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PSEUDOSPIN S = 1 FORMALISM AND SKYRMION-LIKEEXCITATIONS IN THE THREE-BODY CONSTRAINED EXTENDEDBOSE�HUBBARD MODELA. S. Moskvin *Ural Federal University620083, Ekaterinburg, RussiaReeived Marh 30, 2015We disuss the most prominent and intensively studied S = 1 pseudospin formalism for the extended bosonHubbard model (EBHM) with the on-site Hilbert spae trunated to the three lowest oupation states n = 0,1, 2. The EBHM Hamiltonian is a paradigmati model for the highly topial �eld of ultraold gases in optiallatties. The generalized non-Heisenberg e�etive pseudospin Hamiltonian does provide a deep link with aboson system and a physially lear desription of �the myriad of phases�, from uniform Mott insulating phasesand density waves to two types of super�uids and supersolids. We argue that the 2D pseudospin system isprone to a topologial phase separation and fous on several types of unonventional skyrmion-like topologialstrutures in 2D boson systems, whih have not been analyzed until now. The strutures are haraterized by aompliated interplay of insulating and two super�uid phases with a single-boson and two-boson ondensation,respetively.DOI: 10.7868/S00444510150901261. INTRODUCTIONSine 1989, the bosoni Hubbard model (see [1℄ andthe referenes therein) has attrated ontinued interestdue to its very rih ground-state phase diagram andgreat opportunities of diret experimental realizationin systems of ultraold boson atoms loaded in opti-al latties. Suh systems o�er unique opportunitiesfor studying strongly orrelated quantum matter in ahighly ontrollable environment.The Hamiltonian of the extended boson Hubbardmodel (EBHM) is usually de�ned asH = �Xi>j tij(b̂yi b̂j +H..) + U2 Xi n̂i(n̂i � 1) ++Xi>j Vij n̂in̂j � �Xi n̂i; (1)where b̂yi , b̂i, and n̂i = b̂yi b̂i are respetively the bosonreation, annihilation, and number operators at the lat-tie site i. The boson transfer amplitudes are given bytij ; Ui = U and Vij parameterize the Coulomb repul-sions between bosons loated at the same and di�erent*E-mail: alexander.moskvin�urfu.ru

sites. While tij auses the bosons to deloalize, pro-moting a super�uid (SF) phase at weak interations, Uand Vij tend to stabilize the onventional Mott insula-tor (MI) and the density wave (DW) phases when theinteration dominates over the hopping energy sale setby t.Attrative on-site boson�boson interations allowfor the formation of dimers, or bound states of twobosons. The phase diagram then ontains the onven-tional one-boson super�uid (1-BS) with nonvanishingorder parameters hb̂ji 6= 0 and hb̂2j i 6= 0 and the dimersuper�uid (2-BS) phase. The 2-BS phase is harater-ized by the vanishing of the one-boson order param-eter (hb̂ji = 0) but has a nonzero pairing orrelation(hb̂2j i 6= 0). Apart from the above loal order param-eters, one an use super�uid sti�ness to identify thesuper�uid states. We note that thermal transitions be-tween the 2-BS dimer super�uid and the 1-BS normal�uid are onsidered in Ref. [2℄.When the inter-site boson�boson repulsion is turnedon, in addition to the uniform Mott insulating (MI)state and two super�uid phases, a dimer hekerboardsolid state appears at unit �lling, where boson pairsform a solid with a hekerboard struture.549



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015Our starting point for theoretial analysis of the2D extended Bose�Hubbard model is to assume trun-ation of the on-site Hilbert spae to the three lowest-oupation states n = 0, 1, 2 with a further mapping ofthe EBHM Hamiltonian to an anisotropi spin-1 model(see, e. g., [3℄). The simplest e�etive spin-1 modelHamiltonian isĤ = �Xi>j tij(SixSjx + SiySjy) + U2 Xi S2iz ++Xi>j VijSizSjz � �Xi Siz : (2)In this spae, the DW phase orresponds to an an-tiferromagneti ordering of the pseudospins in the zdiretion. The MI ground state, on the other hand,inludes a large amplitude of the state with MS = 0on every site with a small admixture of states ontain-ing tightly bound partile�hole �utuations (MS = �1on nearby sites). The phase an be termed a quantumparamagnet. The 1-BS and 2-BS super�uid phases re-spetively orrespond to the dipole and quadrupole (ne-mati) pseudospin XY-order. Generally speaking, wemay antiipate the emergene of so-alled supersolidphases, or mixed 1-BS+DW (2-BS+DW) phases.In this paper, we onsider the most general form ofthe e�etive S = 1 pseudospin Hamiltonian related tothe extended Bose�Hubbard model and present a shortoverview of di�erent phase states. We fous on sev-eral types of unonventional skyrmion-like topologialstrutures in 2D boson systems, whih have not beenanalyzed until now. The strutures are haraterizedby a ompliated interplay of insulating and two super-�uid phases. The rest of the paper is organized as fol-lows. Setion 2 is an introdution into the pseudospinformalism. In Se. 3, we introdue and analyze thee�etive pseudospin Hamiltonian. In Se. 4, we turnto a short overview of a typial simpli�ed S = 1 spinmodel. Unonventional pseudospin topologial stru-tures are onsidered in Se. 5, with a short onlusionin Se. 6. 2. PSEUDOSPIN FORMALISMOne strategy to deal with the physis of the ex-tended Bose�Hubbard model with the on-site Hilbertspae trunated to n = 0; 1; 2 is to use an S = 1pseudospin formalism [4, 5℄ and to reate a modelpseudospin Hamiltonian that an reprodue both theground state and important low-energy exitations ofthe full problem reasonably well. The standard pseu-dospin formalism represents a variant of the equivalent-

operator tehnique widely known in di�erent physialproblems, from lassial and quantum lattie gases,binary alloys, (anti)ferroeletris, et., to neural net-works. The formalism starts with a �nite basis set for alattie site (triplet in our model). Suh an approah dif-fers from well-known pseudospin�partile transforma-tions akin to Jordan�Wigner [6℄ or Holstein�Primako�[7℄ transformations that establish a strit link betweenpseudospin operators and the reation/annihilation op-erators of the Fermi or Bose type. The pseudospin for-malism generally proeeds with a trunated basis anddoes not imply a strit relation to boson operators thatobey the boson ommutation rules.The three on-site Fok states jn = 0i, jn = 1i, andjn = 2i form a loal Hilbert spae of the semi-hard orebosons, whih an be mapped onto a system of S = 1enters via a generalization of the Matsubara�Matsudatransformation [5℄ that also maps the boson densityinto the loal magnetization: nj = Szj +1. In ontrastto the hard-ore bosons assoiated with S = 1=2 mag-nets, it is possible to study �Hubbard-like� boson gaseswith on-site density�density (ontat) interations be-ause nj � 2. Hereafter, we relate the three on-siteFok states with the oupation numbers n = 0; 1; 2 tothe three omponents of the S = 1 pseudospin (isospin)triplet with MS = �1; 0; +1, respetively. It is worthnoting that a very similar S = 1 pseudospin formalismwas suggested reently [8, 9℄ to desribe the triplet ofCu1+, Cu2+, Cu3+ valene states in high-temperatureopper superondutors.The S = 1 spin algebra inludes the three inde-pendent irreduible tensors V̂ kq of rank k = 0; 1; 2 withone, three, and �ve omponents respetively, obeyingthe Wigner�Ekart theorem [10℄hSM jV̂ kq jSM 0i == (�1)S�M  S k S�M q M 0 ! hSk V̂ k kSi : (3)Here, we use standard symbols for the Wigner oe�-ients and redued matrix elements. In a more on-ventional Cartesian sheme, a omplete set of nontriv-ial pseudospin operators would inlude both S anda number of symmetrized bilinear forms fSiSjg == (SiSj + SjSi), or spin-quadrupole operators, whihare linearly related to V 1q and V 2q :V 1q = Sq ; S0 = Sz; S� = � 1p2(Sx � iSy) :V 20 / (3S2z � S2); V 2�1 / (SzS� + S�Sz);V 2�2 / S2�: (4)550



