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PSEUDOSPIN S = 1 FORMALISM AND SKYRMION-LIKEEXCITATIONS IN THE THREE-BODY CONSTRAINED EXTENDEDBOSE�HUBBARD MODELA. S. Moskvin *Ural Federal University620083, Ekaterinburg, RussiaRe
eived Mar
h 30, 2015We dis
uss the most prominent and intensively studied S = 1 pseudospin formalism for the extended bosonHubbard model (EBHM) with the on-site Hilbert spa
e trun
ated to the three lowest o

upation states n = 0,1, 2. The EBHM Hamiltonian is a paradigmati
 model for the highly topi
al �eld of ultra
old gases in opti
allatti
es. The generalized non-Heisenberg e�e
tive pseudospin Hamiltonian does provide a deep link with aboson system and a physi
ally 
lear des
ription of �the myriad of phases�, from uniform Mott insulating phasesand density waves to two types of super�uids and supersolids. We argue that the 2D pseudospin system isprone to a topologi
al phase separation and fo
us on several types of un
onventional skyrmion-like topologi
alstru
tures in 2D boson systems, whi
h have not been analyzed until now. The stru
tures are 
hara
terized by a
ompli
ated interplay of insulating and two super�uid phases with a single-boson and two-boson 
ondensation,respe
tively.DOI: 10.7868/S00444510150901261. INTRODUCTIONSin
e 1989, the bosoni
 Hubbard model (see [1℄ andthe referen
es therein) has attra
ted 
ontinued interestdue to its very ri
h ground-state phase diagram andgreat opportunities of dire
t experimental realizationin systems of ultra
old boson atoms loaded in opti-
al latti
es. Su
h systems o�er unique opportunitiesfor studying strongly 
orrelated quantum matter in ahighly 
ontrollable environment.The Hamiltonian of the extended boson Hubbardmodel (EBHM) is usually de�ned asH = �Xi>j tij(b̂yi b̂j +H.
.) + U2 Xi n̂i(n̂i � 1) ++Xi>j Vij n̂in̂j � �Xi n̂i; (1)where b̂yi , b̂i, and n̂i = b̂yi b̂i are respe
tively the boson
reation, annihilation, and number operators at the lat-ti
e site i. The boson transfer amplitudes are given bytij ; Ui = U and Vij parameterize the Coulomb repul-sions between bosons lo
ated at the same and di�erent*E-mail: alexander.moskvin�urfu.ru

sites. While tij 
auses the bosons to delo
alize, pro-moting a super�uid (SF) phase at weak intera
tions, Uand Vij tend to stabilize the 
onventional Mott insula-tor (MI) and the density wave (DW) phases when theintera
tion dominates over the hopping energy s
ale setby t.Attra
tive on-site boson�boson intera
tions allowfor the formation of dimers, or bound states of twobosons. The phase diagram then 
ontains the 
onven-tional one-boson super�uid (1-BS) with nonvanishingorder parameters hb̂ji 6= 0 and hb̂2j i 6= 0 and the dimersuper�uid (2-BS) phase. The 2-BS phase is 
hara
ter-ized by the vanishing of the one-boson order param-eter (hb̂ji = 0) but has a nonzero pairing 
orrelation(hb̂2j i 6= 0). Apart from the above lo
al order param-eters, one 
an use super�uid sti�ness to identify thesuper�uid states. We note that thermal transitions be-tween the 2-BS dimer super�uid and the 1-BS normal�uid are 
onsidered in Ref. [2℄.When the inter-site boson�boson repulsion is turnedon, in addition to the uniform Mott insulating (MI)state and two super�uid phases, a dimer 
he
kerboardsolid state appears at unit �lling, where boson pairsform a solid with a 
he
kerboard stru
ture.549



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015Our starting point for theoreti
al analysis of the2D extended Bose�Hubbard model is to assume trun-
ation of the on-site Hilbert spa
e to the three lowest-o

upation states n = 0, 1, 2 with a further mapping ofthe EBHM Hamiltonian to an anisotropi
 spin-1 model(see, e. g., [3℄). The simplest e�e
tive spin-1 modelHamiltonian isĤ = �Xi>j tij(SixSjx + SiySjy) + U2 Xi S2iz ++Xi>j VijSizSjz � �Xi Siz : (2)In this spa
e, the DW phase 
orresponds to an an-tiferromagneti
 ordering of the pseudospins in the zdire
tion. The MI ground state, on the other hand,in
ludes a large amplitude of the state with MS = 0on every site with a small admixture of states 
ontain-ing tightly bound parti
le�hole �u
tuations (MS = �1on nearby sites). The phase 
an be termed a quantumparamagnet. The 1-BS and 2-BS super�uid phases re-spe
tively 
orrespond to the dipole and quadrupole (ne-mati
) pseudospin XY-order. Generally speaking, wemay anti
ipate the emergen
e of so-
alled supersolidphases, or mixed 1-BS+DW (2-BS+DW) phases.In this paper, we 
onsider the most general form ofthe e�e
tive S = 1 pseudospin Hamiltonian related tothe extended Bose�Hubbard model and present a shortoverview of di�erent phase states. We fo
us on sev-eral types of un
onventional skyrmion-like topologi
alstru
tures in 2D boson systems, whi
h have not beenanalyzed until now. The stru
tures are 
hara
terizedby a 
ompli
ated interplay of insulating and two super-�uid phases. The rest of the paper is organized as fol-lows. Se
tion 2 is an introdu
tion into the pseudospinformalism. In Se
. 3, we introdu
e and analyze thee�e
tive pseudospin Hamiltonian. In Se
. 4, we turnto a short overview of a typi
al simpli�ed S = 1 spinmodel. Un
onventional pseudospin topologi
al stru
-tures are 
onsidered in Se
. 5, with a short 
on
lusionin Se
. 6. 2. PSEUDOSPIN FORMALISMOne strategy to deal with the physi
s of the ex-tended Bose�Hubbard model with the on-site Hilbertspa
e trun
ated to n = 0; 1; 2 is to use an S = 1pseudospin formalism [4, 5℄ and to 
reate a modelpseudospin Hamiltonian that 
an reprodu
e both theground state and important low-energy ex
itations ofthe full problem reasonably well. The standard pseu-dospin formalism represents a variant of the equivalent-

operator te
hnique widely known in di�erent physi
alproblems, from 
lassi
al and quantum latti
e gases,binary alloys, (anti)ferroele
tri
s, et
., to neural net-works. The formalism starts with a �nite basis set for alatti
e site (triplet in our model). Su
h an approa
h dif-fers from well-known pseudospin�parti
le transforma-tions akin to Jordan�Wigner [6℄ or Holstein�Primako�[7℄ transformations that establish a stri
t link betweenpseudospin operators and the 
reation/annihilation op-erators of the Fermi or Bose type. The pseudospin for-malism generally pro
eeds with a trun
ated basis anddoes not imply a stri
t relation to boson operators thatobey the boson 
ommutation rules.The three on-site Fo
k states jn = 0i, jn = 1i, andjn = 2i form a lo
al Hilbert spa
e of the semi-hard 
orebosons, whi
h 
an be mapped onto a system of S = 1
enters via a generalization of the Matsubara�Matsudatransformation [5℄ that also maps the boson densityinto the lo
al magnetization: nj = Szj +1. In 
ontrastto the hard-
ore bosons asso
iated with S = 1=2 mag-nets, it is possible to study �Hubbard-like� boson gaseswith on-site density�density (
onta
t) intera
tions be-
ause nj � 2. Hereafter, we relate the three on-siteFo
k states with the o

upation numbers n = 0; 1; 2 tothe three 
omponents of the S = 1 pseudospin (isospin)triplet with MS = �1; 0; +1, respe
tively. It is worthnoting that a very similar S = 1 pseudospin formalismwas suggested re
ently [8, 9℄ to des
ribe the triplet ofCu1+, Cu2+, Cu3+ valen
e states in high-temperature
opper super
ondu
tors.The S = 1 spin algebra in
ludes the three inde-pendent irredu
ible tensors V̂ kq of rank k = 0; 1; 2 withone, three, and �ve 
omponents respe
tively, obeyingthe Wigner�E
kart theorem [10℄hSM jV̂ kq jSM 0i == (�1)S�M  S k S�M q M 0 ! hSk V̂ k kSi : (3)Here, we use standard symbols for the Wigner 
oe�-
ients and redu
ed matrix elements. In a more 
on-ventional Cartesian s
heme, a 
omplete set of nontriv-ial pseudospin operators would in
lude both S anda number of symmetrized bilinear forms fSiSjg == (SiSj + SjSi), or spin-quadrupole operators, whi
hare linearly related to V 1q and V 2q :V 1q = Sq ; S0 = Sz; S� = � 1p2(Sx � iSy) :V 20 / (3S2z � S2); V 2�1 / (SzS� + S�Sz);V 2�2 / S2�: (4)550



