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We discuss the most prominent and intensively studied S = 1 pseudospin formalism for the extended boson
Hubbard model (EBHM) with the on-site Hilbert space truncated to the three lowest occupation states n = 0,
1, 2. The EBHM Hamiltonian is a paradigmatic model for the highly topical field of ultracold gases in optical
lattices. The generalized non-Heisenberg effective pseudospin Hamiltonian does provide a deep link with a
boson system and a physically clear description of “the myriad of phases”, from uniform Mott insulating phases
and density waves to two types of superfluids and supersolids. We argue that the 2D pseudospin system is
prone to a topological phase separation and focus on several types of unconventional skyrmion-like topological
structures in 2D boson systems, which have not been analyzed until now. The structures are characterized by a
complicated interplay of insulating and two superfluid phases with a single-boson and two-boson condensation,

respectively.
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1. INTRODUCTION

Since 1989, the bosonic Hubbard model (see [1] and
the references therein) has attracted continued interest
due to its very rich ground-state phase diagram and
great opportunities of direct experimental realization
in systems of ultracold boson atoms loaded in opti-
cal lattices. Such systems offer unique opportunities
for studying strongly correlated quantum matter in a
highly controllable environment.

The Hamiltonian of the extended boson Hubbard
model (EBHM) is usually defined as

H=- Zt”(i)jl;] + H.c.

i>j

U A
)+5;ni(ni_1)+
-I-ZVijﬁiﬁj —Mzﬁi, (1)

i>7

where 5;', Bi, and n; = 5151 are respectively the boson
creation, annihilation, and number operators at the lat-
tice site . The boson transfer amplitudes are given by
tij; U; = U and V;; parameterize the Coulomb repul-
sions between bosons located at the same and different
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sites. While ¢;; causes the bosons to delocalize, pro-
moting a superfluid (SF) phase at weak interactions, U
and V;; tend to stabilize the conventional Mott insula-
tor (MI) and the density wave (DW) phases when the
interaction dominates over the hopping energy scale set
by t.

Attractive on-site boson—boson interactions allow
for the formation of dimers, or bound states of two
bosons. The phase diagram then contains the conven-
tional one-boson superfluid (1-BS) with nonvanishing
order parameters (i)]> # 0 and <l§f) # 0 and the dimer
superfluid (2-BS) phase. The 2-BS phase is character-
ized by the vanishing of the one-boson order param-
eter ((l;]) = 0) but has a nonzero pairing correlation
((i)?) # 0). Apart from the above local order param-
eters, one can use superfluid stiffness to identify the
superfluid states. We note that thermal transitions be-
tween the 2-BS dimer superfluid and the 1-BS normal
fluid are considered in Ref. [2].

When the inter-site boson—boson repulsion is turned
on, in addition to the uniform Mott insulating (MI)
state and two superfluid phases, a dimer checkerboard
solid state appears at unit filling, where boson pairs
form a solid with a checkerboard structure.
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Our starting point for theoretical analysis of the
2D extended Bose—Hubbard model is to assume trun-
cation of the on-site Hilbert space to the three lowest-
occupation states n = 0, 1, 2 with a further mapping of
the EBHM Hamiltonian to an anisotropic spin-1 model
(see, e.g., [3]). The simplest effective spin-1 model
Hamiltonian is

H == t;j(SiaSja + SiySiy) +

i>j

U
E;S’i*

+Y VijSizSjz — Y Siee (2)

i>j i

In this space, the DW phase corresponds to an an-
tiferromagnetic ordering of the pseudospins in the z
direction. The MI ground state, on the other hand,
includes a large amplitude of the state with Mg = 0
on every site with a small admixture of states contain-
ing tightly bound particle-hole fluctuations (Mg = +1
on nearby sites). The phase can be termed a quantum
paramagnet. The 1-BS and 2-BS superfluid phases re-
spectively correspond to the dipole and quadrupole (ne-
matic) pseudospin XY-order. Generally speaking, we
may anticipate the emergence of so-called supersolid
phases, or mixed 1-BS+DW (2-BS+DW) phases.

In this paper, we consider the most general form of
the effective S = 1 pseudospin Hamiltonian related to
the extended Bose-Hubbard model and present a short
overview of different phase states. We focus on sev-
eral types of unconventional skyrmion-like topological
structures in 2D boson systems, which have not been
analyzed until now. The structures are characterized
by a complicated interplay of insulating and two super-
fluid phases. The rest of the paper is organized as fol-
lows. Section 2 is an introduction into the pseudospin
formalism. In Sec. 3, we introduce and analyze the
effective pseudospin Hamiltonian. In Sec. 4, we turn
to a short overview of a typical simplified S = 1 spin
model. Unconventional pseudospin topological struc-
tures are considered in Sec. 5, with a short conclusion
in Sec. 6.

2. PSEUDOSPIN FORMALISM

One strategy to deal with the physics of the ex-
tended Bose-Hubbard model with the on-site Hilbert
space truncated to n = 0,1,2 is to use an S = 1
pseudospin formalism [4, 5] and to create a model
pseudospin Hamiltonian that can reproduce both the
ground state and important low-energy excitations of
the full problem reasonably well. The standard pseu-
dospin formalism represents a variant of the equivalent-
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operator technique widely known in different physical
problems, from classical and quantum lattice gases,
binary alloys, (anti)ferroelectrics, etc., to neural net-
works. The formalism starts with a finite basis set for a
lattice site (triplet in our model). Such an approach dif-
fers from well-known pseudospin—particle transforma-
tions akin to Jordan-Wigner [6] or Holstein—Primakoff
[7] transformations that establish a strict link between
pseudospin operators and the creation/annihilation op-
erators of the Fermi or Bose type. The pseudospin for-
malism generally proceeds with a truncated basis and
does not imply a strict relation to boson operators that
obey the boson commutation rules.