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :Instead of the three j1Mi states, one an use theCartesian basis set 	, or jx; y; zi:j10i = jzi; j1� 1i = � 1p2(jxi � ijyi) (5)suh that the on-site wave funtion an be written inthe matrix form [11℄ = 0B� 123 1CA = 0B� R1 exp(i�1)R2 exp(i�2)R3 exp(i�3) 1CA ; jRj2 = 1; (6)with R = fsin� os �; sin� sin �; os�g. Obviously,the minimal number of dynami variables desribingan isolated on-site S = 1 (pseudo)spin enter equalsto four; however, for a more general situation, whenthe (pseudo)spin system represents only a part of thebigger system and we are fored to onsider the ou-pling to the additional degrees of freedom, we shouldonsider all the �ve nontrivial parameters.The pseudospin matrix has a very simple form interms of the jx; y; zi basis set:hijŜkjji = i�ikj : (7)We start by introduing a set of S = 1 oherentstates haraterized by vetors a and b satisfying thenormalization onstraint [11℄ji = ja;bi =  �	 = (a+ ib) �	; (8)where a and b are real vetors that are arbitrarily ori-ented with respet to some �xed oordinate system inthe pseudospin spae with the orthonormal basis e1;2;3.The two vetors are oupled, and therefore the min-imal number of dynami variables desribing the S = 1(pseudo)spin system appears to be equal to four. Weemphasize the diretor nature of the  vetor �eld: jiand j � i desribe physially idential states.We note that in real spae, the ji state orrespondsto a quantum on-site superposition:ji = �1j0i+ 0j1i+ +1j2i: (9)The existene of suh unonventional on-site superpo-sitions is a prinipal point of the model. Below, insteadof a and b, we use a pair of unit vetors m and n de-�ned as follows [12℄:a = os'm; b = sin'n:For the averages of the prinipal pseudospin opera-tors, we obtain hSi = sin 2'[m� n℄;

hfSi; Sjgi = 2(Æij � os2 'mimj � sin2 'ninj); (10)or hS2i i = 1� 12(m2i + n2i )� 12(m2i � n2i ) os 2';hfSi; Sjgi = �(mimj + ninj)�� (mimj � ninj) os 2' (i 6= j): (11)We note a prinipal di�erene between the S = 1=2and S = 1 quantum systems. The only on-site orderparameter in the former ase is the average spin mo-ment hSx;y;zi, whereas in the latter, we have �ve addi-tional �spin-quadrupole�, or spin�nemati order param-eters desribed by the traeless symmetri tensorsQij = ��12fSi; Sjg � 23Æij�� : (12)Interestingly, the S = 1=2 quantum spin system, withall the order parameters de�ned by a simple on-sitevetorial order parameter hSi, is in a sense loser to alassial one (S ! 1) than the S = 1 quantum spinsystem, with its eight independent on-site order param-eters.The operators V kq (q 6= 0) hange the z-projetionof the pseudospin and transform the jSMSi state intothe jSMS+qi one. In other words, these operators anhange the oupation number. We emphasize that inthe S = 1 pseudospin algebra, there are two operators,V 1�1 and V 2�1, or S� and T� = fSz; S�g, that hangethe pseudospin projetion (and the oupation number)by �1, with slightly di�erent properties:h0jŜ�j � 1i = h�1jŜ�j0i = �1; (13)but h0jT̂�j � 1i = �h�1j(T̂�j0i = +1: (14)It is worth noting similar behavior of both operatorsunder Hermitian onjugation: Ŝy� = �Ŝ�; T̂ y� = �T̂�.The V 2�2, or Ŝ2� operator hanges the pseudospinprojetion by �2 with the loal order parameterhS2�i = 12(hS2x � S2yi � ihfSx; Sygi) == �+� = 2x � 2y � 2ixy: (15)Obviously, this on-site o�-diagonal order parameter isnonzero only when both + and � are nonzero, or forthe on-site 0�2 superpositions. It is worth noting thatthe Ŝ2+ (Ŝ2�) operator reates an on-site boson pair, or a551



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015dimer, with the kinemati onstraint (Ŝ2�)2 = 0, whihunderlines its �hard-ore� nature.Figure 1 shows orientations of the m and n ve-tors that provide extremal values of di�erent on-sitepseudospin order parameters at ' = �=4. The n = 1enter is desribed by a pair of m and n vetors di-reted along the Z axis with jmzj = jnzj = 1. Wearrive at the respetive 1 � 2 or 1 � 0 mixtures if weturn �1 or +1 into zero. The mixtures are desribedby a pair of m and n vetors whose projetions on theXY plane, m? and n?, are of the same length andorthogonal to eah other: m? � n? = 0, m? = n?with [m? � n?℄ = hSzi = � sin2 � for 1� 2 and 1 � 0mixtures, respetively (see Fig. 1).It is worth noting that for the �onial� on�gura-tions in Figs. 1b�1d, we havehSzi = 0; hS2z i = sin2 �;hS2�i = �12 sin2 � e�2i';hS�i = � ip2 sin 2� e�i'; hT�i = 0 (16)(Fig. 1b); hSzi = 0; hS2z i = sin2 �;hS2�i = �12 sin2 � e�2i';hS�i = 0; hT�i = � 1p2 sin 2� e�i' (17)(Fig. 1); andhSzi = �hS2zi = � sin2 �; hS2�i = 0;hS�i = hT�i = �12e�i�4 sin 2� e�i' (18)(Fig. 1d ). Figures 1e,f show the orientation of the mand n vetors for the loal binary mixture 0 � 2, andFig. 1g does so for n = 2 enter. It is worth notingthat for binary mixtures j1i�j0i and j1i�j2i, we arriveat the same algebra of the Ŝ� and T̂� operators withhS�i = hT�i, while for ternary mixtures j0i�j1i�j2i,these operators desribe di�erent exitations. Inter-estingly, in all ases, the loal n = 1 fration an bewritten as �(n = 1) = 1� hS2z i = os2 �: (19)In the boson language, hSzi and hS2z i are on-site di-agonal order parameters that respetively desribe theloal density and boson nemati order. The on-sitemean values hS�i and hT�i are the two types of loalo�-diagonal order parameters that desribe one-bosonsuper�uidity, while hS2�i is a loal order parameter ofthe two-boson, or dimer super�uidity.