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :Instead of the three j1Mi states, one 
an use theCartesian basis set 	, or jx; y; zi:j10i = jzi; j1� 1i = � 1p2(jxi � ijyi) (5)su
h that the on-site wave fun
tion 
an be written inthe matrix form [11℄ = 0B� 
1
2
3 1CA = 0B� R1 exp(i�1)R2 exp(i�2)R3 exp(i�3) 1CA ; jRj2 = 1; (6)with R = fsin� 
os �; sin� sin �; 
os�g. Obviously,the minimal number of dynami
 variables des
ribingan isolated on-site S = 1 (pseudo)spin 
enter equalsto four; however, for a more general situation, whenthe (pseudo)spin system represents only a part of thebigger system and we are for
ed to 
onsider the 
ou-pling to the additional degrees of freedom, we should
onsider all the �ve nontrivial parameters.The pseudospin matrix has a very simple form interms of the jx; y; zi basis set:hijŜkjji = i�ikj : (7)We start by introdu
ing a set of S = 1 
oherentstates 
hara
terized by ve
tors a and b satisfying thenormalization 
onstraint [11℄j
i = ja;bi = 
 �	 = (a+ ib) �	; (8)where a and b are real ve
tors that are arbitrarily ori-ented with respe
t to some �xed 
oordinate system inthe pseudospin spa
e with the orthonormal basis e1;2;3.The two ve
tors are 
oupled, and therefore the min-imal number of dynami
 variables des
ribing the S = 1(pseudo)spin system appears to be equal to four. Weemphasize the dire
tor nature of the 
 ve
tor �eld: j
iand j � 
i des
ribe physi
ally identi
al states.We note that in real spa
e, the j
i state 
orrespondsto a quantum on-site superposition:j
i = 
�1j0i+ 
0j1i+ 
+1j2i: (9)The existen
e of su
h un
onventional on-site superpo-sitions is a prin
ipal point of the model. Below, insteadof a and b, we use a pair of unit ve
tors m and n de-�ned as follows [12℄:a = 
os'm; b = sin'n:For the averages of the prin
ipal pseudospin opera-tors, we obtain hSi = sin 2'[m� n℄;

hfSi; Sjgi = 2(Æij � 
os2 'mimj � sin2 'ninj); (10)or hS2i i = 1� 12(m2i + n2i )� 12(m2i � n2i ) 
os 2';hfSi; Sjgi = �(mimj + ninj)�� (mimj � ninj) 
os 2' (i 6= j): (11)We note a prin
ipal di�eren
e between the S = 1=2and S = 1 quantum systems. The only on-site orderparameter in the former 
ase is the average spin mo-ment hSx;y;zi, whereas in the latter, we have �ve addi-tional �spin-quadrupole�, or spin�nemati
 order param-eters des
ribed by the tra
eless symmetri
 tensorsQij = ��12fSi; Sjg � 23Æij�� : (12)Interestingly, the S = 1=2 quantum spin system, withall the order parameters de�ned by a simple on-siteve
torial order parameter hSi, is in a sense 
loser to a
lassi
al one (S ! 1) than the S = 1 quantum spinsystem, with its eight independent on-site order param-eters.The operators V kq (q 6= 0) 
hange the z-proje
tionof the pseudospin and transform the jSMSi state intothe jSMS+qi one. In other words, these operators 
an
hange the o

upation number. We emphasize that inthe S = 1 pseudospin algebra, there are two operators,V 1�1 and V 2�1, or S� and T� = fSz; S�g, that 
hangethe pseudospin proje
tion (and the o

upation number)by �1, with slightly di�erent properties:h0jŜ�j � 1i = h�1jŜ�j0i = �1; (13)but h0jT̂�j � 1i = �h�1j(T̂�j0i = +1: (14)It is worth noting similar behavior of both operatorsunder Hermitian 
onjugation: Ŝy� = �Ŝ�; T̂ y� = �T̂�.The V 2�2, or Ŝ2� operator 
hanges the pseudospinproje
tion by �2 with the lo
al order parameterhS2�i = 12(hS2x � S2yi � ihfSx; Sygi) == 
�+
� = 
2x � 
2y � 2i
x
y: (15)Obviously, this on-site o�-diagonal order parameter isnonzero only when both 
+ and 
� are nonzero, or forthe on-site 0�2 superpositions. It is worth noting thatthe Ŝ2+ (Ŝ2�) operator 
reates an on-site boson pair, or a551
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onstraint (Ŝ2�)2 = 0, whi
hunderlines its �hard-
ore� nature.Figure 1 shows orientations of the m and n ve
-tors that provide extremal values of di�erent on-sitepseudospin order parameters at ' = �=4. The n = 1
enter is des
ribed by a pair of m and n ve
tors di-re
ted along the Z axis with jmzj = jnzj = 1. Wearrive at the respe
tive 1 � 2 or 1 � 0 mixtures if weturn 
�1 or 
+1 into zero. The mixtures are des
ribedby a pair of m and n ve
tors whose proje
tions on theXY plane, m? and n?, are of the same length andorthogonal to ea
h other: m? � n? = 0, m? = n?with [m? � n?℄ = hSzi = � sin2 � for 1� 2 and 1 � 0mixtures, respe
tively (see Fig. 1).It is worth noting that for the �
oni
al� 
on�gura-tions in Figs. 1b�1d, we havehSzi = 0; hS2z i = sin2 �;hS2�i = �12 sin2 � e�2i';hS�i = � ip2 sin 2� e�i'; hT�i = 0 (16)(Fig. 1b); hSzi = 0; hS2z i = sin2 �;hS2�i = �12 sin2 � e�2i';hS�i = 0; hT�i = � 1p2 sin 2� e�i' (17)(Fig. 1
); andhSzi = �hS2zi = � sin2 �; hS2�i = 0;hS�i = hT�i = �12e�i�4 sin 2� e�i' (18)(Fig. 1d ). Figures 1e,f show the orientation of the mand n ve
tors for the lo
al binary mixture 0 � 2, andFig. 1g does so for n = 2 
enter. It is worth notingthat for binary mixtures j1i�j0i and j1i�j2i, we arriveat the same algebra of the Ŝ� and T̂� operators withhS�i = hT�i, while for ternary mixtures j0i�j1i�j2i,these operators des
ribe di�erent ex
itations. Inter-estingly, in all 
ases, the lo
al n = 1 fra
tion 
an bewritten as �(n = 1) = 1� hS2z i = 
os2 �: (19)In the boson language, hSzi and hS2z i are on-site di-agonal order parameters that respe
tively des
ribe thelo
al density and boson nemati
 order. The on-sitemean values hS�i and hT�i are the two types of lo
alo�-diagonal order parameters that des
ribe one-bosonsuper�uidity, while hS2�i is a lo
al order parameter ofthe two-boson, or dimer super�uidity.