The three on-site Fock states |n = 0), |n = 1), and
|n = 2) form a local Hilbert space of the semi-hard core
bosons, which can be mapped onto a system of S =1
centers via a generalization of the Matsubara—Matsuda
transformation [5] that also maps the boson density
into the local magnetization: n; = S.; + 1. In contrast
to the hard-core bosons associated with S = 1/2 mag-
nets, it is possible to study “Hubbard-like” boson gases
with on-site density—density (contact) interactions be-
cause n; < 2. Hereafter, we relate the three on-site
Fock states with the occupation numbers n = 0,1, 2 to
the three components of the S = 1 pseudospin (isospin)
triplet with Mg = —1, 0, +1, respectively. It is worth
noting that a very similar S = 1 pseudospin formalism
was suggested recently [8, 9] to describe the triplet of
Cu't, Cu?t, Cut valence states in high-temperature
copper superconductors.

The S = 1 spin algebra includes the three inde-
pendent irreducible tensors V} of rank k = 0,1,2 with
one, three, and five components respectively, obeying
the Wigner—Eckart theorem [10]

Ak 7
(SMIV|SM ) =

= (-1)5 (

Here, we use standard symbols for the Wigner coeffi-
cients and reduced matrix elements. In a more con-
ventional Cartesian scheme, a complete set of nontriv-
ial pseudospin operators would include both S and
a number of symmetrized bilinear forms {S;S;} =
= (SiS; + S;S;), or spin-quadrupole operators, which
are linearly related to V' and V,:

S
-M

kS

o )(SIIV'“IIS>- (3)

1
V2
Vg o (352 —8%), VI, o< (S.5+ + 5+5.),

Vi, o« S%.

V) =S; So=85., Si=F—(S,£iS,):

(4)
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Instead of the three |1M) states, one can use the
Cartesian basis set ¥, or |z,y, z):

1
ﬁ

such that the on-site wave function can be written in
the matrix form [11]

[10) =lz), [1£1) =F—%(l2) £ily)) (5

C1 Rl exp(z"bl)
V=1 co | =| Roexp(i®) |, [R>=1, (6)
C3 R3 exp(i<1>3)

with R = {sin © cosn,sin © sinn, cos©}. Obviously,
the minimal number of dynamic variables describing
an isolated on-site S = 1 (pseudo)spin center equals
to four; however, for a more general situation, when
the (pseudo)spin system represents only a part of the
bigger system and we are forced to consider the cou-
pling to the additional degrees of freedom, we should
consider all the five nontrivial parameters.

The pseudospin matrix has a very simple form in
terms of the |z,y, z) basis set:

(7)

We start by introducing a set of S = 1 coherent
states characterized by vectors a and b satisfying the
normalization constraint [11]

(i|Sklj) = iein;-

|c) =]a,b) =c-¥ = (a+ib) P, (8)

where a and b are real vectors that are arbitrarily ori-
ented with respect to some fixed coordinate system in
the pseudospin space with the orthonormal basis e; 2 3.

The two vectors are coupled, and therefore the min-
imal number of dynamic variables describing the S =1
(pseudo)spin system appears to be equal to four. We
emphasize the director nature of the ¢ vector field: |c)
and | — ¢) describe physically identical states.

We note that in real space, the |c) state corresponds
to a quantum on-site superposition:

e = e_1]0) + col1) + 1 [2). (9)

The existence of such unconventional on-site superpo-
sitions is a principal point of the model. Below, instead
of a and b, we use a pair of unit vectors m and n de-
fined as follows [12]:

a=cospm, b=sinpn.

For the averages of the principal pseudospin opera-
tors, we obtain

(S) = sin2¢[m x n],
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({8, S;}) =2(0i5 — cos? pm;m; — sin? pn;nj), (10)
or

1 1
(S7)=1- g(m? +n7) — i(m? —n?) cos 2,

({Si, S;}) = —(mim; + ninj) —

— (mymj —nimj)cos2p (i # j).
We note a principal difference between the S = 1/2
and S = 1 quantum systems. The only on-site order
parameter in the former case is the average spin mo-
ment (Sy . .), whereas in the latter, we have five addi-
tional “spin-quadrupole”, or spin—nematic order param-
eters described by the traceless symmetric tensors

Qij = <<%{Si,5’j} - ;52’3') > :

Interestingly, the S = 1/2 quantum spin system, with
all the order parameters defined by a simple on-site
vectorial order parameter (S), is in a sense closer to a
classical one (S — o0o) than the S = 1 quantum spin
system, with its eight independent on-site order param-
eters.

The operators VF (¢ # 0) change the z-projection
of the pseudospin and transform the |SMg) state into
the |[SMg+q) one. In other words, these operators can
change the occupation number. We emphasize that in
the S = 1 pseudospin algebra, there are two operators,
Vi, and V2, or Sy and Ty = {S.,S+}, that change
the pseudospin projection (and the occupation number)
by +1, with slightly different properties:

(11)

(12)

(019] F 1) = (+1]54]0) = F1, (13)
but
(|| F 1) = —(+1|(T]0) = +1. (14)

It is worth noting similar behavior of both operators
under Hermitian conjugation: St = —S+; T:L =-T%.
The V2,, or 52 operator changes the pseudospin
projection by £2 with the local order parameter
(S1) = 5((S7 = S}) £ i{{Sz, 8, })) =

2

=

DO | =

=cic_=c¢ CZ + 2icycy.  (15)
Obviously, this on-site off-diagonal order parameter is
nonzero only when both ¢ and c_ are nonzero, or for
the on-site 0 — 2 superpositions. It is worth noting that
the Sf_ (SE) operator creates an on-site boson pair, or a
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dimer, with the kinematic constraint (52)2 = 0, which
underlines its “hard-core” nature.