3. EFFECTIVE S = 1 PSEUDOSPINHAMILTONIANThe general form of the e�etive pseudospin Hamil-tonian that ommutes with the z-omponent of the to-tal pseudospin Pi Siz and hene preserves the meanboson density is [8; 9℄Ĥ =Xi (�iS2iz � (�� hi)Siz) ++ Xk1k2qXi<j Ik1k2q(ij)V̂ k1q (i)V̂ k2�q(j): (20)The Hamiltonian an be rewritten as a sum of potentialand kineti energies, that is, of the q = 0 (�diagonal�)Ĥh and q 6= 0 (�o�-diagonal�) Ĥtr terms:Ĥ = Ĥh + Ĥtr; (21)whereĤh =Xi (�iS2iz � (�� hi)Siz) ++Xi<j Vij(SizSjz + �S2izS2jz); (22)and Ĥtr = Ĥ(1)tr +Ĥ(2)tr are the sums of one-partile andtwo-partile transfer ontributionsĤ(1)tr =Xi<j tSij(Si+Sj� + Si�Sj+) ++Xi<j tTij(Ti+Tj� + Ti�Tj+) ++Xi<j tSTij (Si+Tj�+Si�Tj++Ti+Sj�+Ti�Sj+); (23)Ĥ(2)tr =Xi<j tdij(S2i+S2j� + S2i�S2j+); (24)with the boson density onstraint12N Xi hSizi = �n; (25)where �n is the deviation from half-�lling (n = 1).The Hamiltonian Ĥh orresponds to a lassialspin-1 Ising model with a single-ion anisotropy term,or the generalized Blume�Capel model [13℄, in thepresene of a longitudinal magneti �eld. The �rstsingle-site term in Ĥh desribes the e�ets of a barepseudospin splitting and relates to the on-site density�density interations: � = U . The seond term an berelated to a pseudomagneti �eld hi k Z that ats as552
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Fig. 1. Shemati showing orientations of the m and n vetors that provide extremal values of di�erent on-site pseudospinorder parameters for ' = �=4a hemial potential (� is the boson hemial potentialand hi is a (random) site energy). At variane withthe real external �eld, the hemial potential dependson both the parameters of Hamiltonian (21) and thetemperature. The third bilinear and forth biquadratiterms in Ĥh desribe the e�ets of the short- and long-range inter-site density�density interations.The Hamiltonian Ĥtr plays the role of kineti ener-gy, with Ĥ(1)tr and Ĥ(2)tr respetively desribing the one-and two-partile inter-site hopping. The HamiltonianĤ(1)tr represents an obvious extension of the onven-tional Hubbard model that assumes that the single-partile orbital is in�nitely rigid irrespetive of the o-upation number, and has muh in ommon with so-alled dynami Hubbard models [14℄ that desribe a

orrelated hopping. The ST and TT terms desribea density-dependent single-partile hopping. It wasHirsh and oworkers [14℄ who stressed the importaneof density-indued tunneling e�ets in the ondensed-matter ontext.However, before mapping the pseudospin model intoa disrete free boson model, we must verify that the am-plitude of the one-partile hoppings in Bose�HubbardHamiltonian (1) obey the boson ommutation relations.This implies that the amplitude of the j1i j2i�j2i j1iproess is twie as large as that of j0i j1i�j1i j0i and afator p2 larger than that of j1i j1i�j2i j0i. We notethat in the triplet basis j0; 1; 2i, the boson annihilationoperator reads as [3℄553



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015b̂i = 12 h�1 +p2� Ŝi� � �1�p2� T̂i�i == p2 1 + p2� 1p2 Ŝiz! Ŝi+: (26)In other words, in the framework of the standardEBHM approah, all the SS, TT, and ST terms in thepseudospin kineti energy are governed by a single Hub-bard transfer integral t:tS = ��1 +p2 �24 t; tT = ��1�p2 �24 t;tST = �p2 t; td = 0; (27)while the pseudospin Hamiltonian Ĥtr allows desrib-ing more ompliated transfer mehanisms. The one-and two-partile hopping terms in Ĥtr are of primaryimportane for the transport properties of our modelsystem, and deserve speial attention. Three (SS-, TT-,and ST-) types of the one-partile hopping terms arerespetively governed by the three transfer integrals tSij ,tTij , and tSTij . Instead of Ŝ� and T̂�, we an introduetwo novel operators P̂� and N̂� asP̂� = 12(Ŝ� + T̂�); N̂� = 12(Ŝ� � T̂�): (28)Then the single-partile transfer Hamiltonian beomesĤ(1)tr =Xi<j tPij(Pi+Pj� + Pi�Pj+) ++Xi<j tNij (Ni+Nj�+Ni�Nj+)+Xi<j tPNij (Pi+Nj�++ Pi�Nj+ +Ni+Pj�+Ni�Pj+); (29)wheretPij = tSij + tTij + tSTij ; tNij = tSij + tTij � tSTij ;tPNij = tSij � tTij : (30)All the three terms here have a lear physial interpre-tation. The �rst, PP -type term desribes one-partilehopping proesses j1i j2i�j2i j1i, whih are a rather on-ventional motion of the extra boson in the lattie withthe n = 1 on-site oupation or the motion of a bosonhole in the lattie with the n = 2 on-site oupation.The seond, NN -type term desribes one-partile hop-ping proesses j1i j0i�j0i j1i, whih are a rather on-ventional motion of a boson hole in the lattie with then = 1 on-site oupation or the motion of a boson inthe lattie with the n = 0 on-site oupation. Thesehopping proesses are respetively typial for heavilyunder�lled (hni � 1) or heavily over�lled (hni � 2)

latties. It is worth noting that the ST-type ontribu-tion of the one-partile transfer di�ers in sign for thePP and NN transfer, thus breaking the �partile�hole�symmetry.The third, PN (NP ), term in (29) de�nesa very di�erent one-partile hopping proess,j1i j1i�j2i j0i (j0i j2i), whih is the partile�holereation/annihilation. We note that the ST-typetransfer does not ontribute to the reation.The two-partile(hole), or dimer hopping is gover-ned by the transfer integral tdij that de�nes the prob-ability amplitude for the �exhange� reation j0i j2i�j2i j0i, either the motion of an on-site dimer in the lat-tie with the n = 0 on-site oupation or the motionof an on-site hole n = 0 in the lattie with the n = 2on-site oupation.All the kineti energies an be rewritten in terms ofthe Cartesian pseudospin omponents if we take intoaount that(Si+Sj� + Si�Sj+) = �(SixSjx + SiySjy);(Si+Sj��Si�Sj+) = i(SixSjy�SiySjx) = i [S1 � S2℄z ;(Ti+Tj� + Ti�Tj+) = �(TixTjx + TiyTjy) == �(SixSjx + SiySjy)SizSjz �� Siz(SixSjx + SiySjy)Sjz +H..;(Ti+Tj��Ti�Tj+) = i(TixTjy�TiyTjx) = i [T1 �T2℄z ;(Si+Tj� + Si�Tj+) + H.. == �f(Siz + Sjz); (SixSjx + SiySjy)g;(S2i+S2j� + S2i�S2j+) == 12 �(S2ix � S2iy)(S2jx � S2jy) + fSix; SiygfSjx; Sjyg� ;(S2i+S2j� � S2i�S2j+) = � i2 �(S2ix�S2iy)fSjx; Sjyg �� fSix; Siyg(S2jx�S2jy)� : (31)The Hamiltonian Ĥh desribes two types of a lon-gitudinal long-range diagonal Z-ordering measured bythe stati struture fators suh asSzz(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hSmzSnzi (32)for a pseudospin�dipole order and554