3. EFFECTIVE S = 1 PSEUDOSPINHAMILTONIANThe general form of the e�e
tive pseudospin Hamil-tonian that 
ommutes with the z-
omponent of the to-tal pseudospin Pi Siz and hen
e preserves the meanboson density is [8; 9℄Ĥ =Xi (�iS2iz � (�� hi)Siz) ++ Xk1k2qXi<j Ik1k2q(ij)V̂ k1q (i)V̂ k2�q(j): (20)The Hamiltonian 
an be rewritten as a sum of potentialand kineti
 energies, that is, of the q = 0 (�diagonal�)Ĥ
h and q 6= 0 (�o�-diagonal�) Ĥtr terms:Ĥ = Ĥ
h + Ĥtr; (21)whereĤ
h =Xi (�iS2iz � (�� hi)Siz) ++Xi<j Vij(SizSjz + �S2izS2jz); (22)and Ĥtr = Ĥ(1)tr +Ĥ(2)tr are the sums of one-parti
le andtwo-parti
le transfer 
ontributionsĤ(1)tr =Xi<j tSij(Si+Sj� + Si�Sj+) ++Xi<j tTij(Ti+Tj� + Ti�Tj+) ++Xi<j tSTij (Si+Tj�+Si�Tj++Ti+Sj�+Ti�Sj+); (23)Ĥ(2)tr =Xi<j tdij(S2i+S2j� + S2i�S2j+); (24)with the boson density 
onstraint12N Xi hSizi = �n; (25)where �n is the deviation from half-�lling (n = 1).The Hamiltonian Ĥ
h 
orresponds to a 
lassi
alspin-1 Ising model with a single-ion anisotropy term,or the generalized Blume�Capel model [13℄, in thepresen
e of a longitudinal magneti
 �eld. The �rstsingle-site term in Ĥ
h des
ribes the e�e
ts of a barepseudospin splitting and relates to the on-site density�density intera
tions: � = U . The se
ond term 
an berelated to a pseudomagneti
 �eld hi k Z that a
ts as552
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Fig. 1. S
hemati
 showing orientations of the m and n ve
tors that provide extremal values of di�erent on-site pseudospinorder parameters for ' = �=4a 
hemi
al potential (� is the boson 
hemi
al potentialand hi is a (random) site energy). At varian
e withthe real external �eld, the 
hemi
al potential dependson both the parameters of Hamiltonian (21) and thetemperature. The third bilinear and forth biquadrati
terms in Ĥ
h des
ribe the e�e
ts of the short- and long-range inter-site density�density intera
tions.The Hamiltonian Ĥtr plays the role of kineti
 ener-gy, with Ĥ(1)tr and Ĥ(2)tr respe
tively des
ribing the one-and two-parti
le inter-site hopping. The HamiltonianĤ(1)tr represents an obvious extension of the 
onven-tional Hubbard model that assumes that the single-parti
le orbital is in�nitely rigid irrespe
tive of the o
-
upation number, and has mu
h in 
ommon with so-
alled dynami
 Hubbard models [14℄ that des
ribe a


orrelated hopping. The ST and TT terms des
ribea density-dependent single-parti
le hopping. It wasHirs
h and 
oworkers [14℄ who stressed the importan
eof density-indu
ed tunneling e�e
ts in the 
ondensed-matter 
ontext.However, before mapping the pseudospin model intoa dis
rete free boson model, we must verify that the am-plitude of the one-parti
le hoppings in Bose�HubbardHamiltonian (1) obey the boson 
ommutation relations.This implies that the amplitude of the j1i j2i�j2i j1ipro
ess is twi
e as large as that of j0i j1i�j1i j0i and afa
tor p2 larger than that of j1i j1i�j2i j0i. We notethat in the triplet basis j0; 1; 2i, the boson annihilationoperator reads as [3℄553



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015b̂i = 12 h�1 +p2� Ŝi� � �1�p2� T̂i�i == p2 1 + p2� 1p2 Ŝiz! Ŝi+: (26)In other words, in the framework of the standardEBHM approa
h, all the SS, TT, and ST terms in thepseudospin kineti
 energy are governed by a single Hub-bard transfer integral t:tS = ��1 +p2 �24 t; tT = ��1�p2 �24 t;tST = �p2 t; td = 0; (27)while the pseudospin Hamiltonian Ĥtr allows des
rib-ing more 
ompli
ated transfer me
hanisms. The one-and two-parti
le hopping terms in Ĥtr are of primaryimportan
e for the transport properties of our modelsystem, and deserve spe
ial attention. Three (SS-, TT-,and ST-) types of the one-parti
le hopping terms arerespe
tively governed by the three transfer integrals tSij ,tTij , and tSTij . Instead of Ŝ� and T̂�, we 
an introdu
etwo novel operators P̂� and N̂� asP̂� = 12(Ŝ� + T̂�); N̂� = 12(Ŝ� � T̂�): (28)Then the single-parti
le transfer Hamiltonian be
omesĤ(1)tr =Xi<j tPij(Pi+Pj� + Pi�Pj+) ++Xi<j tNij (Ni+Nj�+Ni�Nj+)+Xi<j tPNij (Pi+Nj�++ Pi�Nj+ +Ni+Pj�+Ni�Pj+); (29)wheretPij = tSij + tTij + tSTij ; tNij = tSij + tTij � tSTij ;tPNij = tSij � tTij : (30)All the three terms here have a 
lear physi
al interpre-tation. The �rst, PP -type term des
ribes one-parti
lehopping pro
esses j1i j2i�j2i j1i, whi
h are a rather 
on-ventional motion of the extra boson in the latti
e withthe n = 1 on-site o

upation or the motion of a bosonhole in the latti
e with the n = 2 on-site o

upation.The se
ond, NN -type term des
ribes one-parti
le hop-ping pro
esses j1i j0i�j0i j1i, whi
h are a rather 
on-ventional motion of a boson hole in the latti
e with then = 1 on-site o

upation or the motion of a boson inthe latti
e with the n = 0 on-site o

upation. Thesehopping pro
esses are respe
tively typi
al for heavilyunder�lled (hni � 1) or heavily over�lled (hni � 2)

latti
es. It is worth noting that the ST-type 
ontribu-tion of the one-parti
le transfer di�ers in sign for thePP and NN transfer, thus breaking the �parti
le�hole�symmetry.The third, PN (NP ), term in (29) de�nesa very di�erent one-parti
le hopping pro
ess,j1i j1i�j2i j0i (j0i j2i), whi
h is the parti
le�hole
reation/annihilation. We note that the ST-typetransfer does not 
ontribute to the rea
tion.The two-parti
le(hole), or dimer hopping is gover-ned by the transfer integral tdij that de�nes the prob-ability amplitude for the �ex
hange� rea
tion j0i j2i�j2i j0i, either the motion of an on-site dimer in the lat-ti
e with the n = 0 on-site o

upation or the motionof an on-site hole n = 0 in the latti
e with the n = 2on-site o

upation.All the kineti
 energies 
an be rewritten in terms ofthe Cartesian pseudospin 
omponents if we take intoa

ount that(Si+Sj� + Si�Sj+) = �(SixSjx + SiySjy);(Si+Sj��Si�Sj+) = i(SixSjy�SiySjx) = i [S1 � S2℄z ;(Ti+Tj� + Ti�Tj+) = �(TixTjx + TiyTjy) == �(SixSjx + SiySjy)SizSjz �� Siz(SixSjx + SiySjy)Sjz +H.
.;(Ti+Tj��Ti�Tj+) = i(TixTjy�TiyTjx) = i [T1 �T2℄z ;(Si+Tj� + Si�Tj+) + H.
. == �f(Siz + Sjz); (SixSjx + SiySjy)g;(S2i+S2j� + S2i�S2j+) == 12 �(S2ix � S2iy)(S2jx � S2jy) + fSix; SiygfSjx; Sjyg� ;(S2i+S2j� � S2i�S2j+) = � i2 �(S2ix�S2iy)fSjx; Sjyg �� fSix; Siyg(S2jx�S2jy)� : (31)The Hamiltonian Ĥ
h des
ribes two types of a lon-gitudinal long-range diagonal Z-ordering measured bythe stati
 stru
ture fa
tors su
h asSzz(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hSmzSnzi (32)for a pseudospin�dipole order and554



