ЗОННАЯ СТРУКТУРА СИЛИЦЕНА В ПРИБЛИЖЕНИИ СИЛЬНОЙ СВЯЗИ

А. В. Герт^{*}, М. О. Нестоклон, И. Н. Яссиевич

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

Поступила в редакцию 24 декабря 2014 г.

Представлено моделирование электронной структуры силицена методом сильной связи с базисом $sp^3d^5s^*$. Результаты работы хорошо согласуются с расчетами из первых принципов. Методом инвариантов построен эффективный гамильтониан силицена в окрестности дираковской точки. В силицене атомы кремния расположены в двух параллельных плоскостях, перпендикулярно смещенных друг относительно друга на Δ_z , энергетический спектр существенно зависит от этого смещения. При помощи метода сильной связи определены коэффициенты эффективного гамильтониана для различных Δ_z .

DOI: 10.7868/S0044451015070123

1. ВВЕДЕНИЕ

Силицен — квазидвумерный материал из атомов кремния с гексагональной кристаллической решеткой, состоящий из двух плоских подрешеток, перпендикулярно смещенных друг относительно друга. Идея создания такого материала впервые была предложена в работе [1], не так давно он был выращен на серебряной подложке методом молекулярно-лучевой эпитаксии [2, 3]. Интерес к силицену вызван возможностью его применения в кремниевой электронике и оптоэлектронике, сейчас этот материал активно исследуется экспериментально и теоретически [4–6].

В отличие от графена, в силицене sp^2 -гибридизация является нестабильной [7], что приводит к вытеснению части атомов кремния из плоскости. При этом гибридизация атомных орбиталей становится смешанной: sp^2 - sp^3 . Такая структура дает возможность создавать спин-поляризованные состояния и управлять шириной запрещенной зоны с помощью электрического поля, что открывает возможность создания эффективного спинового поляризатора [6].

Зонная структура силицена была рассчитана в работах [8–11] из первых принципов и с помощью метода сильной связи на основе параметризации sp^3s^* с учетом первого и второго соседей в работе [12]. Полученные в ней результаты существенно расходятся с расчетами из первых принципов [8].

В настоящей работе для расчета электронного спектра силицена мы использовали метод сильной связи в базисе орбитальных функций s, p, d и s^* . Добавление d-орбиталей позволяет ограничиться учетом взаимодействия атомов только с ближайшими соседями. С помощью симметрийного анализа вблизи дираковской точки построен эффективный гамильтониан и на основе метода сильной связи определены его параметры для различных смещений Δ_z подрешеток (buckling). Полученные нами результаты хорошо согласуются с расчетами из первых принципов [8].

2. РАСЧЕТ МЕТОДОМ СИЛЬНОЙ СВЯЗИ

Для описания зонной структуры полупроводников на основе элементов IV группы в рамках метода сильной связи с учетом только ближайших соседей минимально необходим учет *s*-орбиталей (момент импульса L = 0) и трех *p*-орбиталей (L == 1). Эта модель успешно описывает дисперсию дырочных состояний, сформированных в основном из *p*-орбиталей. Параметрами метода является собственная энергия орбиталей и энергия взаимодействия с соседними атомами. Однако набор sp^3 не достаточен для описания электронной ветви дисперсии кремния [13]. Эта проблема решается увеличением набора базисных функций [14] или выходом

^{*}E-mail: anton.gert@mail.ioffe.ru

Рис.1. Элементарная ячейка объемного кремния. Светло-серым цветом отмечены атомы, соответствующие структуре силицена. Стрелками показаны координатные векторы трех ближайших соседей центрального атома в силицене

за пределы приближения взаимодействия только с ближайшими соседями [15]. Использование базиса из двух s-орбиталей (s, s^*) , трех p-орбиталей (p_x, p_y, p_z) , и пяти d-орбиталей $(d_{yz}, d_{zx}, d_{xy}, d_{x^2-y^2}, d_{z^2})$ позволяет описать зонную структуру объемного кремния с точностью до миллиэлектронвольта при учете взаимодействия только с ближайшими соседями [14]. В настоящей работе мы использовали этот базис для моделирования электронных состояний силицена методом сильной связи.