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :S2zz(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hS2mzS2nzi (33)for a pseudospin�quadrupole (nemati) order.The Hamiltonian Ĥtr desribes di�erent types oftransverse long-range o�-diagonal XY-ordering mea-sured by the transverse omponents of the stati stru-ture fators suh asS+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hSm+Sn�i (34)for the onventional pseudospin-dipole order orT+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hTm+Tn�i; (35)andS2+�(q) == 1N Xm;n exp f�iq � (Rm �Rn)g hS2m+S2n�i (36)for two types of the pseudospin�quadrupole (nemati)order. In the onventional boson language, the stru-ture fators Szz(q) and S2zz(q) desribe density�densityorrelations, S+�(q) and T+�(q) desribe the single-boson super�uid orrelations, while S2+�(q) desribesthe two-boson (on-site dimer) super�uid orrelations.4. TYPICAL SIMPLIFIED S = 1 SPIN MODELDespite many simpli�ations, the e�etive pseu-dospin Hamiltonian (21) is rather omplex, and repre-sents one of the most general forms of the anisotropiS = 1 non-Heisenberg Hamiltonian. Its real spin oun-terpart orresponds to an anisotropi S = 1 magnetwith a single-ion (on-site) and two-ion (inter-site bilin-ear and biquadrati) symmetri anisotropy in an ex-ternal magneti �eld under onservation of the totalSz. Spin Hamiltonian (21) desribes an interplay ofthe Zeeman, single-ion, and two-ion anisotropi terms,giving rise to a ompetition of an (anti)ferromagnetiorder along the Z axis with an in-plane XY magnetiorder. Simpli�ed versions of anisotropi S = 1 Heisen-berg Hamiltonian with bilinear exhange have been in-vestigated rather extensively in reent years. Theiranalysis seems to provide an instrutive introdution tothe desription of our generalized pseudospin model.

A typial S = 1 spin Hamiltonian with uniaxialsingle-site and exhange anisotropies is given byĤ =Xi>j Jij(SixSjx + SiySjy + �SizSjz) ++Xi DS2iz �Xi hSiz: (37)The orrespondene with our pseudospin Hamiltonianpoints to D = �, Jij = tij , and �Jij = Vij . The anti-ferromagnet with J > 0 is usually onsidered beausethis is the ase of more interest in general. However,Hamiltonian (37) is invariant under the transforma-tion J; � ! �J;�� and a shift of the Brillouin zonek ! k + (�; �) for the square 2D lattie. The sys-tem desribed by Hamiltonian (2) an be haraterizedby loal (on-site) spin-linear order parameters hSi andspin-quadrati (quadrupole spin-nemati) order param-eters Q20 = Qzz = hS2z � 2=3i and Q2�2 = hS2�1i.The model has been studied by several methods,e. g., moleular �eld approximation, spin-wave theories,exat numerial diagonalizations, a nonlinear sigmamodel, quantum Monte Carlo, series expansions, varia-tional methods, the oupled luster approah, the self-onsistent harmoni approximation, and the general-ized SU(3) Shwinger boson representation [15�19℄.The spetrum of spin Hamiltonian (37) in the ab-sene of an external magneti �eld hanges drastiallyas � varies from very small to very large positive ornegative values. A strong �easy-plane� anisotropy forlarge positive � > 0 favors a singlet phase where spinsare in the Sz = 0 ground state. This �quadrupole�phase has no magneti order, and is aptly referred toas a quantum paramagneti phase (QPM), whih is sep-arated from the �ordered� state by a quantum ritialpoint at some � = �QPM . This is a quadrupole statewith no magneti order, and hene all linear order pa-rameters vanish and only a quadrupole (spin-nemati)order parameter suh as Qzz = hS2z � 2=3i is nonzero.The QPM phase onsists of a unique ground state withthe total spin Stotalz = 0, separated by a gap from the�rst exited states, whih lie in the setors Stotalz = �1.It is worth noting that the QPM order di�ers in prini-ple from the onventional paramagneti state, beausefor S = 1 in the lassial paramagneti state, we havehS2xi = hS2yi = hS2z i = 2=3, while in the quantum para-magneti state, hS2z i = 0 and hS2xi = hS2yi = 1. Stritlyspeaking, all the above analysis onerns the typialmean-�eld approximation (MFA). Beyond the MFA,the QPM ground state ontains an admixture of statesformed by exiton-like tightly bound partile�hole �u-tuations (0� 2 on nearby sites).A strong �easy-axis� anisotropy for large negative555



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015� � �IS , �IS = 2(Vnn=tnn � 1) [19℄, favors a spin or-dering along z, the �easy axis�, with the on-site Sz = �1(Z-phase). The order parameter is �Ising-like� and thelong-range (staggered) diagonal order persists at �nitetemperatures, up to a ritial line T(�). The easy axisantiferromagneti ZAFM phase or more ompliatedlong-range spin Z-order are haraterized by the longi-tudinal omponent of the stati struture fator Szz(q).For intermediate values �QPM > � > �IS , thesystem is in a gapless XY phase, where the spins arepreferentially in the xy plane (hoosing z as the hardaxis) and the Hamiltonian has the O(2) symmetry. AtT = 0, this symmetry is spontaneously broken and thesystem exhibits spin order in some diretion, reduedby quantum �utuations. The broken O(2) symmetryresults in a single gapless Goldstone mode. Althoughthere is no ordered phase at a �nite temperature, weexpet a �nite-temperature Kosterlitz�Thouless tran-sition. The XY phase has a long-range o�-diagonalordering measured by the transverse omponent of thestati struture fator S+�(q).For large positive �, in the QPM phase, the low-energy exitations arise from exiting one of the Sz = 0(n = 1) sites to Sz = +1 (n = 2) or Sz = �1 (n = 0).Suh a loal exitation, atually the e�etive partileor hole, an then propagate over the lattie due to thetransfer terms (quantum �utuations) in Htr, forminga well-de�ned quasipartile (magnon) band with theenergy "(k). These oherent magnon bands have anenergy gap, whih we expet to vanish as �! �QPM .An analyti expression for "(k) in the QPM phase hasbeen proposed by Papaniolaou [20℄, based on a gener-alized Holstein�Primako� transformation for isotropinn-Heisenberg model with single-site anisotropy. Theappliation of an e�etive �eld hz along the z axis re-dues the spin gap linearly in hz sine the �eld ouplesto a onserved quantity (total spin along the z axis).The gap is losed at a ritial �eld h (the quantumritial point (QCP)) where the bottom of the Sz = 1branh of (pseudo)spin exitations touhes zero. ThisQCP belongs to the BEC universality lass and thegapless mode of low-energy Sz = 1 exitations remainsquadrati for small momenta, beause the Zeeman termommutes with the rest of the Hamiltonian.Both exitation branhes in the QPM phase,�Sz = �1 (partile/hole), have the same dispersionat zero �eld, hz = 0, as expeted from time reversalsymmetry. A �nite hz splits the branhes linearlyin hz: "�(k) ! "�(k) � hz without hanging thedispersion. This is a onsequene of the fat that theexternal �eld ouples to the total spin PSz, whih isa onserved quantity.