Figure 1 shows orientations of the m and n vec-
tors that provide extremal values of different on-site
pseudospin order parameters at ¢ = w/4. The n = 1
center is described by a pair of m and n vectors di-
rected along the Z axis with |m,| = |n,] = 1. We
arrive at the respective 1 — 2 or 1 — 0 mixtures if we
turn c_y or ¢y into zero. The mixtures are described
by a pair of m and n vectors whose projections on the
XY plane, m; and n, are of the same length and
orthogonal to each other: m; -mn; = 0, m n
with [m; xn ] = (S,) = £sin’f for 1 —2 and 1 — 0
mixtures, respectively (see Fig. 1).

It is worth noting that for the “conical” configura-
tions in Figs. 10-1d, we have

(S.) =0; (S?)=sin’0,
1 . i
<S:2l:> = —5 s1n2 06i2 4‘0, (16)
(Sy) = _ﬁ sin20 et (Ty) =0
(Fig. 1b);
(S.) =0, (S?)=sin’0,
1 . i
<S:2l:> = —— Sln2 06i2 LP, (17)
(Se)y=0, (Ty)= :F% sin 20 e*1¢
(Fig. 1¢); and
(S:) = —(82) = —sin®0, (S%)=0,
. ) 18
(Si) = (Ty) = :I:leﬁz sin 26 e 1)

(Fig. 1d). Figures le,f show the orientation of the m
and n vectors for the local binary mixture 0 — 2, and
Fig. 1g does so for n = 2 center. It is worth noting
that for binary mixtures |1)—|0) and |1)—|2), we arrive
at the same algebra of the S’i and Ti operators with
(S4) = (Ty), while for ternary mixtures |0)—|1)—|2),
these operators describe different excitations. Inter-
estingly, in all cases, the local n = 1 fraction can be
written as

=1)=1-(S?) = cos® 0. (19)

p(n

In the boson language, (S.) and (S?) are on-site di-
agonal order parameters that respectively describe the
local density and boson nematic order. The on-site
mean values (Si) and (T'4) are the two types of local
off-diagonal order parameters that describe one-boson
superfluidity, while (S%) is a local order parameter of
the two-boson, or dimer superfluidity.
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3. EFFECTIVE S =1 PSEUDOSPIN
HAMILTONIAN

The general form of the effective pseudospin Hamil-
tonian that commutes with the z-component of the to-
tal pseudospin ), S;. and hence preserves the mean
boson density is [8, 9]

+ D0 D Tika GD)V (VI ()

k1kaq i<j

o= = (u = hi)Siz) +

(20)

The Hamiltonian can be rewritten as a sum of potential
and kinetic energies, that is, of the ¢ = 0 (“diagonal”)
H.j, and ¢ # 0 (“off-diagonal”) Hy, terms:

H = Hep, + Hy, (21)
where
Hep =Y (AiS7 — (= hi)Siz) +
+ Z Vij (Si=Sj: + osz,S]{) (22)
i<j

and Hy, = H (1) +f]t(f ) are the sums of one-particle and
two-particle transfer contributions

Htr Ztm +Sj* + Si*Sj+) +
i<j
+ Z th(Ti Ty + Ti-Tyy) +
i<j
+ Z tij(Si+Tj7+Si7Tj++Ti+ij-I-Tl;SJ}); (23)
i<j
Y =3 t4(82,82 +52.82,), (24)
i<j
with the boson density constraint
S sy =A (25)
2N l 1z - n’

where An is the deviation from half-filling (n = 1).
The Hamiltonian fIch corresponds to a classical
spin-1 Ising model with a single-ion anisotropy term,
or the generalized Blume—Capel model [13], in the
presence of a longitudinal magnetic field. The first
single-site term in I:ICh describes the effects of a bare
pseudospin splitting and relates to the on-site density—
density interactions: A = U. The second term can be
related to a pseudomagnetic field h; || Z that acts as
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(S2) = (82) =sin® 0, (ST — S7) = ({8, Sy}) =0

n:1-—2

(Te) #0, (Sx) =0
(5:)=0¢(S2)=0

n=1

(Sx)#0, (Tx) =0

—

—

f
A
NED 4
Y
xr
e A A
A (S)
>
sa o Ay
xr

— 2y _ 2 g2
(S:) =0, (55) =1, -1 <(S; —5,) <1

n:0-—2

(S:) =0, (§2) =sin®0, —sin® 0 < (S2 — S7) < sin® @

n:0—-1-2

On-site occupation number uncertainty

Fig.1. Schematic showing orientations of the m and n vectors that provide extremal values of different on-site pseudospin
order parameters for ¢ = 7/4

a chemical potential (u is the boson chemical potential
and h; is a (random) site energy). At variance with
the real external field, the chemical potential depends
on both the parameters of Hamiltonian (21) and the
temperature. The third bilinear and forth biquadratic
terms in fIch describe the effects of the short- and long-
range inter-site density—density interactions.

The Hamiltonian Hj, plays the role of kinetic ener-
gy, with fIt(: ) and fIt(f ) respectively describing the one-
and two-particle inter-site hopping. The Hamiltonian
ﬁt(i) represents an obvious extension of the conven-
tional Hubbard model that assumes that the single-
particle orbital is infinitely rigid irrespective of the oc-
cupation number, and has much in common with so-
called dynamic Hubbard models [14] that describe a

correlated hopping. The ST and TT terms describe
a density-dependent single-particle hopping. It was
Hirsch and coworkers [14] who stressed the importance
of density-induced tunneling effects in the condensed-
matter context.