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :S2zz(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hS2mzS2nzi (33)for a pseudospin�quadrupole (nemati
) order.The Hamiltonian Ĥtr des
ribes di�erent types oftransverse long-range o�-diagonal XY-ordering mea-sured by the transverse 
omponents of the stati
 stru
-ture fa
tors su
h asS+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hSm+Sn�i (34)for the 
onventional pseudospin-dipole order orT+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hTm+Tn�i; (35)andS2+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hS2m+S2n�i (36)for two types of the pseudospin�quadrupole (nemati
)order. In the 
onventional boson language, the stru
-ture fa
tors Szz(q) and S2zz(q) des
ribe density�density
orrelations, S+�(q) and T+�(q) des
ribe the single-boson super�uid 
orrelations, while S2+�(q) des
ribesthe two-boson (on-site dimer) super�uid 
orrelations.4. TYPICAL SIMPLIFIED S = 1 SPIN MODELDespite many simpli�
ations, the e�e
tive pseu-dospin Hamiltonian (21) is rather 
omplex, and repre-sents one of the most general forms of the anisotropi
S = 1 non-Heisenberg Hamiltonian. Its real spin 
oun-terpart 
orresponds to an anisotropi
 S = 1 magnetwith a single-ion (on-site) and two-ion (inter-site bilin-ear and biquadrati
) symmetri
 anisotropy in an ex-ternal magneti
 �eld under 
onservation of the totalSz. Spin Hamiltonian (21) des
ribes an interplay ofthe Zeeman, single-ion, and two-ion anisotropi
 terms,giving rise to a 
ompetition of an (anti)ferromagneti
order along the Z axis with an in-plane XY magneti
order. Simpli�ed versions of anisotropi
 S = 1 Heisen-berg Hamiltonian with bilinear ex
hange have been in-vestigated rather extensively in re
ent years. Theiranalysis seems to provide an instru
tive introdu
tion tothe des
ription of our generalized pseudospin model.

A typi
al S = 1 spin Hamiltonian with uniaxialsingle-site and ex
hange anisotropies is given byĤ =Xi>j Jij(SixSjx + SiySjy + �SizSjz) ++Xi DS2iz �Xi hSiz: (37)The 
orresponden
e with our pseudospin Hamiltonianpoints to D = �, Jij = tij , and �Jij = Vij . The anti-ferromagnet with J > 0 is usually 
onsidered be
ausethis is the 
ase of more interest in general. However,Hamiltonian (37) is invariant under the transforma-tion J; � ! �J;�� and a shift of the Brillouin zonek ! k + (�; �) for the square 2D latti
e. The sys-tem des
ribed by Hamiltonian (2) 
an be 
hara
terizedby lo
al (on-site) spin-linear order parameters hSi andspin-quadrati
 (quadrupole spin-nemati
) order param-eters Q20 = Qzz = hS2z � 2=3i and Q2�2 = hS2�1i.The model has been studied by several methods,e. g., mole
ular �eld approximation, spin-wave theories,exa
t numeri
al diagonalizations, a nonlinear sigmamodel, quantum Monte Carlo, series expansions, varia-tional methods, the 
oupled 
luster approa
h, the self-
onsistent harmoni
 approximation, and the general-ized SU(3) S
hwinger boson representation [15�19℄.The spe
trum of spin Hamiltonian (37) in the ab-sen
e of an external magneti
 �eld 
hanges drasti
allyas � varies from very small to very large positive ornegative values. A strong �easy-plane� anisotropy forlarge positive � > 0 favors a singlet phase where spinsare in the Sz = 0 ground state. This �quadrupole�phase has no magneti
 order, and is aptly referred toas a quantum paramagneti
 phase (QPM), whi
h is sep-arated from the �ordered� state by a quantum 
riti
alpoint at some � = �QPM
 . This is a quadrupole statewith no magneti
 order, and hen
e all linear order pa-rameters vanish and only a quadrupole (spin-nemati
)order parameter su
h as Qzz = hS2z � 2=3i is nonzero.The QPM phase 
onsists of a unique ground state withthe total spin Stotalz = 0, separated by a gap from the�rst ex
ited states, whi
h lie in the se
tors Stotalz = �1.It is worth noting that the QPM order di�ers in prin
i-ple from the 
onventional paramagneti
 state, be
ausefor S = 1 in the 
lassi
al paramagneti
 state, we havehS2xi = hS2yi = hS2z i = 2=3, while in the quantum para-magneti
 state, hS2z i = 0 and hS2xi = hS2yi = 1. Stri
tlyspeaking, all the above analysis 
on
erns the typi
almean-�eld approximation (MFA). Beyond the MFA,the QPM ground state 
ontains an admixture of statesformed by ex
iton-like tightly bound parti
le�hole �u
-tuations (0� 2 on nearby sites).A strong �easy-axis� anisotropy for large negative555
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 , �IS
 = 2(Vnn=tnn � 1) [19℄, favors a spin or-dering along z, the �easy axis�, with the on-site Sz = �1(Z-phase). The order parameter is �Ising-like� and thelong-range (staggered) diagonal order persists at �nitetemperatures, up to a 
riti
al line T
(�). The easy axisantiferromagneti
 ZAFM phase or more 
ompli
atedlong-range spin Z-order are 
hara
terized by the longi-tudinal 
omponent of the stati
 stru
ture fa
tor Szz(q).For intermediate values �QPM
 > � > �IS
 , thesystem is in a gapless XY phase, where the spins arepreferentially in the xy plane (
hoosing z as the hardaxis) and the Hamiltonian has the O(2) symmetry. AtT = 0, this symmetry is spontaneously broken and thesystem exhibits spin order in some dire
tion, redu
edby quantum �u
tuations. The broken O(2) symmetryresults in a single gapless Goldstone mode. Althoughthere is no ordered phase at a �nite temperature, weexpe
t a �nite-temperature Kosterlitz�Thouless tran-sition. The XY phase has a long-range o�-diagonalordering measured by the transverse 
omponent of thestati
 stru
ture fa
tor S+�(q).For large positive �, in the QPM phase, the low-energy ex
itations arise from ex
iting one of the Sz = 0(n = 1) sites to Sz = +1 (n = 2) or Sz = �1 (n = 0).Su
h a lo
al ex
itation, a
tually the e�e
tive parti
leor hole, 
an then propagate over the latti
e due to thetransfer terms (quantum �u
tuations) in Htr, forminga well-de�ned quasiparti
le (magnon) band with theenergy "(k). These 
oherent magnon bands have anenergy gap, whi
h we expe
t to vanish as �! �QPM
 .An analyti
 expression for "(k) in the QPM phase hasbeen proposed by Papani
olaou [20℄, based on a gener-alized Holstein�Primako� transformation for isotropi
nn-Heisenberg model with single-site anisotropy. Theappli
ation of an e�e
tive �eld hz along the z axis re-du
es the spin gap linearly in hz sin
e the �eld 
ouplesto a 
onserved quantity (total spin along the z axis).The gap is 
losed at a 
riti
al �eld h
 (the quantum
riti
al point (QCP)) where the bottom of the Sz = 1bran
h of (pseudo)spin ex
itations tou
hes zero. ThisQCP belongs to the BEC universality 
lass and thegapless mode of low-energy Sz = 1 ex
itations remainsquadrati
 for small momenta, be
ause the Zeeman term
ommutes with the rest of the Hamiltonian.Both ex
itation bran
hes in the QPM phase,�Sz = �1 (parti
le/hole), have the same dispersionat zero �eld, hz = 0, as expe
ted from time reversalsymmetry. A �nite hz splits the bran
hes linearlyin hz: "�(k) ! "�(k) � hz without 
hanging thedispersion. This is a 
onsequen
e of the fa
t that theexternal �eld 
ouples to the total spin PSz, whi
h isa 
onserved quantity.