We note that there are three types of two-magnonexitations, those with �Stotalz = +2; �2, and 0. Thetwo-magnon bound state with �Stotalz = 0, or a ou-pled partile�hole pair an propagate over the lattie,forming a quasipartile band.At least for relatively small negative � < �IS , thelowest-energy exitations in the unperturbed systemonsist of a single spin exited from its ordered Sz = �1state to Sz = 0, i. e., �Sz = �1. The orresponding o-herent magnon band has an energy gap at the � point(0; 0), whih behaves like "(0; 0) � 2p2Vnnj�j at smallj�j. This re�ets, in the easy axis ase, the fat thatthe residual O(2) symmetry of the Hamiltonian is notspontaneously broken in this ase, and therefore Gold-stone modes are absent.However, for large negative �, the single-magnon(single-partile) exitations are not the lowest-energyexitations of the system. Their energy is of the or-der of j�j, whereas an exitation with �Sz = �2 (i. e.,Sz = �1 $ Sz = �1) has an energy of the order of2zVnn as � ! �1. Suh a two-partile (loal dimer)exitation, reated at a partiular site, an again propa-gate over the lattie, forming a quasipartile band. Wean think of this loal dimer as a long-lived virtual two-magnon bound state (bimagnon), where the magnonsare bound on the same site.Hamer et al. [18℄ have shown that at a �nite e�etive�eld hz but at � = 1, the XY phase transforms into aanted antiferromagneti XY-ZFM phase that appearsright above h: the spins aquire a uniform longitudinalomponent and an antiferromagnetially ordered trans-verse omponent, whih spontaneously breaks the U(1)symmetry of global spin rotations along the z axis. Thelongitudinal magnetization inreases with the �eld andsaturates at the fully polarized (FP) state (all Sz = 1)above the saturation �eld hs. The FP state orrespondsto a boson Mott insulator in the language of Bose gases.The �eld-indued quantum phase transition fromthe QPM to the XY-ZFM phase is qualitatively di�er-ent from the transition between the same two phasesthat is indued by hanging � at hz = 0. If the single-ion anisotropy is ontinuously dereased at a zero ap-plied �eld, the two exitation branhes remain degen-erate and the gap vanishes at � = �QPM (hz = 0).The low-energy dispersion beomes linear at the QPM�CAFM phase boundary for small k. However, the de-generay between the two branhes at hz = 0 is liftedinside the CAFM phase: one of the branhes remainsgapless with a linear dispersion at low energy (orre-sponding to the Goldstone mode of the ordered CAFMstate), whereas the other mode develops a gap to thelowest exitation. The e�et of inreasing hz from zero556



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :at a �xed � > �QPM is to redue the gap linearly inhz with no hange of dispersion.At D > 0 and � > 1, the phase diagram of theS = 1 Heisenberg model with uniaxial anisotropy (37)ontains an extended spin supersolid (SS) or bioni-al phase XY-ZFIM with a ferrimagneti z-order thatdoes exist over a range of magneti �elds. The modelalso exhibits other interesting phenomena suh as mag-netization plateaus and a multiritial point [15℄. Themagnetization stays zero up to the ritial �eld h1 thatmarks a quantum phase transition (QPT) to a statewith a �nite fration of spins in all the Sz = 0;�1states. This spin supersolid state has a �nite Szz(�; �)as well as a �nite S+�(0; 0). The magnetization in-reases ontinuously to mz = 0:5 at h2, where there isa seond QPT to a seond Ising-like state (IS2), whereall the Sz = �1 (n = 0) sites have been �ipped tothe Sz = 0 (n = 1) state. The Szz(�; �) omponentthen remains divergent, but S+�(0; 0) drops to zero.Upon further inreasing the �eld, a �rst-order transi-tion ours to a pure XY-AFM phase (CAFM) with thevanishing diagonal order but a �nite S+�(0; 0). Thissituation persists until all the spins have �ipped to theSz = +1 (n = 2) state (fully polarized, FP phase). Theextent of the SS phase dereases with dereasing � andvanishes for � � 1, leaving a seond-order transitionfrom the SS to the XY (CAFM) phase.At D < 0, J > 0, and � = 1, the ground stateof spin Hamiltonian (37) orresponds to the easy-axisantiferromagneti ZAFM phase. At small anisotropy,jDj =J � 1, the appliation of an e�etive �eld hzalong the z axis �rst indues a rather onventionalspin-�op transition to a pure XY-AFM phase (CAFM)with the vanishing diagonal order but �nite S+�(0; 0),ending with the transition to the fully polarized fer-romagneti ZFM phase. However, at large anisotropyjDj =J � 1, instead of the mean-�eld �rst-order (meta-magneti) phase transition ZAFM�ZFM , we arrive atan unonventional intermediate phase with the spin fer-ronemati (FNM) order haraterized by zero value ofthe S+�(0; 0) fator but a nonzero S2+�(0; 0) orrela-tion funtion [16℄.The phase diagram in the most interesting in-termediate regime an hange drastially, if we takefrustrative e�ets of next-nearest-neighbor ouplingsor di�erent non-Heisenberg biquadrati interationsinto aount [19℄. We note that even for the simpleisotropi 2D-nnn antiferromagneti Heisenberg model,the lassial ground state has a Néel order only whenJ2=J1 < 1=2, where J1 is the nearest-neighbor andJ2 is the next-nearest-neighbor interation. However,when J2=J1 > 1=2, the ground state onsists of two

independent sublatties with antiferromagneti order.The lassial ground-state energy does not depend onthe relative orientations of both sublatties. However,quantum �utuations lift this degeneray and selet aollinear order state, where the neighboring spins alignferromagnetially along one axis of the square lattieand antiferromagnetially along the other (stripe-likeorder).Turning to spin�boson mapping, we note that theQPM phase (ni = 1), fully polarized ZFM phases withni = 0 or ni = 2 orrespond to Mott insulating phases,the XY and XY-ZFM orderings orrespond to a Bose�Einstein ondensate (BEC) of single bosons, while theFNM phase orresponds the BEC of boson dimers. TheXY-ZFIM phases orrespond to supersolids.The pseudospin Hamiltonian in Eqs. (21)�(24) dif-fers from its simpli�ed version (2) in several points.First, this onerns the density onstraint. It is worthnoting that the harge density onstraint in a uni-form pseudospin system an be satis�ed only undersome quasidegeneray. Seond, the pseudospin param-eters, in partiular �, Vij , and h in e�etive Hamilto-nian (21), an be losely linked to eah other. Instead ofa simple usually antiferromagneti XY-exhange termin (2), we should proeed with a signi�antly moreompliated form of the �transverse� term in the pseu-dospin Hamiltonian, (21), with the inlusion of two bi-quadrati terms and an unonventional �mixed� asym-metri ST-type term that formally breaks the time in-version symmetry and is absent for onventional spinHamiltonians. The apparently leading bilinear XY-ex-hange term in Ĥtr appears to be of the ferromagnetisign. Along with a simple spin-linear planar XY-modewith nonzero hS�i, we arrive at two novel spin-quadru-pole nemati modes with nonzero hT�i and/or hS2�i.Hereafter, we let the di�erent ounterparts of thephases of simple model (2) be denoted as follows: thenovel XY-phase ZAFM for Ising-type antiferromagnetiorder along the z axis, XY�ZFIM for spin supersolidphases with simultaneous XY and ferrimagneti orde-rings along the z axis, XY-ZFM for a phase with simul-taneous XY- and ferromagneti orderings along the zaxis (an analogue of the CAFM phase), and ZFM forthe fully z-polarized ferromagneti phase.5. TOPOLOGICAL DEFECTS IN 2D S = 1PSEUDOSPIN SYSTEMS5.1. Short overviewIn the framework of our model, the 2D Bose�Hubbard systems turn out to be in the universalitylass of the (pseudo)spin 2D systems whose desrip-557