However, before mapping the pseudospin model into
a discrete free boson model, we must verify that the am-
plitude of the one-particle hoppings in Bose—-Hubbard
Hamiltonian (1) obey the boson commutation relations.
This implies that the amplitude of the |1)|2)—|2)|1)
process is twice as large as that of |0)|1)—|1) |0) and a
factor /2 larger than that of |1)[1)-|2) |0). We note
that in the triplet basis |0, 1,2), the boson annihilation
operator reads as [3]
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1

bi=5 [(1+v2)Sii - (1-v2) T | =

:ﬁ<1+ﬁ‘1s~,»z>

A~

Sit. (26)

V2
In other words, in the framework of the standard
EBHM approach, all the SS; TT, and ST terms in the
pseudospin kinetic energy are governed by a single Hub-
bard transfer integral ¢:
_0+ve)”

4 )
5T = /34,

(1-v2)°

t9 = 1 t,

T:

(27)
t4 =0,

while the pseudospin Hamiltonian Hy, allows describ-
ing more complicated transfer mechanisms. The one-
and two-particle hopping terms in H,, are of primary
importance for the transport properties of our model
system, and deserve special attention. Three (SS-, TT-,
and ST-) types of the one-particle hopping terms are
respectively governed by the three transfer integrals ¢

R
tiTj, and tij. Instead of S+ and T, we can introduce

two novel operators ﬁi and Ni as
.\ 1 . . - 1 . .
Py =5(5c+Te), Ne=5(5:—Ty).  (28)

Then the single-particle transfer Hamiltonian becomes

HY =S th(Py P+ P Pyy) +

i<j
+ Y (N NG 4N Nj )+ Y N (P Ny +
+ P, Njy + Ny P +N;_Pjy), (29)
where
P S T ST N S T sT
by =1ty ity Hty, by =t =y, (30)

PN _ S T
thN =t — 1]

All the three terms here have a clear physical interpre-
tation. The first, PP-type term describes one-particle
hopping processes |1) |2)—|2) |1}, which are a rather con-
ventional motion of the extra boson in the lattice with
the n = 1 on-site occupation or the motion of a boson
hole in the lattice with the n = 2 on-site occupation.
The second, N N-type term describes one-particle hop-
ping processes |1)|0)—|0)|1), which are a rather con-
ventional motion of a boson hole in the lattice with the
n = 1 on-site occupation or the motion of a boson in
the lattice with the n = 0 on-site occupation. These
hopping processes are respectively typical for heavily
underfilled ((n) < 1) or heavily overfilled ({(n) < 2)
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lattices. It is worth noting that the ST-type contribu-
tion of the one-particle transfer differs in sign for the
PP and NN transfer, thus breaking the “particle—hole”
symmetry.

The third, PN (NP), term in (29) defines
a very different one-particle hopping process,
[1) |1)—|2) |0) (]0)|2)), which is the particle-hole
creation/annihilation. =~ We note that the ST-type
transfer does not contribute to the reaction.

The two-particle(hole), or dimer hopping is gover-
ned by the transfer integral tfj that defines the prob-
ability amplitude for the “exchange” reaction |0)|2)-
|2) |0}, either the motion of an on-site dimer in the lat-
tice with the n = 0 on-site occupation or the motion
of an on-site hole n = 0 in the lattice with the n = 2
on-site occupation.

All the kinetic energies can be rewritten in terms of
the Cartesian pseudospin components if we take into
account that

(SH_SJ'_ + Si_Sj+) = —(Sixij + SinJ'y)v

(Si+5'—_5i—sj+) = z(S,zS]y—SwS]m) =1 [Sl X SZ]Z N

(Ti+Tj- + Ti-Tj3) = —(TiaTjo + T3y Tjy) =
= —(SizSje + SiySjy)SizSjx —
- Szz(SzmS]m + Slijy)sz + H.C.,

(Ti+T',—Ti,Tj+) = Z(Tzszy—TwT]m) =1 [Tl X TZ]Z N

(SiyTj— + Si-Tjy) +He =
—{(Siz + 5j2), (SiaSje + SiySjy)}

(53,52 + 5252,

1

i
(5257 = S2874) = =5 [(S5=55){Sz, Siu} —

The Hamiltonian ﬁch describes two types of a lon-
gitudinal long-range diagonal Z-ordering measured by
the static structure factors such as

S.2(q) =

% Z exp {—iq - (Rm — Rp)} (SmzSnz)  (32)

z

for a pseudospin—dipole order and
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S2.(a)
S exp {—ia- (R~ R} (S2.52.) (33)

for a pseudospin—quadrupole (nematic) order.

The Hamiltonian H;, describes different types of
transverse long-range off-diagonal XY-ordering mea-
sured by the transverse components of the static struc-
ture factors such as

Sy—(a)
= = ep{mia: (R~ R} (S S0 (34)

for the conventional pseudospin-dipole order or
Ty—(a)

= % Z exp{—iq: (Rm —Ry)} (Tm+Th-), (35)

and

52

(@)
- % Z exp {_iq‘ (Rm - Rn)} <an+52_) (36)

for two types of the pseudospin—quadrupole (nematic)
order. In the conventional boson language, the struc-
ture factors S,.(q) and S, (q) describe density—density
correlations, Sy _(q) and T} _(q) describe the single-
boson superfluid correlations, while 53 _(q) describes
the two-boson (on-site dimer) superfluid correlations.

