration by parts gives

25 T dg. |
Ja="To Z;mVZ/ I /dp/dqw(qqu)x

q-
0

(o)) a%fn,p_qzu ~ fo) @1
Using
2 0 (L= fan) = (1= fu) X
dp
X 6(q: — P —PnF) + fap—q.0(p —pnr), (32)
we have

48
Ja=Jo 2;mVZ:/dqz/dqm (a1,q-)

X |:5 (qz - 2pnFQz + ﬁ) (1 - fn,q:-PnF) +

2
mq
+ 6 <qz - 2pnFQz - ﬁ) fn,pnp—qz:| - (33)
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Eliminating the d-functions yields

25
Ja=Jo 2;mVZ/qux

_fn,m
b1

f
X {g(qJ_apnF +p1) +g(qi_apnF +p2) ;ZZ )

where pq = A\ /p%F — mqi/]\/[ and po =
= /pp+mqgi /M. The expression for .J; can

be simplified as

mV x

45
Ja=Jo 2;

L]t

If the ion beam cross section is of a circular form
with radius a, we have

2h.J W\? . [ 2pard
g(qﬁpnF):< 1(aq./ )) Ag( PnF ) (35)
aqy h

g(ai,2par)
L exp (@3 /2MT)+ 1

(34)

where .Ji (2) is the Bessel function of the first order and
d is the distance between the central lines of the ion flux
and the wire.

Below, we discuss the special case where
g(ai,2p,r) is independent of q; in more detail.
For instance, this is the case if

VMT < h/a. (36)
Then we obtain
462 1n4 2ppd
Ji=Jo ahn MTVI <p; ) (37)

where vy = pp/m is the Fermi velocity and

e(2eer)?LNma?
Jy=——%--— 38
In the opposite case where
VMT > h/a, (39)

the drag is independent of temperature. For the values

M =10"22 g (Ga), T = 4 K, and @ = 107° cm, this
inequality can easily be satisfied. Then, we have
8V 2ppd
Ja= oo < p’f; ) . (40)

It is interesting to calculate the ratio J;/J; in this
case:

2
Jqi e 32(eer)’Lm K2 <2ppd> . (41)

J_I n Z (1+ k)2mh3vp I

Here, we can use Eqs. (10) and (11) for Ky(s).
For an estimate, we assume the values L = 10™* cm,
=7-107% g, vp = 2-107 cm/s, kK = 10, and
prd/h = 2, whence KZ(2ppd/h) = 1.3-10"%. Then,
for J; = 1078 A, we have J; = 21072 A and the
corresponding drag voltage

Vi ~ 20 uV. (42)

Naturally, if .J; increases, V,; also increases in pro-
portion to J;.

2.2. Nonlinear case

We consider the simplest case of low temperatures
assuming that

V> T/pr. (43)

In our further calculation, we assume that T = 0.
Then, the integration due to the Fermi functions in
Eq. (29) is restricted and we obtain (the first or the
second o-function contributes for V> 0 and V < 0,
respectively, and therefore the drag current changes its
sign with V', as it should)

9 2pan q=
a qz
Ji=Jo—= d
TR Z / q: / P
" PnF PnF

o0 d q=
q:
+ / . / dp /qug(qqu)x
z

2pnF qz—PnF
2
m mqy
) - =(1-— .
x {p my =3 5 ( M)+2sz]
The result valid for
V< UF/2 (44)
is
J :J“—ZZ/dq 0 (4Ppnr — %) x
d 075 . 1 nF — (|
P J
q
></ ng(ql,qz), (45)
g

where 6 is the step function and

P+ = ppr EmV + \/(pnp +mV)? :qui/M

(other cases are considered in Appendix A).
For V « v,F, the integration variable ¢, is in the
vicinity of 2p,r and we have
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a2 .
Jq = JOW ;/dqﬁ (4PpnF - qi) X
X ( — = 2—> 9(aL,2pnr). (46)

Equation (46) can be substantially simplified if
g9(ai,2ppr) is independent of q,; this is the case if
the ion flux cross section characteristic width a obeys
the inequality

V/Ppnra/h < 1. (47)

Then,
Ja=T0Y_ 9(2pnr), (48)
where
(2mV)%a®> M

This expression is valid for V' > 0, i.e., when the
ion flux is directed “to the right”. Then, the momen-
tum transferred to the electron system in the wire is
also directed to the right and the current (since e < 0)
flows in the opposite direction regardless of the sign of
the dragging ion charge.

Agsuming that the distance d between the ion flux
and the wire is much larger than the characteristic
cross-sectional length of the wire and the flux, we can
write

(50)

o (2pnFd
g(ar,2pnr) = K] < i )

h

and

5 (2P0
Ja= 0> K? ( phFd> . (51)

Using approximation (11) for the function Ky, we ob-
tain

1
Trd exp(—4knrd), (52)

Ja=T1Y

where knr = ppr/h.
In the case ay/Pp,r/h > 1, we have

2pan
h

1
Jao=4JMV Y p—Kg ( (53)
n nF

and therefore the drag current is a linear function of V.

(Ja/Jo) x 103

8t 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
V/'UZF

Fig.2. Drag current dependence on the ion beam ve-

locity for two parameter values karpd = 3 (curve 1)

and k2rd = 3.2 (curve 2). We take vor = kvir and

k = 3/2. The first peak corresponds to V/var =

= 1/2k (i.e., V/uir = 1/2) and the second peak

(to the right) corresponds to V/vor = 1/2. Here,
Jo = e(2eer)’ LNma®/(1 + k)*h?