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015tion inorporates stati or dynami topologial defetsas a natural element of both miro- and marosopiphysis. Depending on the struture of the e�etivepseudospin Hamiltonian in 2D systems, these ould or-respond to either in-plane and out-of-plane vorties orskyrmions. Under ertain onditions, either topologi-al defets ould determine the struture of the groundstate. In partiular, this ould be a generi featureof eletri multipolar systems with long-range multi-polar interations. Indeed, a Monte Carlo simulationof a ferromagneti Heisenberg model with dipolar in-teration on a 2D square L � L lattie shows that asL is inreased, the spin struture hanges from a fer-romagneti one to a novel one with a vortex-like ar-rangement of spins even for rather small magnitude ofdipolar anisotropy [21℄.Topologial defets are stable nonuniform spinstrutures with broken translational symmetry and anonzero topologial harge (hirality, vortiity, andwinding number). Vorties are stable states of theanisotropi 2D Heisenberg HamiltonianĤ =Xi>j Jij(SixSjx + SiySjy + �SizSjz); (38)with the �easy-plane� anisotropy for the anisotropy pa-rameter � < 1. A lassial in-plane vortex (Sz = 0)appears to be a stable solution of lassial Hamilto-nian (38) at � < � (� � 0:7 for a square lattie). At1 > � > �, the stable solution orresponds to the out-of-plane OP vortex (Sz 6= 0), at the enter of whih thespin vetor appears to be oriented along the z axis, andat in�nity it arranges within xy plane. The in-planevortex is desribed by the formulas � = q', os � = 0.The �(r) dependene for the out-of-plane vortex an-not be found analytially. Both kinds of vorties havethe energy logarithmially dependent on the size of thesystem.The ylindrial domains, or bubble-like solitonswith spins oriented along the z axis both at in�nity andin the enter (naturally, in opposite diretions) exist forthe �easy-axis� anisotropy � > 1. Their energy has a�nite value. Skyrmions are general stati solutions ofthe lassial ontinuous limit of the isotropi (� = 1)2D Heisenberg ferromagnet, obtained by Belavin andPolyakov [22℄ from a lassial nonlinear sigma model.The Belavin�Polyakov skyrmion and the out-of-planevortex represent the simplest toy model of (pseudo)spintextures [22, 23℄.The simplest skyrmion spin texture looks like a bub-ble domain in a ferromagnet and onsists of a vortex-like arrangement of the in-plane omponents of spinwith the z-omponent reversed in the entre of the

skyrmion and gradually inreasing to math the ho-mogeneous bakground at in�nity. The spin distribu-tion within suh a lassial skyrmion with a topologialharge q is given by [22℄� = q'+ '0; os� = r2q � �2qr2q + �2q ; (39)where r and ' are polar oordinates on the plane, andq = �1; �2; : : : is the hirality. For q = 1 and '0 = 0,we arrive atnx = 2r�r2 + �2 os'; ny = 2r�r2 + �2 sin';nz = r2 � �2r2 + �2 : (40)In terms of the stereographi variables, the skyrmionwith a radius � and phase '0 entered at a point z0 isidenti�ed with the spin distribution w(z) = �=(z�z0),where z = x+iy = rei' is a point in the omplex plane,� = �ei�. For a multienter skyrmion, we have [22℄w(z) = tg �2 ei� ==Yi �z � zj� �mj Yj � �z � zj�nj ; (41)where Pmi > Pnj , q = Pmj . Skyrmions areharaterized by the magnitude and the sign of theirtopologial harge, by their size (radius), and by theglobal orientation of the spin. The sale invarianeof a skyrmioni solution re�ets in that its energyEsk = 4�jqjIS2 is proportional to the topologialharge and does not depend on the radius and theglobal phase [22℄. Like domain walls, vorties andskyrmions are stable for topologial reasons. Skyrmionsannot deay into other on�gurations beause of thistopologial stability, irrespetive of how lose they arein energy to any other on�guration.In a ontinuous �eld model, suh as, e. g., thenonlinear �-model, the ground-state energy of theskyrmion is independent of its size [22℄, but for theskyrmion on a lattie, the energy depends on its size.This must lead to a ollapse of the skyrmion, making itunstable. Strong anisotropi interations, in partiular,long-range dipole�dipole interations may in prinipledynamially stabilize the skyrmions in 2D latties [24℄.The wave funtion of the spin system that orre-sponds to a lassial skyrmion is a produt of spin o-herent states [25℄. For the spin S = 1=2,	sk(0) ==Yi �os �i2 ei'i=2j "i+ sin �i2 e�i'i=2j #i� ; (42)558



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :where �i = aros r2i��2r2i+�2 . The oherent state provides amaximal equivalene to a lassial state with the min-imal unertainty of spin omponents. The motion ofsuh skyrmions has to be of a highly quantum mehan-ial nature. However, this may involve a semilassialperolation in the ase of heavy nonloalized skyrmionsor variable range hopping in the ase of highly loal-ized skyrmions in a random potential. E�etive overlapand transfer integrals for quantum skyrmions are al-ulated analytially in [26℄. The skyrmion motion has aylotron harater and resembles that of the eletronin a magneti �eld.The interest in skyrmions in ordered spin sys-tems reeived muh attention soon after the disov-ery of high-temperature superondutivity in opperoxides [27, 28℄. Initially, there was some hope that in-teration of eletrons and holes with spin skyrmionsould play some role in superondutivity, but this wasnever suessfully demonstrated. Some indiret evi-dene of skyrmions in the magnetoresistane of the li-thium-doped lanthanum opper oxide has been reentlyreported [29℄, but diret observation of skyrmions in2D antiferromagneti latties is still laking. In re-ent years, the skyrmions and exoti skyrmion rystal(SkX) phases have been disussed in relation with awide range of ondensed matter systems inluding thequantum Hall e�et, spinor Bose ondensates, and es-peially hiral magnets [30℄. It is worth noting that theskyrmion-like strutures for hard-ore 2D boson systemwere onsidered by Moskvin et al. [31℄ in the frameworkof the S = 1=2 pseudospin formalism.5.2. Unonventional skyrmions in S = 1(pseudo)spin systemsDi�erent skyrmion-like topologial defets for 2D(pseudo)spin S = 1 systems as solutions of isotropispin Hamiltonians were addressed in Ref. [12℄ and inmore detail in Ref. [11℄. In general, an isotropi non-Heisenberg spin Hamiltonian for the S = 1 quantum(pseudo)spin systems should inlude both the bilinearHeisenberg exhange term and the biquadrati non-Heisenberg exhange term:Ĥ = � ~J1Xi;� ŜiŜi+� � ~J2Xi;� (ŜiŜi+�)2 == �J1Xi;� ŜiŜi+� �� J2Xi;� 3Xk�j(fŜkŜjgifŜkŜjgi+�); (43)