4. TYPICAL SIMPLIFIED S =1 SPIN MODEL

Despite many simplifications, the effective pseu-
dospin Hamiltonian (21) is rather complex, and repre-
sents one of the most general forms of the anisotropic
S = 1 non-Heisenberg Hamiltonian. Its real spin coun-
terpart corresponds to an anisotropic S = 1 magnet
with a single-ion (on-site) and two-ion (inter-site bilin-
ear and biquadratic) symmetric anisotropy in an ex-
ternal magnetic field under conservation of the total
S.. Spin Hamiltonian (21) describes an interplay of
the Zeeman, single-ion, and two-ion anisotropic terms,
giving rise to a competition of an (anti)ferromagnetic
order along the Z axis with an in-plane XY magnetic
order. Simplified versions of anisotropic S = 1 Heisen-
berg Hamiltonian with bilinear exchange have been in-
vestigated rather extensively in recent years. Their
analysis seems to provide an instructive introduction to
the description of our generalized pseudospin model.
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A typical S = 1 spin Hamiltonian with uniaxial
single-site and exchange anisotropies is given by

H= Z Jl](SmSJz + S,ySJy + )\SiZsz) +
i>j
+Y DS% =Y hSi.. (37)

The correspondence with our pseudospin Hamiltonian
points to D = A, J;; = t;;, and AJ;; = Vj;. The anti-
ferromagnet with .J > 0 is usually considered because
this is the case of more interest in general. However,
Hamiltonian (37) is invariant under the transforma-
tion J,A — —J,—X and a shift of the Brillouin zone
k — k + (m,7) for the square 2D lattice. The sys-
tem described by Hamiltonian (2) can be characterized
by local (on-site) spin-linear order parameters (S) and
spin-quadratic (quadrupole spin-nematic) order param-
eters QF = Q.. = (S? —2/3) and Q3, = (S7,).

The model has been studied by several methods,
e. g., molecular field approximation, spin-wave theories,
exact numerical diagonalizations, a nonlinear sigma
model, quantum Monte Carlo, series expansions, varia-
tional methods, the coupled cluster approach, the self-
consistent harmonic approximation, and the general-
ized SU(3) Schwinger boson representation [15-19].

The spectrum of spin Hamiltonian (37) in the ab-
sence of an external magnetic field changes drastically
as A varies from very small to very large positive or
negative values. A strong “easy-plane” anisotropy for
large positive A > 0 favors a singlet phase where spins
are in the S, = 0 ground state. This “quadrupole”
phase has no magnetic order, and is aptly referred to
as a quantum paramagnetic phase (QPM), which is sep-
arated from the “ordered” state by a quantum critical
point at some A = AQPM | This is a quadrupole state
with no magnetic order, and hence all linear order pa-
rameters vanish and only a quadrupole (spin-nematic)
order parameter such as Q.. = (S? — 2/3) is nonzero.
The QPM phase consists of a unique ground state with
the total spin St = 0, separated by a gap from the
first excited states, which lie in the sectors Sote! = £1.
It is worth noting that the QPM order differs in princi-
ple from the conventional paramagnetic state, because
for S = 1 in the classical paramagnetic state, we have
(82) = (S;) = (S?) = 2/3, while in the quantum para-
magnetic state, (S2) = 0 and (S2) = (S;) = 1. Strictly
speaking, all the above analysis concerns the typical
mean-field approximation (MFA). Beyond the MFA,
the QPM ground state contains an admixture of states
formed by exciton-like tightly bound particle-hole fluc-
tuations (0 — 2 on nearby sites).

A strong “easy-axis” anisotropy for large negative
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A < AISTALS = 2(V,, [t — 1) [19], favors a spin or-
dering along z, the “easy axis”, with the on-site S, = £1
(Z-phase). The order parameter is “Ising-like” and the
long-range (staggered) diagonal order persists at finite
temperatures, up to a critical line T.(A). The easy axis
antiferromagnetic Z4p)s phase or more complicated
long-range spin Z-order are characterized by the longi-
tudinal component of the static structure factor S..(q).

For intermediate values ASPM > A > Al the
system is in a gapless XY phase, where the spins are
preferentially in the xy plane (choosing z as the hard
axis) and the Hamiltonian has the O(2) symmetry. At
T = 0, this symmetry is spontaneously broken and the
system exhibits spin order in some direction, reduced
by quantum fluctuations. The broken O(2) symmetry
results in a single gapless Goldstone mode. Although
there is no ordered phase at a finite temperature, we
expect a finite-temperature Kosterlitz—Thouless tran-
sition. The XY phase has a long-range off-diagonal
ordering measured by the transverse component of the
static structure factor S;_(q).

For large positive A, in the QPM phase, the low-
energy excitations arise from exciting one of the S, =0
(n=1)sitesto S, =4+1 (n=2) or S, = =1 (n =0).
Such a local excitation, actually the effective particle
or hole, can then propagate over the lattice due to the
transfer terms (quantum fluctuations) in Hy,., forming
a well-defined quasiparticle (magnon) band with the
energy ¢(k). These coherent magnon bands have an
energy gap, which we expect to vanish as A — A@PM,
An analytic expression for e(k) in the QPM phase has
been proposed by Papanicolaou [20], based on a gener-
alized Holstein—Primakoff transformation for isotropic
nn-Heisenberg model with single-site anisotropy. The
application of an effective field h, along the z axis re-
duces the spin gap linearly in h, since the field couples
to a conserved quantity (total spin along the z axis).
The gap is closed at a critical field h. (the quantum
critical point (QCP)) where the bottom of the S, =1
branch of (pseudo)spin excitations touches zero. This
QCP belongs to the BEC universality class and the
gapless mode of low-energy S, = 1 excitations remains
quadratic for small momenta, because the Zeeman term
commutes with the rest of the Hamiltonian.

Both excitation branches in the QPM phase,
AS, = £1 (particle/hole), have the same dispersion
at zero field, h. = 0, as expected from time reversal
symmetry. A finite h, splits the branches linearly
in hy: er(k) = ex(k) £ h, without changing the
dispersion. This is a consequence of the fact that the
external field couples to the total spin Y S,, which is
a conserved quantity.
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We note that there are three types of two-magnon
excitations, those with AS!te = 12 2 and 0. The
two-magnon bound state with AS?° = ( or a cou-
pled particle-hole pair can propagate over the lattice,
forming a quasiparticle band.