Плоскости подрешеток силицена смещены относительно друг друга на Δ_z , так что три соседа каждого атома располагаются выше или ниже него в зависимости от подрешетки, в которой находится этот атом. При $\Delta_z = 0$ кристаллическая решетка силицена эквивалентна решетке графена. С другой стороны, если рассмотреть две соседние атомные плоскости (1 1 1) в объемном кремнии, то получится структура аналогичная силицену со сдвигом подрешеток $\Delta_z = \Delta_{\rm Si} = a/4\sqrt{3} \approx 2.21$ Å, где a — постоянная кристаллической решетки кремния. На рис. 1 показаны векторы трех ближайших соседей для атома кремния, \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 , которые соответствуют трем ближайшим соседям в структуре силицена. Системы координат, используемые в нашей работе в реальном и обратном пространствах, приведены на рис. 2.

Для расчета были использованы параметры метода сильной связи для объемного кремния из работы [14]. Расстояние между атомами силицена отлично от расстояния между атомами кремния в плоскости, перпендикулярной направлению [111] (см. рис. 1) и зависит от величины смещения подрешеток. Влияние этого различия на параметры учитывается как деформация, их величины должны быть скорректированы в соответствии с выражением [14]

$$ijk(d) = ijk(d_0) \left(\frac{d}{d_0}\right)^{n_{ijk}},\qquad(1)$$

где ijk — индекс, соответствующий одному из параметров метода сильной связи, d — расстояние между соседними атомами в силицене (зависит от смещения подрешеток), d_0 — расстояние между соседними атомами в объемном кремнии, n_{ijk} — параметры из таблицы IX работы [14].

Используя параметры из работы [14], мы рассчитали зонную структуру силицена в направлениях К-Г-М-К. Полученная дисперсия существенно отличается от результатов расчетов из первых принципов [8]. Это связано с тем, что силицен имеет квазидвумерную структуру: существует значительное различие между *p*_z-орбиталью, направленной перпендикулярно плоскости подрешеток, и p_x-, p_u-opбиталями, лежащими в плоскости. Чтобы учесть эту особенность были введены два дополнительных параметра: параметр Δ_1 — смещение энергии трех p-орбиталей, и Δ_2 — разность энергий p_z - и $p_{x,y}$ -орбиталей. В гамильтониане сильной связи параметр *E*_p (собственная энергия *p*-орбиталей) был заменен на $E_p - \Delta_1 - 2\Delta_2/3$ для p_z -орбитали и на $E_p - \Delta_1 +$ $+\Delta_2/3$ для $p_{x,y}$ -орбиталей. Такой подход эквивалентен дополнительному расщеплению атомных орбиталей за счет деформации, предложенному в работе [16] и развитому для кремния в [17].

Сравнив электронную структуру силицена, найденную нашим методом, с результатами расчетов из первых принципов [8], мы получили наилучшее совпадение при $\Delta_1 = 0.25$ эВ и $\Delta_2 = 2.90$ эВ. Зонная структура силицена была рассчитана для разных величин смещения атомных плоскостей силицена, Δ_z . Результаты приведены на рис. З в отсутствие смещения подрешеток друг относительно друга и при смещении на Δ_{Si} . В расчетах использовались параметры, приведенные в табл. 1.