where Ji are the appropriate exhange integrals,J1 = ~J1 � ~J2=2, J2 = ~J2=2, and i and � denote respe-tive summations over lattie sites and nearest neigh-bors.With our trial wave funtion (8) substituted in hĤiunder the ondition hŜ(1)Ŝ(2)i = hŜ(1)ihŜ(2)i, we ar-rive at the Hamiltonian of the isotropi lassial spin-1model in the ontinual approximation in the formH = J1 Z d2r" 3Xi=1(rhSii)2#++ J2 Z d2r24 3Xi�j=1(raiaj +rbibj)235++ 4(J2 � J1)2 Z jhŜij2d2r; (44)where hŜi = 2[a � b℄. We note that the third �gra-dient-free� term in the Hamiltonian breaks the salinginvariane of the model.5.2.1. Dipole (pseudo)spin skyrmionsDipole, or magneti skyrmions as solutions of thebilinear Heisenberg (pseudo)spin Hamiltonian withJ2 = 0 were obtained in Ref. [12℄ under the restritiona ? b and for �xed lengths of these vetors.The model redues to the nonlinear O(3)-modelwith the solutions for a and b desribed (in polar o-ordinates) asp2a = (ez sin � � er os �) sin'+ e' os';p2b = (ez sin � � er os �) os'� e' sin': (45)For dipole �magneto-eletri� skyrmions, them andn vetors are assumed to be perpendiular to eah other(m ? n) and the (pseudo)spin struture is determinedby skyrmion distribution (39) of the l = [m � n℄ ve-tor [12℄. In other words, the �xed-length spin vetorhSi = 2[a � b℄ is distributed in the same way as forthe usual skyrmions in (39). But unlike the usual las-si skyrmions, the dipole skyrmions in the S = 1 the-ory have an additional topologial struture due to theexistene of two vetors m and n. In going aroundthe enter of the skyrmion, the vetors an make Nturns around the l vetor. Thus, we an introdue twotopologial quantum numbers, N and q [12℄. In addi-tion, we note that the q number may be half-integer.The dipole�quadrupole skyrmion is haraterized by anonzero both pseudospin dipole order parameter hSiwith the usual skyrmion texture (39) and quadrupoleorder parameters559
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Fig. 2. a) Radial distribution of the boson nemati order parameters for a quadrupole pseudospin skyrmion (q = 1) withhnii = n = 1 (' = 0): b ) the ring-shaped distribution of the one- and two-boson SF order parameters: ) and d) thespatial distribution of RehŜ2�i and hŜ2zi, respetivelyhfŜiŜjgi = 2hŜiihŜji = lilj : (46)5.2.2. Quadrupole (pseudo)spin skyrmionsHereafter, we address another situation with apurely biquadrati (pseudo)spin Hamiltonian (J1 = 0)and treat the nonmagneti (�eletri�) degrees of free-dom. The topologial lassi�ation of purely eletrisolutions is simple beause it is based on the use of asubgroup instead of the full group. We address the so-lutions with a k b and with �xed lengths of the vetors,and therefore we an use the same subgroup as abovefor lassi�ation.After simple algebra, the biquadrati part of theHamiltonian an be redued to the expression familiarfrom the nonlinear O(3)-model:Hbq = J2 Z d2r24 3Xi;j=1(rninj)235 == 2J2jnj2 Z d2r" 3Xi=1(rni)2# ; (47)where a = �n;b = �n, and � + i� = exp(i�), � 2 R,jnj2 = onst. Its solutions are skyrmions, but instead

of the spin distribution in magneti skyrmion, we herehave solutions with zero spin but a nonzero distribu-tion of �ve spin-quadrupole moments Qij , or hfSiSjgi,whih are in turn determined by the �skyrmioni� dis-tribution of the n vetor in (39) with the lassialskyrmion energy Eel = 16�qJ2. The distribution ofthe spin-quadrupole moments hfSiSjgi an be easilyobtained ashS2z i = 4r2q�2q(r2q + �2q)2 ;hŜ2�i = 2r2q�2q(r2q + �2q)2 e�2iq';hT̂�i = �ip2(�2q � r2q)rq�q(r2q + �2q)2 e�iq': (48)We emphasize that the distribution of �ve indepen-dent quadrupole order parameters for the quadrupoleskyrmion are straightforwardly determined by a singlevetor �eld m(r) (n(r)) while hŜi = 0.Figure 2 demonstrates the radial distributionof di�erent (pseudo)spin order parameters for thequadrupole skyrmion. We see a irular layeredstruture with learly visible antiorrelation e�etsdue to the (pseudo)spin kinematis. Interestingly, at560



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Pseudospin S = 1 formalism : : :the enter (r = 0) and far from the enter (r ! 1)for suh a skyrmion, we deal with an M = 0, orMott insulating state, while in the domain wall enter(r = �), we arrive at an M = �1 superposition withthe maximal value of the jhŜ2�ij parameter, whoseweight diminishes in moving away from the enter.The jhT̂�ij parameter vanishes at the domain wallenter r = �, at the skyrmion enter r = 0, and atthe in�nity r ! 1 (/ 1r ), with the two extremumsat r = �p2�1 . In other words, we arrive at a veryompliated interplay of single- and two-boson super-�uids with density maxima at r = �p2�1 and at thedomain wall enter (r = �). The ring-shaped domainwall is an area with a irular distribution of thesuper�uid order parameters, or a irular �bosoni�superurrent. A nonzero T -type order parameterdistribution points to a irular �one-boson� urrentwith a puzzlingly opposite sign (� phase di�erene)of the hT̂�i parameter for the �internal� (0 < r < �)and �external� (r > �) parts of the skyrmion, whilethe hŜ2�i parameter de�nes the two-boson, or dimersuper�uid order. The spei� spatial separation ofdi�erent order parameters that avoid eah otherre�ets the ompetition of di�erent k, j terms in (43).Given the simplest winding number q = 1, we arriveat the p or d-wave (dx2�y2/dxy in-plane symmetry ofthe one-boson or dimer super�uid order parameters).One of the most exiting features of the quadrupoleskyrmion is that suh a skyrmioni struture is har-aterized by a uniform distribution of the mean on-siteboson density hnii = n = 1 for hŜizi = 0. In otherwords, the quadrupole skyrmioni struture and thebare �parent� Mott insulating phase have absolutely thesame distribution of the mean on-site densities. On onehand, this point underlines an unonventional quantumnature of the quadrupole skyrmion under onsidera-tion, while on the other hand, it makes the quadrupoleskyrmion texture an �invisible being� for several exper-imental tehniques. However, the domain-wall enterof the quadrupole skyrmion appears to reveal maximalvalues of the pseudospin suseptibility �zz [31℄. Thismeans that the domain wall appears to form a verye�ient ring-shaped potential well for the boson loal-ization, thus giving rise to a novel type of a �harged�topologial defet. In the framework of the pseudospinformalism, the �harging� of a bare �neutral� skyrmionorresponds to a single-magnon �Sz = �1 (singlepartile) or a two-magnon �Sz = �2 (two-partile)dimer exitations. It is worth noting that for largenegative �, the single-magnon (single-partile) exita-tions may not be the lowest-energy exitations of thestrongly anisotropi pseudospin system. Their energy