3. CONCLUDING REMARKS

We have developed a theory of Coulomb drag of
electrons in a 1D ballistic nanostructure by an ion
beam. This provides an example of drag of quasipar-
ticles of a nanostructure by particles of the beam. It
is worth mentioning that such a beam may consist not
only of heavy ions but also of free electrons. The free
electron mass is usually bigger than the effective mass
of conduction electrons, and hence the approximations
adopted in our calculation, M > m, may remain valid
in this case.

The experimental setup should permit varying the
velocity V' within rather wide limits. We see, however,
that to achieve a large drag effect, we should choose
the value of V' near v,r/2 (Fig. 2). Here, we wish
to note that this velocity is preferred regardless of the
ion beam shape or the distance from the nanostructure
(see Appendix B). This means in particular that the
ion beam drag may be a useful tool in nanostructure
spectroscopy.

APPENDIX A

Evaluation of the drag current for various
ratios a = V/vp

We introduce the dimensionless parameters

a=mV/ppr =V/vpr
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and
b= mqi/piFM

and write ¢ instead of ¢(1 — m/M) in the argument of
the d-function,

li=h Y (55
n

2 o q
1
X — /dq/dp+/dq/dp X
™
1 2 ¢4
! / da. g )5 L 0)
q A19\PnFAL,PnFq p—a 22 .
where
Jo = e(2eer)’ LNma? /(1 + r)?h3.
For a < 1/2, we obtain
Jo=T> (p”Fa /dqﬂ‘) (4o — b) x
A+(a7b)
% dqg(pnFQvanFq)7 (A.2)
q
AJr(*a’*b)

where Ay (a,b) =1+ a£+/(1+a)?—b.

If 1/2 < a < 1, we obtain

Ja = Jo pnFa /dQL X
A+(Oz,b)
X < 0(2a—1-b) dq +6(b—2a+1)0(4a—b) x
A+(a71,b)
A+(Oz7b)
q
AJr(*a’*b)

We do not give the explicit expressions for larger values
of V/vg here, but present a simple expression for the
drag current valid for i/a < mV /M /m:

dz 2ppzd
=4
Jd JU/ - XO ( 7 > X

X { {exp (—([Z — (;3721; l)p%) + 1] N —

This expression reduces to Eq. (40) and Eq. (53) in the
corresponding limit cases. For mV > T/vp, the dif-
ference of the Fermi functions restricts the integration
region such that we have

14+«
d 2ppzd
Ja =47 / 51&3( pre ) (A.5)
1l—«
for o < 1/2 and
2ppzd
Ty = 4T / g e < prz ) (A.6)

for @« > 1/2. The drag current calculated accord-
ing to these simple formulas practically coincides with
that calculated from the exact expressions, presented
in Fig. 2 for V' = 2.

APPENDIX B

Preferred velocity of the beam
We introduce the notation
_ Jym2h?
B QJO,S'Rm.
We differentiate Eq. (29) with respect to mV and de-

termine the sign of the derivative. In the integrand, we
then obtain the sum of §-functions,

(B.1)

+6 <q%4m Q@+ 2qz(p+mV)>] . (B.2)

We integrate over p by parts to obtain

4 T

W — dz d s 4z

T /q/ arg9(aL,q:) X
0

q- ,

qgipm

X /dp [(5 <—M
0

+ 0 (gtm/M —q2 + 2qz(p+mV))] X

d
X d_p [fnp—q. (1

oo

—/d /dcugm, D= fou) X

2
X [5 (% +¢% - 2qsz)

2
+6 <qj4 +q 2q,mv>] . (B.3)

— 2 +2¢:(p — mV)) +

- fn,p)] -

[=}
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Drag of ballistic electrons by an ion beam

We recall the strong Fermi degeneracy of the electron
system, such that 1 — fo = 0, fo = 1. Using Eq. (32),
we then have

o0

i
ﬁ = / dqz/ dqig(qi,q.) x

2pnF

2
X [5 (% + ¢ — 2¢:(pur + mV)> +

2 x
+ 9 (qﬁ +q2 = 2¢:(pnr —mV)ﬂ - / dq. x
PnF

qim

x /dqlg(ql,qzﬁS <7
We again use the relation f, . . = 1for ¢. > p,r and
take into account that V' > 0, which implies that the
last o-function in Eq. (B.3) does not contribute. The
second d-function in the first integral in the previous
expression does not contribute as well, and we arrive

dj
dV ’

where we introduce the notation

Iy :/dql / dg.g(q.,q:) X

2pnF

2
) <M + 2 —2q.(por + mV)> , (B.5)

- 2qsz> . (B4)

M

oo

I :/dCU_ / dQZg(qJ_a‘JZ) X

PnF

2
X 0 <M +q - 2qsz> . (B.6)

M
If V/iver < 1/2, we obtaind
q% <4MpppV
where

@1 = pnr + mV + \/(pnF +mV)? — mqf_/]\/[7

and I_ = 0, and the drag current is an increasing func-
tion of the beam velocity V.
The integral I_ takes nonzero values only if
V/vpr > 1/2. If V/v,p < 1, we have
I =

-

¢ <Mpnr(2mV —ppr)/m

dqig(qi,q) (
2\/(mV)2—mqi/M7

B.g)

where
g =mV + \/(mV)2 —mq? /M.

In this region, I becomes larger than I (the latter be-
ing practically zero due to the exponential dependence

on ¢1) and the drag current turns into a decreasing
function of the velocity V.

If V/iver > 1,
;o / qugiqL,ng B (B.9)
& <MpurV 2\/(mV) —mq] /M
3 / dg.g(qu.,qs) . (B.10)
2y/(mV)2—mg? /M

a2 >Mpnp(mV—pnr)/m

where
g3 =mV — \/(mV)2 —mg’ /M.

We thus see that the drag current has a maximum
as a function of the beam velocity in the vicinity of
V= ’UnF/Q.
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