Спин-орбитальное взаимодействие в рамках метода сильной связи традиционно учитывается только для *p*-орбиталей на внутриатомных матричных

Рис.2. Схема атомной структуры силицена (a) и зоны Бриллюэна (b): \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 — векторы ближайших соседей атома в силицене, \mathbf{a}_1 и \mathbf{a}_2 — векторы элементарной ячейки в реальном пространстве, \mathbf{a}_1^* и \mathbf{a}_2^* — векторы обратной решетки

Таблица 1. Параметры сильной связи для силицена с учетом напряжений при $\Delta z = 0$ (E_i – собственная энергия орбитали *i*; *ijk* – энергия *k*-связи между орбиталями *i* и *j*)

Параметр	E_s	E_{p_x}	E_{p_y}	E_{p_z}	E_d	E_{s^*}	$ss\sigma$	$s^*s^*\sigma$	$s^*s\sigma$	$sp\sigma$
эB	-2.15	4.86	4.86	1.96	15.16	21.03	-1.94	-3.30	-1.69	2.78
Параметр	$s^*p\sigma$	$sd\sigma$	$s^*d\sigma$	$pp\sigma$	$pp\pi$	$pd\sigma$	$pd\pi$	$dd\sigma$	$dd\pi$	$dd\delta$

элементах гамильтониана [18]. Добавка к нему выглядит следующим образом:

$H_{so} = \frac{\Delta}{3} \times$										
	($p_x \uparrow$	$p_y \uparrow$	$p_z \uparrow$	$p_x\downarrow$	$p_y\downarrow$	$p_z \downarrow $	١		
	$p_x \uparrow$	0	-i	0	0	0	1			
	$p_y \uparrow$	i	0	0	0	0	-i			
×	$p_z \uparrow$	0	0	0	-1	i	0			
	$p_x \downarrow$	0	0	-1	0	i	0			
	$p_y \downarrow$	0	0	-i	-i	0	0			
	$\langle p_z \downarrow$	1	i	0	0	0	0 /	/		

Здесь матрица приведена в базисе состояний $|x\uparrow\rangle$, $|y\uparrow\rangle$, $|z\uparrow\rangle$, $|x\downarrow\rangle$, $|y\downarrow\rangle$, $|z\downarrow\rangle$, где символы $|\uparrow\rangle$ и $|\downarrow\rangle$ обозна-

чают проекцию спина $\pm 1/2$ на ось z. Для кремния спин-орбитальное взаимодействие достаточно мало, соответствующая внутриатомная константа $\Delta/3$ составляет примерно 19.5 мэВ. В силицене за счет этого взаимодействия вблизи дираковской точки появляется небольшая, порядка нескольких миллиэлектронвольт, запрещенная зона E_g . Энергетическая дисперсия около K-точки показана на рис. 4 с учетом спин-орбитального взаимодействия и без него для различных значений Δ_z . В табл. 2 приведены значения ширины энергетической цели в дираковской точке и величина фермиевской скорости, полученные в [19, 20] и в нашей работе для $\Delta_z/\Delta_{\rm Si} =$ = 0.59. Согласно [20], такое смещение подрешеток соответствует минимуму энергии силицена.

Рис. 3. Зонная структура силицена, рассчитанная (a) без смещения подрешеток и (б) при смещении подрешеток на $\Delta_z = \Delta_{si} \approx 1.1$ Å. Штриховыми линиями показана энергетическая дисперсия, рассчитанная методом сильной связи в направлениях K-Г-M-K, сплошными линиями — результаты расчета из первых принципов [8]

Таблица 2. Сравнение параметров из работ [19, 20] с полученными в данной работе (a_s — постоянная кристаллической решетки силицена, E_g — энергетическая щель в дираковской точке, V_F — фермиевская скорость, θ — угол между связью Si-Si и осью z; согласно [20], $\theta = 101.7^{\circ}$ соответствует минимуму энергии силицена, относительное смещение подрешеток при этом $\Delta_z/\Delta_{si} = 0.59$)

Метод	a_s	θ	$\Delta_z/\Delta_{ m Si}$	$E_g,$ мэВ	$V_F,10^5$ м/с	Работа
Сильная связь, $sp^3d^5s^*$	3.86	101.7	0.59	1.70	5.23	данная
ab initio	3.86	101.7	0.59	1.55	5.42	[20]
Сильная связь	3.86	101.7	0.59	7.90	5.52	[19]