may surpass the energy of a two-magnon bound state(bimagnon), or the two-boson dimer exitation reatedat a partiular site. Thus we arrive at a ompetitionof two types of �harged� quadrupole skyrmions with�N = �1 and �N = �2 (�N is the total num-ber of bosons). Suh a �harged� topologial defetan be addressed as an extended skyrmion-like mobilequasipartile. However, it must be borne in mind thatskyrmion orresponds to a olletive state (exitation)of the whole system.Addition or removal of a boson in the half-�lled(n = 1) boson system an be a driving fore for thenuleation of multi-enter �harged� skyrmions. Suhtopologial strutures, rather than uniform phases pre-dited by the mean-�eld approximation, are believed todesribe the evolution of the EBHM systems away fromhalf-�lling. It is worth noting that the multi-enterskyrmions are onsidered as systems of skyrmion-likequasipartiles forming skyrmion liquids and skyrmionlatties, or rystals (see, e. g., Refs. [32; 33℄).5.2.3. Dipole-quadrupole (pseudo)spin skyrmionsIn the ontinual limit with J1 = J2 = J , Hamilto-nian (44) an be transformed into the lassial Hamil-tonian of the fully SU(3)-symmetri sale-invariantmodel, whih an be rewritten as [11℄Hisotr = 2J Z d2rf(r�)2 + sin2�(r�)2 ++ sin2�os2� �os2 �(r	1)2 + sin2 �(r	2)2�++ sin4�os2 � sin2 �(r	1 �r	2)2g; (49)where we use representation (6) and set 	1 = �1��3,	2 = �3 � �2. The topologial solutions for Hamilto-nian (49) an be lassi�ed by three topologial quantumnumbers (winding numbers) at least: the phases � and	1;2 an hange by 2� after passing around the enterof the defet. The appropriate modes may have a veryompliated topologial struture due to the possibilityfor one defet to have several di�erent enters (whileone of the phases �, 	1;2;3 hanges by 2� under oneturn around one enter (r1; '1), other phases may passaround other enters (ri; 'i)). We note that for suha enter, the winding numbers may take half-integervalues. Hene, we arrive at a large variety of topo-logial strutures representing solutions of the model.Below, we brie�y address two simplest lasses of suhsolutions. One type of skyrmions an be obtained forthe trivial phases 	1;2. If these are onstant, the Rvetor distribution (see (6)) represents a skyrmion de-sribed by the usual formula (39). All but one topo-9 ÆÝÒÔ, âûï. 3 (9) 561



A. S. Moskvin ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015logial quantum numbers are zero for this lass of solu-tions. It inludes both dipole and quadrupole solutions:depending on the seleted onstant phases, we an ob-tain both �eletri� and di�erent �magneti� skyrmions.The substitution �1 = �2 = �3 leads to the ele-tri skyrmion that was obtained above as a solutionof a more general SU(3)-anisotropi model. Anotherexample is given by �1 = �2 = 0, �3 = �=2. Thissubstitution implies that b k z, a k xy, S k xy, andS = sin� os�fsin �;� os�; 0g. Nominally, this is anin-plane spin vortex with a varying length of the spinvetor jSj = 2r�jr2 � �2j(r2 + �2)2 ;whih is zero at the irle r = �, at the enter r == 0, and at the in�nity r ! 1, and has maximaat r = �(p2 � 1). In addition to the nonzero in-plane omponents of the spin-dipole moment hSx;yi,this vortex is haraterized by a nonzero distribution of(pseudo)spin-quadrupole moments. We emphasize thedi�erene between spin-1/2 systems, in whih there aresolutions suh as in-plane vorties with the energy hav-ing a well-known logarithmi dependene on the size ofthe system and a �xed spin length, and spin-1 systems,in whih the in-plane vorties an also exist but anhave a �nite energy and a varying spin length. Thedistribution of quadrupole omponents assoiated withan in-plane spin-1 vortex is nontrivial. Suh solutionsan be termed �in-plane dipole-quadrupole skyrmions�.Other types of the simplest solutions with thephases 	1 = Q1', 	2 = Q2' governed by two inte-ger winding numbers Q1;2 and � = �(r), � = �(r) areonsidered in Ref. [11℄.6. CONCLUSIONThe pseudospin formalism is shown to onstitutea powerful method for studying omplex phenomenain interating quantum systems. We have fousedhere on the most prominent and intensively studiedS = 1 pseudospin formalism for the extended bosonHubbard model with trunation of the on-site Hilbertspae to the three lowest oupation states n = 0,1, 2. The EHBM Hamiltonian is a paradigmatimodel for the highly topial �eld of ultraold gasesin optial latties. At variane with the standardEHBM Hamiltonian, whih seems to be insu�ient forquantitatively desribing the physis of boson systems,the generalized non-Heisenberg e�etive pseudospinHamiltonian in Eqs. (21)�(24) provides a deeper linkwith boson system and a physially lear desription of

�the myriad of phases�, from uniform Mott insulatingphases and density waves to two types of super�uidsand supersolids. The Hamiltonian ould provide anovel starting point for analyti and omputationalstudies of semi-hard ore boson systems. Furthermore,we argue that the 2D S = 1 pseudospin system isprone to a topologial phase separation and addressdi�erent types of unonventional skyrmion-like stru-tures, whih, to the best of our knowledge, havenot been analyzed until now. The strutures areharaterized by a ompliated interplay of the insu-lating and two super�uid phases with a single bosonand boson dimers ondensation. We also disussedthe skyrmions as lassial solutions of the ontinualisotropi models; however, this idealized objet isbelieved to preserve its main features for stronglyanisotropi (pseudo)spin lattie quantum systems.Stritly speaking, the ontinuous model is relevant fordisrete latties only if we deal with long-wavelengthinhomogeneities whose size is muh larger than thelattie spaing. In a disrete lattie, the very notion ofa topologial exitation seems to be inonsistent. Atthe same time, both quantum e�ets and the disrete-ness of the lattie itself do not prohibit onsideringthe nanosale (pseudo)spin textures whose topologyand spin arrangement are those of a skyrmion [27, 28℄.We thank A. B. Borisov and Yu. D. Panov forthe useful disussions. The researh was supported bythe Government of the Russian Federation, Program02.A03.21.0006 and by the Ministry of Eduation andSiene of the Russian Federation, projets Nos. 1437and 2725. REFERENCES1. M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989);Subir Sahdev, Quantum Phase Transitions, Cam-bridge Univ. Press, Cambridge (2001); O. Dutta,M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann,B. A. Malomed, T. Sowi«ski, and J. Zakrzewski,arXiv:1406.0181.2. Kwai-Kong Ng and Min-Fong Yang, Phys. Rev. B 83,100511(R) (2011).3. Ehud Altman and Assa Auerbah, Phys. Rev. Lett. 89,250404 (2002); Erez Berg, Emanuele G. Dalla Torre,Thierry Giamarhi, and Ehud Altman, Phys. Rev.B 77, 245119 (2008); L. Mazza, M. Rizzi, M. Lewen-stein, and J. I. Cira, Phys. Rev. A 82, 043629 (2010).4. T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16,569 (1956).562
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