At least for relatively small negative A < AL the
lowest-energy excitations in the unperturbed system
consist of a single spin excited from its ordered S, = +1
stateto S, = 0,1.e., AS, = F1. The corresponding co-
herent magnon band has an energy gap at the I' point
(0,0), which behaves like (0, 0) ~ 24/2V,,,,|A| at small
|A|. This reflects, in the easy axis case, the fact that
the residual O(2) symmetry of the Hamiltonian is not
spontaneously broken in this case, and therefore Gold-
stone modes are absent.

However, for large negative A, the single-magnon
(single-particle) excitations are not the lowest-energy
excitations of the system. Their energy is of the or-
der of |A|, whereas an excitation with AS, = £2 (i.e.,
S, = 1 + S, = F1) has an energy of the order of
22Vyn as A = —oo. Such a two-particle (local dimer)
excitation, created at a particular site, can again propa-
gate over the lattice, forming a quasiparticle band. We
can think of this local dimer as a long-lived virtual two-
magnon bound state (bimagnon), where the magnons
are bound on the same site.

Hamer et al. [18] have shown that at a finite effective
field h. but at A = 1, the XY phase transforms into a
canted antiferromagnetic XY-Zpjs phase that appears
right above h.: the spins acquire a uniform longitudinal
component and an antiferromagnetically ordered trans-
verse component, which spontaneously breaks the U(1)
symmetry of global spin rotations along the z axis. The
longitudinal magnetization increases with the field and
saturates at the fully polarized (FP) state (all S, = 1)
above the saturation field hs;. The FP state corresponds
to a boson Mott insulator in the language of Bose gases.

The field-induced quantum phase transition from
the QPM to the XY-Zpj; phase is qualitatively differ-
ent from the transition between the same two phases
that is induced by changing A at h, = 0. If the single-
ion anisotropy is continuously decreased at a zero ap-
plied field, the two excitation branches remain degen-
erate and the gap vanishes at A = A@PM (h, = 0).
The low-energy dispersion becomes linear at the QPM-
CAFM phase boundary for small k. However, the de-
generacy between the two branches at h, = 0 is lifted
inside the CAFM phase: one of the branches remains
gapless with a linear dispersion at low energy (corre-
sponding to the Goldstone mode of the ordered CAFM
state), whereas the other mode develops a gap to the
lowest excitation. The effect of increasing h, from zero
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at a fixed A > A@PM is to reduce the gap linearly in
h. with no change of dispersion.

At D > 0 and A > 1, the phase diagram of the
S = 1 Heisenberg model with uniaxial anisotropy (37)
contains an extended spin supersolid (SS) or biconi-
cal phase XY-Zpry with a ferrimagnetic z-order that
does exist over a range of magnetic fields. The model
also exhibits other interesting phenomena such as mag-
netization plateaus and a multicritical point [15]. The
magnetization stays zero up to the critical field h.1 that
marks a quantum phase transition (QPT) to a state
with a finite fraction of spins in all the S, = 0,+1
states. This spin supersolid state has a finite S, (m, 7)
as well as a finite S;_(0,0). The magnetization in-
creases continuously to m. = 0.5 at h.2, where there is
a second QPT to a second Ising-like state (IS2), where
all the S, = —1 (n = 0) sites have been flipped to
the S, = 0 (n = 1) state. The S,.(m,7) component
then remains divergent, but S;_(0,0) drops to zero.
Upon further increasing the field, a first-order transi-
tion occurs to a pure XY-AFM phase (CAFM) with the
vanishing diagonal order but a finite S;_(0,0). This
situation persists until all the spins have flipped to the
S, = +1 (n = 2) state (fully polarized, FP phase). The
extent of the SS phase decreases with decreasing A and
vanishes for A & 1, leaving a second-order transition
from the SS to the XY (CAFM) phase.

At D <0,J >0, and A = 1, the ground state
of spin Hamiltonian (37) corresponds to the easy-axis
antiferromagnetic Z4pp; phase. At small anisotropy,
|D|/J < 1, the application of an effective field h,
along the z axis first induces a rather conventional
spin-flop transition to a pure XY-AFM phase (CAFM)
with the vanishing diagonal order but finite Sy _ (0, 0),
ending with the transition to the fully polarized fer-
romagnetic Zrys phase. However, at large anisotropy
|D|/J > 1, instead of the mean-field first-order (meta-
magnetic) phase transition Zapy—Zpay, we arrive at
an unconventional intermediate phase with the spin fer-
ronematic (FNM) order characterized by zero value of
the S;_(0,0) factor but a nonzero S%_(0,0) correla-
tion function [16].

The phase diagram in the most interesting in-
termediate regime can change drastically, if we take
frustrative effects of next-nearest-neighbor couplings
or different non-Heisenberg biquadratic interactions
into account [19]. We note that even for the simple
isotropic 2D-nnn antiferromagnetic Heisenberg model,
the classical ground state has a Néel order only when
Ja/Ji < 1/2, where J; is the nearest-neighbor and
Jo is the next-nearest-neighbor interaction. However,
when J»/J; > 1/2, the ground state consists of two
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independent sublattices with antiferromagnetic order.
The classical ground-state energy does not depend on
the relative orientations of both sublattices. However,
quantum fluctuations lift this degeneracy and select a
collinear order state, where the neighboring spins align
ferromagnetically along one axis of the square lattice
and antiferromagnetically along the other (stripe-like
order).

Turning to spin-boson mapping, we note that the
QPM phase (n; = 1), fully polarized Zp)s phases with
n; = 0 or n; = 2 correspond to Mott insulating phases,
the XY and XY-Zpjs orderings correspond to a Bose—
Einstein condensate (BEC) of single bosons, while the
FNM phase corresponds the BEC of boson dimers. The
XY-Zrra phases correspond to supersolids.