3. ЭФФЕКТИВНЫЙ ГАМИЛЬТОНИАН

Без учета спин-орбитального взаимодействия две дисперсионные кривые (\pm) (см. рис. 4) сходятся в дираковской точке (точке K зоны Бриллюэна, см. рис. 2). При нулевом смещении подрешеток эффективный гамильтониан в окрестности точки K совпадает с аналогичным гамильтонианом для графена [21]:

$$H_{55}^{K}(\mathbf{k}) = a_{10}^{55} + a_{61}^{55}(k_x\sigma_x + k_y\sigma_y) + a_{11}^{55}(k_x^2 + k_y^2)l + a_{62}^{55}[(k_y^2 - k_x^2)\sigma_x + 2k_xk_y\sigma_y] + O(k^3), \quad (2)$$

где $\mathbf{k} = (k_x, k_y, k_z)$ — волновой вектор электрона, отсчитанный от дираковской *К*-точки, l — единичная матрица, $\sigma_{x,y,z}$ — матрицы Паули, действующие на псевдоспин. Псевдоспин вводится для описания двукратно вырожденных блоховских функций в точке K. В случае $\Delta_z = 0$ эти состояния преобразуются по неприводимому представлению Γ_5 группы D_{3h} как

$$|\rho_{\mp}\rangle = \pm \frac{1}{\sqrt{2}} |\tilde{x} \mp i\tilde{y}\rangle,$$

где $|\tilde{x}\rangle$, $|\tilde{y}\rangle$ преобразуются как координатные функции, но не меняют знака при инверсии координат [21]. Блоховские функции соответствуют состояниям в подрешетках A, B для долины K и подрешеткам B, A в долине K'. Для коэффициентов $a_{10}^{55}, a_{61}^{55}, a_{11}^{55}, a_{62}^{55}$ мы используем обозначения из работы [21].

Выражению (2) соответствует две ветви спектра с энергиями:

Рис.4. Энергетическая дисперсия силицена около дираковской точки, рассчитанная методом сильной связи: тонкие прямые — электронные состояния без учета спин-орбитального взаимодействия при нулевом сдвиге подрешеток; штриховые линии — дисперсия при учете спина; сплошная и штрих-пунктирная кривые рассчитаны при сдвигах подрешеток силицена соответственно $\Delta_z/\Delta_{\rm Si} = 0.25$ и $\Delta_z/\Delta_{\rm Si} = 0.59$

$$\begin{split} E(k) &= a_{10}^{55} \pm \left[a_{61}^{55} |k| + a_{11}^{55} |k|^2 + \\ &+ a_{62}^{55} k_x (3k_y^2 - k_x^2) / |k| \right]. \end{split}$$

Гамильтониан (2) может быть получен из метода инвариантов с учетом того, что в выбранном базисе матрицы σ_x , σ_y преобразуются как x, y (по представлению Γ_6 , так же как k_x , k_y), а матрица σ_z — по представлению Γ_2 . Также важно, что матрицы Паули в спиновом базисе (\uparrow , \downarrow) преобразуются следующим образом: s_z по представлению Γ_2 , а s_x , s_y по представлению Γ_5 подобно $|\tilde{x}\rangle$, $|\tilde{y}\rangle$. Смещение подрешеток характеризуется параметром Δ_z , который определяет сдвиг подрешеток A и B и, соответственно, преобразуется как *z*-компонента вектора по представлению Γ_4 .

Используя метод сильной связи, мы нашли коэффициент a_{10}^{55} эффективного гамильтониана (2), равный энергии в дираковской точке, и коэффициент a_{61}^{55} , соответствующий производной от энергии по k. Параметры a_{11}^{55} и a_{62}^{55} соответственно определяют квадратичное изменение энергии вблизи дираковской точки и анизотропию энергетической дисперсии. В направлении Γ -K ($k_y = k_x/\sqrt{3}$) коэффициент a_{62}^{55} с точностью до второго порядка не дает вклада в энергетическую дисперсию (см. формулу (2)). Методом сильной связи мы рассчитали энергию при отклонении от дираковской точки на $|k| = 10^{-3}$ Å⁻¹