We note that there are three types of two-magnonex
itations, those with �Stotalz = +2; �2, and 0. Thetwo-magnon bound state with �Stotalz = 0, or a 
ou-pled parti
le�hole pair 
an propagate over the latti
e,forming a quasiparti
le band.At least for relatively small negative � < �IS
 , thelowest-energy ex
itations in the unperturbed system
onsist of a single spin ex
ited from its ordered Sz = �1state to Sz = 0, i. e., �Sz = �1. The 
orresponding 
o-herent magnon band has an energy gap at the � point(0; 0), whi
h behaves like "(0; 0) � 2p2Vnnj�j at smallj�j. This re�e
ts, in the easy axis 
ase, the fa
t thatthe residual O(2) symmetry of the Hamiltonian is notspontaneously broken in this 
ase, and therefore Gold-stone modes are absent.However, for large negative �, the single-magnon(single-parti
le) ex
itations are not the lowest-energyex
itations of the system. Their energy is of the or-der of j�j, whereas an ex
itation with �Sz = �2 (i. e.,Sz = �1 $ Sz = �1) has an energy of the order of2zVnn as � ! �1. Su
h a two-parti
le (lo
al dimer)ex
itation, 
reated at a parti
ular site, 
an again propa-gate over the latti
e, forming a quasiparti
le band. We
an think of this lo
al dimer as a long-lived virtual two-magnon bound state (bimagnon), where the magnonsare bound on the same site.Hamer et al. [18℄ have shown that at a �nite e�e
tive�eld hz but at � = 1, the XY phase transforms into a
anted antiferromagneti
 XY-ZFM phase that appearsright above h
: the spins a
quire a uniform longitudinal
omponent and an antiferromagneti
ally ordered trans-verse 
omponent, whi
h spontaneously breaks the U(1)symmetry of global spin rotations along the z axis. Thelongitudinal magnetization in
reases with the �eld andsaturates at the fully polarized (FP) state (all Sz = 1)above the saturation �eld hs. The FP state 
orrespondsto a boson Mott insulator in the language of Bose gases.The �eld-indu
ed quantum phase transition fromthe QPM to the XY-ZFM phase is qualitatively di�er-ent from the transition between the same two phasesthat is indu
ed by 
hanging � at hz = 0. If the single-ion anisotropy is 
ontinuously de
reased at a zero ap-plied �eld, the two ex
itation bran
hes remain degen-erate and the gap vanishes at � = �QPM
 (hz = 0).The low-energy dispersion be
omes linear at the QPM�CAFM phase boundary for small k. However, the de-genera
y between the two bran
hes at hz = 0 is liftedinside the CAFM phase: one of the bran
hes remainsgapless with a linear dispersion at low energy (
orre-sponding to the Goldstone mode of the ordered CAFMstate), whereas the other mode develops a gap to thelowest ex
itation. The e�e
t of in
reasing hz from zero556
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 is to redu
e the gap linearly inhz with no 
hange of dispersion.At D > 0 and � > 1, the phase diagram of theS = 1 Heisenberg model with uniaxial anisotropy (37)
ontains an extended spin supersolid (SS) or bi
oni-
al phase XY-ZFIM with a ferrimagneti
 z-order thatdoes exist over a range of magneti
 �elds. The modelalso exhibits other interesting phenomena su
h as mag-netization plateaus and a multi
riti
al point [15℄. Themagnetization stays zero up to the 
riti
al �eld h
1 thatmarks a quantum phase transition (QPT) to a statewith a �nite fra
tion of spins in all the Sz = 0;�1states. This spin supersolid state has a �nite Szz(�; �)as well as a �nite S+�(0; 0). The magnetization in-
reases 
ontinuously to mz = 0:5 at h
2, where there isa se
ond QPT to a se
ond Ising-like state (IS2), whereall the Sz = �1 (n = 0) sites have been �ipped tothe Sz = 0 (n = 1) state. The Szz(�; �) 
omponentthen remains divergent, but S+�(0; 0) drops to zero.Upon further in
reasing the �eld, a �rst-order transi-tion o

urs to a pure XY-AFM phase (CAFM) with thevanishing diagonal order but a �nite S+�(0; 0). Thissituation persists until all the spins have �ipped to theSz = +1 (n = 2) state (fully polarized, FP phase). Theextent of the SS phase de
reases with de
reasing � andvanishes for � � 1, leaving a se
ond-order transitionfrom the SS to the XY (CAFM) phase.At D < 0, J > 0, and � = 1, the ground stateof spin Hamiltonian (37) 
orresponds to the easy-axisantiferromagneti
 ZAFM phase. At small anisotropy,jDj =J � 1, the appli
ation of an e�e
tive �eld hzalong the z axis �rst indu
es a rather 
onventionalspin-�op transition to a pure XY-AFM phase (CAFM)with the vanishing diagonal order but �nite S+�(0; 0),ending with the transition to the fully polarized fer-romagneti
 ZFM phase. However, at large anisotropyjDj =J � 1, instead of the mean-�eld �rst-order (meta-magneti
) phase transition ZAFM�ZFM , we arrive atan un
onventional intermediate phase with the spin fer-ronemati
 (FNM) order 
hara
terized by zero value ofthe S+�(0; 0) fa
tor but a nonzero S2+�(0; 0) 
orrela-tion fun
tion [16℄.The phase diagram in the most interesting in-termediate regime 
an 
hange drasti
ally, if we takefrustrative e�e
ts of next-nearest-neighbor 
ouplingsor di�erent non-Heisenberg biquadrati
 intera
tionsinto a

ount [19℄. We note that even for the simpleisotropi
 2D-nnn antiferromagneti
 Heisenberg model,the 
lassi
al ground state has a Néel order only whenJ2=J1 < 1=2, where J1 is the nearest-neighbor andJ2 is the next-nearest-neighbor intera
tion. However,when J2=J1 > 1=2, the ground state 
onsists of two