The pseudospin Hamiltonian in Eqs. (21)—(24) dif-
fers from its simplified version (2) in several points.
First, this concerns the density constraint. It is worth
noting that the charge density constraint in a uni-
form pseudospin system can be satisfied only under
some quasidegeneracy. Second, the pseudospin param-
eters, in particular A, V;;, and h in effective Hamilto-
nian (21), can be closely linked to each other. Instead of
a simple usually antiferromagnetic XY-exchange term
in (2), we should proceed with a significantly more
complicated form of the “transverse” term in the pseu-
dospin Hamiltonian, (21), with the inclusion of two bi-
quadratic terms and an unconventional “mixed” asym-
metric ST-type term that formally breaks the time in-
version symmetry and is absent for conventional spin
Hamiltonians. The apparently leading bilinear XY-ex-
change term in H,, appears to be of the ferromagnetic
sign. Along with a simple spin-linear planar XY-mode
with nonzero (S+), we arrive at two novel spin-quadru-
pole nematic modes with nonzero (T) and/or (S%).
Hereafter, we let the different counterparts of the
phases of simple model (2) be denoted as follows: the
novel XY-phase Z 4y for Ising-type antiferromagnetic
order along the z axis, XY—Zpyps for spin supersolid
phases with simultaneous XY and ferrimagnetic orde-
rings along the z axis, XY-Zp s for a phase with simul-
taneous XY- and ferromagnetic orderings along the z
axis (an analogue of the CAFM phase), and Zgys for
the fully z-polarized ferromagnetic phase.

5. TOPOLOGICAL DEFECTS IN 2D S =1
PSEUDOSPIN SYSTEMS

5.1. Short overview
In the framework of our model, the 2D Bose—

Hubbard systems turn out to be in the universality
class of the (pseudo)spin 2D systems whose descrip-
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tion incorporates static or dynamic topological defects
as a natural element of both micro- and macroscopic
physics. Depending on the structure of the effective
pseudospin Hamiltonian in 2D systems, these could cor-
respond to either in-plane and out-of-plane vortices or
skyrmions. Under certain conditions, either topologi-
cal defects could determine the structure of the ground
state. In particular, this could be a generic feature
of electric multipolar systems with long-range multi-
polar interactions. Indeed, a Monte Carlo simulation
of a ferromagnetic Heisenberg model with dipolar in-
teraction on a 2D square L x L lattice shows that as
L is increased, the spin structure changes from a fer-
romagnetic one to a novel one with a vortex-like ar-
rangement of spins even for rather small magnitude of
dipolar anisotropy [21].

Topological defects are stable nonuniform spin
structures with broken translational symmetry and a
nonzero topological charge (chirality, vorticity, and
winding number). Vortices are stable states of the
anisotropic 2D Heisenberg Hamiltonian

H= Z Jij(SizSje + SiySjy + ASi2Sj2),

i>7

(38)

with the “easy-plane” anisotropy for the anisotropy pa-
rameter A < 1. A classical in-plane vortex (S, = 0)
appears to be a stable solution of classical Hamilto-
nian (38) at A < A. (A; &= 0.7 for a square lattice). At
1> X > )., the stable solution corresponds to the out-
of-plane OP vortex (S, # 0), at the center of which the
spin vector appears to be oriented along the z axis, and
at infinity it arranges within 2y plane. The in-plane
vortex is described by the formulas ® = gy, cosf = 0.
The 6(r) dependence for the out-of-plane vortex can-
not be found analytically. Both kinds of vortices have
the energy logarithmically dependent on the size of the
system.

The cylindrical domains, or bubble-like solitons
with spins oriented along the z axis both at infinity and
in the center (naturally, in opposite directions) exist for
the “easy-axis” anisotropy A > 1. Their energy has a
finite value. Skyrmions are general static solutions of
the classical continuous limit of the isotropic (A = 1)
2D Heisenberg ferromagnet, obtained by Belavin and
Polyakov [22] from a classical nonlinear sigma model.
The Belavin—Polyakov skyrmion and the out-of-plane
vortex represent the simplest toy model of (pseudo)spin
textures [22, 23].

The simplest skyrmion spin texture looks like a bub-
ble domain in a ferromagnet and consists of a vortex-
like arrangement of the in-plane components of spin
with the z-component reversed in the centre of the
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skyrmion and gradually increasing to match the ho-
mogeneous background at infinity. The spin distribu-
tion within such a classical skyrmion with a topological
charge ¢ is given by [22]

,,,2q _ )\2(1

where r and ¢ are polar coordinates on the plane, and

® =qp+ ¢y, cosO= (39)

q = %1, £2,... is the chirality. For ¢ =1 and ¢y = 0,
we arrive at
2r\ 2rA .
R e G
T2 _ )\2
"= T

In terms of the stereographic variables, the skyrmion
with a radius A and phase g centered at a point zg is
identified with the spin distribution w(z) = A/(z — 2p),
where z = z+iy = re’# is a point in the complex plane,
A = Xe'®. For a multicenter skyrmion, we have [22]

TS w

where Y m; > > nj, ¢ = > .mj. Skyrmions are
characterized by the magnitude and the sign of their
topological charge, by their size (radius), and by the
global orientation of the spin. The scale invariance
of a skyrmionic solution reflects in that its energy
Eg, = 4m|q|IS? is proportional to the topological
charge and does not depend on the radius and the
global phase [22]. Like domain walls, vortices and
skyrmions are stable for topological reasons. Skyrmions
cannot, decay into other configurations because of this
topological stability, irrespective of how close they are
in energy to any other configuration.

In a continuous field model, such as, e.g., the
nonlinear o-model, the ground-state energy of the
skyrmion is independent of its size [22], but for the
skyrmion on a lattice, the energy depends on its size.
This must lead to a collapse of the skyrmion, making it
unstable. Strong anisotropic interactions, in particular,
long-range dipole—dipole interactions may in principle
dynamically stabilize the skyrmions in 2D lattices [24].