Рис.5. Средние значения проекций псевдоспина $\langle \sigma_x \rangle$ и $\langle \sigma_y \rangle$ в зависимости от угла ϕ между компонентами k_x и k_y волнового вектора при фиксированном значении $|\mathbf{k}| = 10^{-3} \, \mathrm{\AA}^{-1}$. Штриховыми линиями показаны результаты, полученные методом сильной связи, сплошными — рассчитанные из эффективного гамильтониана (6) для валентной зоны. Величина $\langle \sigma_z \rangle$ от направления \mathbf{k} не зависит

в этом направлении и определили коэффициент a_{11}^{55} из уравнения (3). Затем была рассчитана угловая зависимость энергии силицена при таком же отклонении от K. Сравнив результаты с кривыми, построенными с помощью формулы (2), мы определили коэффициент a_{62}^{55} . Полученные значения в отсутствие смещения подрешеток ($\Delta_z = 0$) приведены в первой строке табл. 3.

Учет спин-орбитального взаимодействия приводит к дополнительному слагаемому в гамильтониане (2):

$$H_{so}^K = \Delta_{so} s_z \sigma_z. \tag{4}$$

При наличии ненулевого смещения подрешеток силицена, в первом порядке малости по Δ_z симметрия структуры допускает еще два слагаемых:

$$H_{\Delta_z}^K = \lambda_{so} \Delta_z \left(\sigma_x s_y - \sigma_y s_x \right) + \lambda_R \Delta_z \left(k_x s_y + k_y s_x \right).$$
(5)

Параметр Δ_{so} отвечает за спин-орбитальное расщепление состояний в дираковской точке и равен половине ширины энергетической щели. Чтобы определить остальные коэффициенты в выражениях для H_{so}^{K} и $H_{\Delta_{z}}^{K}$, мы исследовали проекции псевдоспина на оси координат в зависимости от угла ϕ между компонентами волнового вектора **k** (рис. 5) и от модуля k (рис. 6).

$\Delta_z/\Delta_{ m Si}$	a_{61v}^{55}	a_{11v}^{55}	a_{62v}^{55}	a_{61c}^{55}	a_{11c}^{55}	a_{62c}^{55}	$\Delta_{so},$ мэВ
0	1.18	-4.14	0.4	-3.45	-0.31	4.8	0.07
0.25	1.09	-4.06	0.47	-3.35	-0.23	4.4	0.26
0.59	0.75	-3.78	0.72	-2.9	0.08	3.74	0.85
0.75	0.55	-3.61	0.91	-2.4	0.26	3.43	1.15
1.00	0.22	-3.31	1.01	-2.37	0.49	2.97	1.45

Таблица 3. Коэффициенты эффективного гамильтониана для различных значений смещения подрешеток силицена

Рис. 6. Средние значения проекций псевдоспина $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$ и $\langle \sigma_z \rangle$ при $\phi = 0$ в зависимости от отклонения Δk от дираковской точки. Штриховыми линиями показаны результаты, полученные методом сильной связи, сплошными — рассчитанные из эффективного гамильтониана (6) для валентной зоны

Без учета дополнительных слагаемых к гамильтониану (2) для силицена существуют два дважды вырожденных по проекциям спина и псевдоспина состояния. В моделировании электронных состояний силицена методом сильной связи при значениях $\Delta_z \leq \Delta_{\rm Si}$ такого расщепления не наблюдается, следовательно, $\lambda_R \ll a_{61}^{55}$. Слагаемое, пропорциональное λ_{so} , приводит к расщеплению проекций спина, псевдоспина и энергий этих состояний. Из-за вкладов в выражении (5) возникают проекции спина на оси x и y при отдалении от точки K. Исследовав проекции псевдоспина и спина, мы определили порядок величины коэффициентов в формуле (5):

 $\lambda_{so} \sim 10^{-13} \text{ sB/Å}, \quad \lambda_R \sim 10^{-15} \text{ sB}.$

Все дополнительные слагаемые эффективного гамильтониана в выражениях (4) и (5), кроме $\Delta_{so}s_z\sigma_z$, малы по сравнению с (2).