independent sublatti
es with antiferromagneti
 order.The 
lassi
al ground-state energy does not depend onthe relative orientations of both sublatti
es. However,quantum �u
tuations lift this degenera
y and sele
t a
ollinear order state, where the neighboring spins alignferromagneti
ally along one axis of the square latti
eand antiferromagneti
ally along the other (stripe-likeorder).Turning to spin�boson mapping, we note that theQPM phase (ni = 1), fully polarized ZFM phases withni = 0 or ni = 2 
orrespond to Mott insulating phases,the XY and XY-ZFM orderings 
orrespond to a Bose�Einstein 
ondensate (BEC) of single bosons, while theFNM phase 
orresponds the BEC of boson dimers. TheXY-ZFIM phases 
orrespond to supersolids.The pseudospin Hamiltonian in Eqs. (21)�(24) dif-fers from its simpli�ed version (2) in several points.First, this 
on
erns the density 
onstraint. It is worthnoting that the 
harge density 
onstraint in a uni-form pseudospin system 
an be satis�ed only undersome quasidegenera
y. Se
ond, the pseudospin param-eters, in parti
ular �, Vij , and h in e�e
tive Hamilto-nian (21), 
an be 
losely linked to ea
h other. Instead ofa simple usually antiferromagneti
 XY-ex
hange termin (2), we should pro
eed with a signi�
antly more
ompli
ated form of the �transverse� term in the pseu-dospin Hamiltonian, (21), with the in
lusion of two bi-quadrati
 terms and an un
onventional �mixed� asym-metri
 ST-type term that formally breaks the time in-version symmetry and is absent for 
onventional spinHamiltonians. The apparently leading bilinear XY-ex-
hange term in Ĥtr appears to be of the ferromagneti
sign. Along with a simple spin-linear planar XY-modewith nonzero hS�i, we arrive at two novel spin-quadru-pole nemati
 modes with nonzero hT�i and/or hS2�i.Hereafter, we let the di�erent 
ounterparts of thephases of simple model (2) be denoted as follows: thenovel XY-phase ZAFM for Ising-type antiferromagneti
order along the z axis, XY�ZFIM for spin supersolidphases with simultaneous XY and ferrimagneti
 orde-rings along the z axis, XY-ZFM for a phase with simul-taneous XY- and ferromagneti
 orderings along the zaxis (an analogue of the CAFM phase), and ZFM forthe fully z-polarized ferromagneti
 phase.5. TOPOLOGICAL DEFECTS IN 2D S = 1PSEUDOSPIN SYSTEMS5.1. Short overviewIn the framework of our model, the 2D Bose�Hubbard systems turn out to be in the universality
lass of the (pseudo)spin 2D systems whose des
rip-557
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orporates stati
 or dynami
 topologi
al defe
tsas a natural element of both mi
ro- and ma
ros
opi
physi
s. Depending on the stru
ture of the e�e
tivepseudospin Hamiltonian in 2D systems, these 
ould 
or-respond to either in-plane and out-of-plane vorti
es orskyrmions. Under 
ertain 
onditions, either topologi-
al defe
ts 
ould determine the stru
ture of the groundstate. In parti
ular, this 
ould be a generi
 featureof ele
tri
 multipolar systems with long-range multi-polar intera
tions. Indeed, a Monte Carlo simulationof a ferromagneti
 Heisenberg model with dipolar in-tera
tion on a 2D square L � L latti
e shows that asL is in
reased, the spin stru
ture 
hanges from a fer-romagneti
 one to a novel one with a vortex-like ar-rangement of spins even for rather small magnitude ofdipolar anisotropy [21℄.Topologi
al defe
ts are stable nonuniform spinstru
tures with broken translational symmetry and anonzero topologi
al 
harge (
hirality, vorti
ity, andwinding number). Vorti
es are stable states of theanisotropi
 2D Heisenberg HamiltonianĤ =Xi>j Jij(SixSjx + SiySjy + �SizSjz); (38)with the �easy-plane� anisotropy for the anisotropy pa-rameter � < 1. A 
lassi
al in-plane vortex (Sz = 0)appears to be a stable solution of 
lassi
al Hamilto-nian (38) at � < �
 (�
 � 0:7 for a square latti
e). At1 > � > �
, the stable solution 
orresponds to the out-of-plane OP vortex (Sz 6= 0), at the 
enter of whi
h thespin ve
tor appears to be oriented along the z axis, andat in�nity it arranges within xy plane. The in-planevortex is des
ribed by the formulas � = q', 
os � = 0.The �(r) dependen
e for the out-of-plane vortex 
an-not be found analyti
ally. Both kinds of vorti
es havethe energy logarithmi
ally dependent on the size of thesystem.The 
ylindri
al domains, or bubble-like solitonswith spins oriented along the z axis both at in�nity andin the 
enter (naturally, in opposite dire
tions) exist forthe �easy-axis� anisotropy � > 1. Their energy has a�nite value. Skyrmions are general stati
 solutions ofthe 
lassi
al 
ontinuous limit of the isotropi
 (� = 1)2D Heisenberg ferromagnet, obtained by Belavin andPolyakov [22℄ from a 
lassi
al nonlinear sigma model.The Belavin�Polyakov skyrmion and the out-of-planevortex represent the simplest toy model of (pseudo)spintextures [22, 23℄.The simplest skyrmion spin texture looks like a bub-ble domain in a ferromagnet and 
onsists of a vortex-like arrangement of the in-plane 
omponents of spinwith the z-
omponent reversed in the 
entre of the

skyrmion and gradually in
reasing to mat
h the ho-mogeneous ba
kground at in�nity. The spin distribu-tion within su
h a 
lassi
al skyrmion with a topologi
al
harge q is given by [22℄� = q'+ '0; 
os� = r2q � �2qr2q + �2q ; (39)where r and ' are polar 
oordinates on the plane, andq = �1; �2; : : : is the 
hirality. For q = 1 and '0 = 0,we arrive atnx = 2r�r2 + �2 
os'; ny = 2r�r2 + �2 sin';nz = r2 � �2r2 + �2 : (40)In terms of the stereographi
 variables, the skyrmionwith a radius � and phase '0 
entered at a point z0 isidenti�ed with the spin distribution w(z) = �=(z�z0),where z = x+iy = rei' is a point in the 
omplex plane,� = �ei�. For a multi
enter skyrmion, we have [22℄w(z) = 
tg �2 ei� ==Yi �z � zj� �mj Yj � �z � zj�nj ; (41)where Pmi > Pnj , q = Pmj . Skyrmions are
hara
terized by the magnitude and the sign of theirtopologi
al 
harge, by their size (radius), and by theglobal orientation of the spin. The s
ale invarian
eof a skyrmioni
 solution re�e
ts in that its energyEsk = 4�jqjIS2 is proportional to the topologi
al
harge and does not depend on the radius and theglobal phase [22℄. Like domain walls, vorti
es andskyrmions are stable for topologi
al reasons. Skyrmions
annot de
ay into other 
on�gurations be
ause of thistopologi
al stability, irrespe
tive of how 
lose they arein energy to any other 
on�guration.In a 
ontinuous �eld model, su
h as, e. g., thenonlinear �-model, the ground-state energy of theskyrmion is independent of its size [22℄, but for theskyrmion on a latti
e, the energy depends on its size.This must lead to a 
ollapse of the skyrmion, making itunstable. Strong anisotropi
 intera
tions, in parti
ular,long-range dipole�dipole intera
tions may in prin
ipledynami
ally stabilize the skyrmions in 2D latti
es [24℄.The wave fun
tion of the spin system that 
orre-sponds to a 
lassi
al skyrmion is a produ
t of spin 
o-herent states [25℄. For the spin S = 1=2,	sk(0) ==Yi �
os �i2 ei'i=2j "i+ sin �i2 e�i'i=2j #i� ; (42)558
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os r2i��2r2i+�2 . The 
oherent state provides amaximal equivalen
e to a 
lassi
al state with the min-imal un
ertainty of spin 
omponents. The motion ofsu
h skyrmions has to be of a highly quantum me
han-i
al nature. However, this may involve a semi
lassi
alper
olation in the 
ase of heavy nonlo
alized skyrmionsor variable range hopping in the 
ase of highly lo
al-ized skyrmions in a random potential. E�e
tive overlapand transfer integrals for quantum skyrmions are 
al-
ulated analyti
ally in [26℄. The skyrmion motion has a
y
lotron 
hara
ter and resembles that of the ele
tronin a magneti
 �eld.The interest in skyrmions in ordered spin sys-tems re
eived mu
h attention soon after the dis
ov-ery of high-temperature super
ondu
tivity in 
opperoxides [27, 28℄. Initially, there was some hope that in-tera
tion of ele
trons and holes with spin skyrmions
ould play some role in super
ondu
tivity, but this wasnever su