В итоге полный гамильтониан силицена имеет вид

$$H^K = H^K_{55} + \Delta_{so} s_z \sigma_z. \tag{6}$$

Несмотря на то что линейные по Δ_z слагаемые в (5) пренебрежимо малы, существует сильная зависимость электронных состояний силицена от величины смещения подрешеток в меру зависимости коэффициентов эффективного гамильтониана (6) от четных степеней Δ_z (табл. 3).

При увеличении смещения подрешеток фермиевская скорость a_{61}^{55} и коэффициент a_{11}^{55} квадратичного слагаемого уменьшаются, коэффициент a_{11}^{55} , отвечающий за гофрировку спектра, и величина энергетической щели E_g возрастают. Зависимость $E_g(\Delta_z)$ продемонстрирована на рис. 7.

4. ЗАКЛЮЧЕНИЕ

В работе методом сильной связи на основе базиса $sp^3d^5s^*$ рассчитана зонная структура силицена с учетом взаимодействия только с ближайшими соседями. Полученные результаты хорошо согласуются с расчетами из первых принципов [8]. В дираковской точке вследствие спин-орбитального взаимодействия образуется запрещенная зона, ширина которой растет при увеличении Δ_z . На

Рис.7. Зависимость энергетической щели E_g в точке K от относительного смещения подрешеток Δ_z/Δ_{si} ; $\Delta_{si} = 2.21$ Å — смещение соседних атомных плоскостей (111) в объемном кремнии

основе метода инвариантов в окрестности дираковской точки построен эффективный гамильтониан силицена. Значения его параметров определены для различных значений Δ_z из результатов моделирования методом сильной связи.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 13-02-90411, 15-02-09034 А) и гранта Президента РФ для научных школ (НШ-1085.2014.2).

ЛИТЕРАТУРА

- K. Takeda and K. Shiraishi, Phys. Rev. B 50, 14916 (1994).
- B. Feng, Z. Ding, S. Meng et al., Nano Lett. 12, 3507 (2012).
- B. Lalmi, H. Oughaddou, H. Enriquez et al., Appl. Phys. Lett. 97, 223109 (2010).

- A. Kara, H. Enriquez, A. P. Seitsonen et al., Surf. Sci. Rep. 67, 1 (2012).
- 5. M. Ezawa, J. Phys. Soc. Jpn. 81, 104713 (2012).
- W.-F. Tsai, C.-Y. Huang, T.-R. Chang et al., Nature Comm. 4, 1500 (2013).
- U. Röthlisberger, W. Andreoni, and M. Parrinello, Phys. Rev. Lett. 72, 665 (1994).
- 8. X. Yang and J. Ni, Phys. Rev. B 72, 195426 (2005).
- Y. Yao, F. Ye, X.-L. Qi et al., Phys. Rev. B 75, 041401 (2007).
- 10. S. Lebègue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
- S. Cahangirov, M. Topsakal, E. Aktürk et al., Phys. Rev. Lett. **102**, 236804 (2009).
- G. G. Guzmán-Verri and L. C. L. Y. Voon, Phys. Rev. B 76, 075131 (2007).
- T. B. Boykin, G. Klimeck, R. C. Bowen et al., Phys. Rev. B 56, 4102 (1997).
- J. M. Jancu, R. Scholz, Fa. Beltram et al., Phys. Rev. B 57, 6493 (1998).
- 15. T. B. Boykin, M. Luisier, G. Klimeck and et al., J. Appl. Phys. 109, 104304 (2011).
- 16. J.-M. Jancu and P. Voisin, Phys. Rev. B 76, 115202 (2007).
- 17. Y. M. Niquet, D. Rideau, C. Tavernier et al., Phys. Rev. B 79, 245201 (2009).
- 18. D. J. Chadi, Phys. Rev. B 16, 790 (1977).
- 19. C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).
- 20. C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
- 21. R. Winkler and U. Zülicke, Phys. Rev. B 82, 245313 (2010).