essfully demonstrated. Some indire
t evi-den
e of skyrmions in the magnetoresistan
e of the li-thium-doped lanthanum 
opper oxide has been re
entlyreported [29℄, but dire
t observation of skyrmions in2D antiferromagneti
 latti
es is still la
king. In re-
ent years, the skyrmions and exoti
 skyrmion 
rystal(SkX) phases have been dis
ussed in relation with awide range of 
ondensed matter systems in
luding thequantum Hall e�e
t, spinor Bose 
ondensates, and es-pe
ially 
hiral magnets [30℄. It is worth noting that theskyrmion-like stru
tures for hard-
ore 2D boson systemwere 
onsidered by Moskvin et al. [31℄ in the frameworkof the S = 1=2 pseudospin formalism.5.2. Un
onventional skyrmions in S = 1(pseudo)spin systemsDi�erent skyrmion-like topologi
al defe
ts for 2D(pseudo)spin S = 1 systems as solutions of isotropi
spin Hamiltonians were addressed in Ref. [12℄ and inmore detail in Ref. [11℄. In general, an isotropi
 non-Heisenberg spin Hamiltonian for the S = 1 quantum(pseudo)spin systems should in
lude both the bilinearHeisenberg ex
hange term and the biquadrati
 non-Heisenberg ex
hange term:Ĥ = � ~J1Xi;� ŜiŜi+� � ~J2Xi;� (ŜiŜi+�)2 == �J1Xi;� ŜiŜi+� �� J2Xi;� 3Xk�j(fŜkŜjgifŜkŜjgi+�); (43)

where Ji are the appropriate ex
hange integrals,J1 = ~J1 � ~J2=2, J2 = ~J2=2, and i and � denote respe
-tive summations over latti
e sites and nearest neigh-bors.With our trial wave fun
tion (8) substituted in hĤiunder the 
ondition hŜ(1)Ŝ(2)i = hŜ(1)ihŜ(2)i, we ar-rive at the Hamiltonian of the isotropi
 
lassi
al spin-1model in the 
ontinual approximation in the formH = J1 Z d2r" 3Xi=1(rhSii)2#++ J2 Z d2r24 3Xi�j=1(raiaj +rbibj)235++ 4(J2 � J1)
2 Z jhŜij2d2r; (44)where hŜi = 2[a � b℄. We note that the third �gra-dient-free� term in the Hamiltonian breaks the s
alinginvarian
e of the model.5.2.1. Dipole (pseudo)spin skyrmionsDipole, or magneti
 skyrmions as solutions of thebilinear Heisenberg (pseudo)spin Hamiltonian withJ2 = 0 were obtained in Ref. [12℄ under the restri
tiona ? b and for �xed lengths of these ve
tors.The model redu
es to the nonlinear O(3)-modelwith the solutions for a and b des
ribed (in polar 
o-ordinates) asp2a = (ez sin � � er 
os �) sin'+ e' 
os';p2b = (ez sin � � er 
os �) 
os'� e' sin': (45)For dipole �magneto-ele
tri
� skyrmions, them andn ve
tors are assumed to be perpendi
ular to ea
h other(m ? n) and the (pseudo)spin stru
ture is determinedby skyrmion distribution (39) of the l = [m � n℄ ve
-tor [12℄. In other words, the �xed-length spin ve
torhSi = 2[a � b℄ is distributed in the same way as forthe usual skyrmions in (39). But unlike the usual 
las-si
 skyrmions, the dipole skyrmions in the S = 1 the-ory have an additional topologi
al stru
ture due to theexisten
e of two ve
tors m and n. In going aroundthe 
enter of the skyrmion, the ve
tors 
an make Nturns around the l ve
tor. Thus, we 
an introdu
e twotopologi
al quantum numbers, N and q [12℄. In addi-tion, we note that the q number may be half-integer.The dipole�quadrupole skyrmion is 
hara
terized by anonzero both pseudospin dipole order parameter hSiwith the usual skyrmion texture (39) and quadrupoleorder parameters559
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Fig. 2. a) Radial distribution of the boson nemati
 order parameters for a quadrupole pseudospin skyrmion (q = 1) withhnii = n = 1 (' = 0): b ) the ring-shaped distribution of the one- and two-boson SF order parameters: 
) and d) thespatial distribution of RehŜ2�i and hŜ2zi, respe
tivelyhfŜiŜjgi = 2hŜiihŜji = lilj : (46)5.2.2. Quadrupole (pseudo)spin skyrmionsHereafter, we address another situation with apurely biquadrati
 (pseudo)spin Hamiltonian (J1 = 0)and treat the nonmagneti
 (�ele
tri
�) degrees of free-dom. The topologi
al 
lassi�
ation of purely ele
tri
solutions is simple be
ause it is based on the use of asubgroup instead of the full group. We address the so-lutions with a k b and with �xed lengths of the ve
tors,and therefore we 
an use the same subgroup as abovefor 
lassi�
ation.After simple algebra, the biquadrati
 part of theHamiltonian 
an be redu
ed to the expression familiarfrom the nonlinear O(3)-model:Hbq = J2 Z d2r24 3Xi;j=1(rninj)235 == 2J2jnj2 Z d2r" 3Xi=1(rni)2# ; (47)where a = �n;b = �n, and � + i� = exp(i�), � 2 R,jnj2 = 
onst. Its solutions are skyrmions, but instead

of the spin distribution in magneti
 skyrmion, we herehave solutions with zero spin but a nonzero distribu-tion of �ve spin-quadrupole moments Qij , or hfSiSjgi,whi
h are in turn determined by the �skyrmioni
� dis-tribution of the n ve
tor in (39) with the 
lassi
alskyrmion energy Eel = 16�qJ2. The distribution ofthe spin-quadrupole moments hfSiSjgi 
an be easilyobtained ashS2z i = 4r2q�2q(r2q + �2q)2 ;hŜ2�i = 2r2q�2q(r2q + �2q)2 e�2iq';hT̂�i = �ip2(�2q � r2q)rq�q(r2q + �2q)2 e�iq': (48)We emphasize that the distribution of �ve indepen-dent quadrupole order parameters for the quadrupoleskyrmion are straightforwardly determined by a singleve
tor �eld m(r) (n(r)) while hŜi = 0.Figure 2 demonstrates the radial distributionof di�erent (pseudo)spin order parameters for thequadrupole skyrmion. We see a 
ir
ular layeredstru
ture with 
learly visible anti
orrelation e�e
tsdue to the (pseudo)spin kinemati
s. Interestingly, at560
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enter (r = 0) and far from the 
enter (r ! 1)for su
h a skyrmion, we deal with an M = 0, orMott insulating state, while in the domain wall 
enter(r = �), we arrive at an M = �1 superposition withthe maximal value of the jhŜ2�ij parameter, whoseweight diminishes in moving away from the 
enter.The jhT̂�ij parameter vanishes at the domain wall
enter r = �, at the skyrmion 
enter r = 0, and atthe in�nity r ! 1 (/ 1r ), with the two extremumsat r = �p2�1 . In other words, we arrive at a very
ompli
ated interplay of single- and two-boson super-�uids with density maxima at r = �p2�1 and at thedomain wall 
enter (r = �). The ring-shaped domainwall is an area with a 
ir
ular distribution of thesuper�uid order parameters, or a 
ir
ular �bosoni
�super
urrent. A nonzero T -type order parameterdistribution points to a 
ir
ular �one-boson� 
urrentwith a puzzlingly opposite sign (� phase di�eren
e)of the hT̂�i parameter for the �internal� (0 < r < �)and �external� (r > �) parts of the skyrmion, whilethe hŜ2�i parameter de�nes the two-boson, or dimersuper�uid order. The spe
i�
 spatial separation ofdi�erent order parameters that avoid ea
h otherre�e
ts the 
ompetition of di�erent k, j terms in (43).Given the simplest winding number q = 1, we arriveat the p or d-wave (dx2�y2/dxy in-plane symmetry ofthe one-boson or dimer super�uid order parameters).One of the most ex
iting features of the quadrupoleskyrmion is that su
h a skyrmioni
 stru
ture is 
har-a
terized by a uniform distribution of the mean on-siteboson density hnii = n = 1 for hŜizi = 0. In otherwords, the quadrupole skyrmioni
 stru
ture and thebare �parent� Mott insulating phase have absolutely thesame distribution of the mean on-site densities. On onehand, this point underlines an un
onventional quantumnature of the quadrupole skyrmion under 
onsidera-tion, while on the other hand, it makes the quadrupoleskyrmion texture an �invisible being� for several exper-imental te
hniques. However, the domain-wall 
enterof the quadrupole skyrmion appears to reveal maximalvalues of the pseudospin sus
eptibility �zz [31℄. Thismeans that the domain wall appears to form a verye�
ient ring-shaped potential well for the boson lo
al-ization, thus giving rise to a novel type of a �
harged�topologi
al defe
t. In the framework of the pseudospinformalism, the �
harging� of a bare �neutral� skyrmion
orresponds to a single-magnon �Sz = �1 (singleparti
le) or a two-magnon �Sz = �2 (two-parti
le)dimer ex
itations. It is worth noting that for largenegative �, the single-magnon (single-parti
le) ex
ita-tions may not be the lowest-energy ex
itations of thestrongly anisotropi
 pseudospin system. Their energy

may surpass the energy of a two-magnon bound state(bimagnon), or the two-boson dimer ex
itation 
reatedat a parti
ular site. Thus we arrive at a 
ompetitionof two types of �
harged� quadrupole skyrmions with�N = �1 and �N = �2 (�N is the total num-ber of bosons). Su
h a �
harged� topologi
al defe
t
an be addressed as an extended skyrmion-like mobilequasiparti
le. However, it must be borne in mind thatskyrmion 
orresponds to a 
olle
tive state (ex
itation)of the whole system.Addition or removal of a boson in the half-�lled(n = 1) boson system 
an be a driving for
e for thenu
leation of multi-
enter �
harged� skyrmions. Su
htopologi
al stru
tures, rather than uniform phases pre-di
ted by the mean-�eld approximation, are believed todes
ribe the evolution of the EBHM systems away fromhalf-�lling. It is worth noting that the multi-
enterskyrmions are 
onsidered as systems of skyrmion-likequasiparti
les forming skyrmion liquids and skyrmionlatti
es, or 
rystals (see, e. g., Refs. [32; 33℄).5.2.3. Dipole-quadrupole (pseudo)spin skyrmionsIn the 
ontinual limit with J1 = J2 = J , Hamilto-nian (44) 
an be transformed into the 
lassi
al Hamil-tonian of the fully SU(3)-symmetri
 s
ale-invariantmodel, whi
h 
an be rewritten as [11℄Hisotr = 2J Z d2rf(r�)2 + sin2�(r�)2 ++ sin2�
os2� �
os2 �(r	1)2 + sin2 �(r	2)2�++ sin4�
os2 � sin2 �(r	1 �r	2)2g; (49)where we use representation (6) and set 	1 = �1��3,	2 = �3 � �2. The topologi
al solutions for Hamilto-nian (49) 
an be 
lassi�ed by three topologi
al quantumnumbers (winding numbers) at least: the phases � and	1;2 
an 
hange by 2� after passing around the 
enterof the defe
t. The appropriate modes may have a very
ompli
ated topologi
al stru
ture due to the possibilityfor one defe
t to have several di�erent 
enters (whileone of the phases �, 	1;2;3 
hanges by 2� under oneturn around one 
enter (r1; '1), other phases may passaround other 
enters (ri; 'i)). We note that for su
ha 
enter, the winding numbers may take half-integervalues. Hen
e, we arrive at a large variety of topo-logi
al stru
tures representing solutions of the model.Below, we brie�y address two simplest 
lasses of su
hsolutions. One type of skyrmions 
an be obtained forthe trivial phases 	1;2. If these are 
onstant, the Rve
tor distribution (see (6)) represents a skyrmion de-s
ribed by the usual formula (39). All but one topo-9 ÆÝÒÔ, âûï. 3 (9) 561
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al quantum numbers are zero for this 
lass of solu-tions. It in
ludes both dipole and quadrupole solutions:depending on the sele
ted 
onstant phases, we 
an ob-tain both �ele
tri
� and di�erent �magneti
� skyrmions.The substitution �1 = �2 = �3 leads to the ele
-tri
 skyrmion that was obtained above as a solutionof a more general SU(3)-anisotropi
 model. Anotherexample is given by �1 = �2 = 0, �3 = �=2. Thissubstitution implies that b k z, a k xy, S k xy, andS = sin� 
os�fsin �;� 
os�; 0g. Nominally, this is anin-plane spin vortex with a varying length of the spinve
tor jSj = 2r�jr2 � �2j(r2 + �2)2 ;whi
h is zero at the 
ir
le r = �, at the 
enter r == 0, and at the in�nity r ! 1, and has maximaat r = �(p2 � 1). In addition to the nonzero in-plane 
omponents of the spin-dipole moment hSx;yi,this vortex is 
hara
terized by a nonzero distribution of(pseudo)spin-quadrupole moments. We emphasize thedi�eren
e between spin-1/2 systems, in whi
h there aresolutions su
h as in-plane vorti
es with the energy hav-ing a well-known logarithmi
 dependen
e on the size ofthe system and a �xed spin length, and spin-1 systems,in whi
h the in-plane vorti
es 
an also exist but 
anhave a �nite energy and a varying spin length. Thedistribution of quadrupole 
omponents asso
iated withan in-plane spin-1 vortex is nontrivial. Su
h solutions
an be termed �in-plane dipole-quadrupole skyrmions�.Other types of the simplest solutions with thephases 	1 = Q1', 	2 = Q2' governed by two inte-ger winding numbers Q1;2 and � = �(r), � = �(r) are
onsidered in Ref. [11℄.6. CONCLUSIONThe pseudospin formalism is shown to 
onstitutea powerful method for studying 
omplex phenomenain intera
ting quantum systems. We have fo
usedhere on the most prominent and intensively studiedS = 1 pseudospin formalism for the extended bosonHubbard model with trun
ation of the on-site Hilbertspa
e to the three lowest o

upation states n = 0,1, 2. The EHBM Hamiltonian is a paradigmati
model for the highly topi
al �eld of ultra
old gasesin opti
al latti
es. At varian
e with the standardEHBM Hamiltonian, whi
h seems to be insu�
ient forquantitatively des
ribing the physi
s of boson systems,the generalized non-Heisenberg e�e
tive pseudospinHamiltonian in Eqs. (21)�(24) provides a deeper linkwith boson system and a physi
ally 
lear des
ription of

�the myriad of phases�, from uniform Mott insulatingphases and density waves to two types of super�uidsand supersolids. The Hamiltonian 
ould provide anovel starting point for analyti
 and 
omputationalstudies of semi-hard 
ore boson systems. Furthermore,we argue that the 2D S = 1 pseudospin system isprone to a topologi
al phase separation and addressdi�erent types of un
onventional skyrmion-like stru
-tures, whi
h, to the best of our knowledge, havenot been analyzed until now. The stru
tures are
hara
terized by a 
ompli
ated interplay of the insu-lating and two super�uid phases with a single bosonand boson dimers 
ondensation. We also dis
ussedthe skyrmions as 
lassi
al solutions of the 
ontinualisotropi
 models; however, this idealized obje
t isbelieved to preserve its main features for stronglyanisotropi
 (pseudo)spin latti
e quantum systems.Stri
tly speaking, the 
ontinuous model is relevant fordis
rete latti
es only if we deal with long-wavelengthinhomogeneities whose size is mu
h larger than thelatti
e spa
ing. In a dis
rete latti
e, the very notion ofa topologi
al ex
itation seems to be in
onsistent. Atthe same time, both quantum e�e
ts and the dis
rete-ness of the latti
e itself do not prohibit 
onsideringthe nanos
ale (pseudo)spin textures whose topologyand spin arrangement are those of a skyrmion [27, 28℄.We thank A. B. Borisov and Yu. D. Panov forthe useful dis
ussions. The resear
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