The wave function of the spin system that corre-
sponds to a classical skyrmion is a product of spin co-
herent states [25]. For the spin S =1/2,

A

Z—Z5

Z—Zj
A

U (0) =

H {cos %ei“”/2| 1) + sin %e*i“”/ﬂ D, (42)

i
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where §; = arccos :z;—f\‘z The coherent state provides a
maximal equivalenée to a classical state with the min-
imal uncertainty of spin components. The motion of
such skyrmions has to be of a highly quantum mechan-
ical nature. However, this may involve a semiclassical
percolation in the case of heavy nonlocalized skyrmions
or variable range hopping in the case of highly local-
ized skyrmions in a random potential. Effective overlap
and transfer integrals for quantum skyrmions are cal-
culated analytically in [26]. The skyrmion motion has a
cyclotron character and resembles that of the electron
in a magnetic field.

The interest in skyrmions in ordered spin sys-
tems received much attention soon after the discov-
ery of high-temperature superconductivity in copper
oxides [27, 28]. Initially, there was some hope that in-
teraction of electrons and holes with spin skyrmions
could play some role in superconductivity, but this was
never successfully demonstrated. Some indirect evi-
dence of skyrmions in the magnetoresistance of the li-
thium-doped lanthanum copper oxide has been recently
reported [29], but direct observation of skyrmions in
2D antiferromagnetic lattices is still lacking. In re-
cent years, the skyrmions and exotic skyrmion crystal
(SkX) phases have been discussed in relation with a
wide range of condensed matter systems including the
quantum Hall effect, spinor Bose condensates, and es-
pecially chiral magnets [30]. Tt is worth noting that the
skyrmion-like structures for hard-core 2D boson system
were considered by Moskvin et al. [31] in the framework
of the S = 1/2 pseudospin formalism.

5.2. Unconventional skyrmions in S =1
(pseudo)spin systems

Different skyrmion-like topological defects for 2D
(pseudo)spin S = 1 systems as solutions of isotropic
spin Hamiltonians were addressed in Ref. [12] and in
more detail in Ref. [11]. In general, an isotropic non-
Heisenberg spin Hamiltonian for the S = 1 quantum
(pseudo)spin systems should include both the bilinear
Heisenberg exchange term and the biquadratic non-
Heisenberg exchange term:

}AI — —jl ZgiSiJFTI - jg Z(Sigi+n)2 -
i,

1 )
-1 E SiSitn —
i,

=2 > ({58} SkSiYin),

i k>j

(43)
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where J; are the appropriate exchange integrals,
J=J, — j2/27 Jo = j2/2, and ¢ and 1 denote respec-
tive summations over lattice sites and nearest neigh-
bors.

With our trial wave function (8) substituted in (H)
under the condition (S(1)S(2)) = (S(1))(S(2)), we ar-
rive at the Hamiltonian of the isotropic classical spin-1
model in the continual approximation in the form

> (¥

)
o[ {

3

.
I”

2 [i®par, @

where (S) = 2[a x b]. We note that the third “gra-
dient-free” term in the Hamiltonian breaks the scaling
invariance of the model.

3
> (Vasa; + Vbib;)?

z_]:l

+

5.2.1. Dipole (pseudo)spin skyrmions

Dipole, or magnetic skyrmions as solutions of the
bilinear Heisenberg (pseudo)spin Hamiltonian with
Jy = 0 were obtained in Ref. [12] under the restriction
a L b and for fixed lengths of these vectors.

The model reduces to the nonlinear O(3)-model
with the solutions for a and b described (in polar co-
ordinates) as

V2a = (e, sinf — e, cos ) sin ¢ + e, COS ,
V2b =

For dipole “magneto-electric” skyrmions, the m and
n vectors are assumed to be perpendicular to each other
(m L n) and the (pseudo)spin structure is determined
by skyrmion distribution (39) of the 1 = [m x n] vec-
tor [12]. In other words, the fixed-length spin vector
(S) = 2[a x b] is distributed in the same way as for
the usual skyrmions in (39). But unlike the usual clas-
sic skyrmions, the dipole skyrmions in the S = 1 the-
ory have an additional topological structure due to the
existence of two vectors m and n. In going around
the center of the skyrmion, the vectors can make N
turns around the 1 vector. Thus, we can introduce two
topological quantum numbers, N and ¢ [12]. In addi-
tion, we note that the ¢ number may be half-integer.
The dipole—quadrupole skyrmion is characterized by a
nonzero both pseudospin dipole order parameter (S)
with the usual skyrmion texture (39) and quadrupole
order parameters

(45)
(ezsinf — e, cosh) cosp — e, sing.
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Fig.2.

a) Radial distribution of the boson nematic order parameters for a quadrupole pseudospin skyrmion (¢ = 1) with

(ni) =n =1 (¢ = 0): b) the ring-shaped distribution of the one- and two-boson SF order parameters: ¢) and d) the
spatial distribution of Re(S%) and (S?), respectively

({8:8}) = 2(8i)(8;) = lil;.- (46)

5.2.2. Quadrupole (pseudo)spin skyrmions

Hereafter, we address another situation with a
purely biquadratic (pseudo)spin Hamiltonian (J; = 0)
and treat the nonmagnetic (“electric”) degrees of free-
dom. The topological classification of purely electric
solutions is simple because it is based on the use of a
subgroup instead of the full group. We address the so-
lutions with a || b and with fixed lengths of the vectors,
and therefore we can use the same subgroup as above
for classification.

After simple algebra, the biquadratic part of the
Hamiltonian can be reduced to the expression familiar
from the nonlinear O(3)-model:

3
Hbq = JQ/d2I‘ Z(Vnm])2 =

i,j=1

= 2J2|n|2/d2r ,  (47)

3

where a = an,b = fn, and «a + iff = exp(ik), k € R,
In|?> = const. Its solutions are skyrmions, but instead
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of the spin distribution in magnetic skyrmion, we here
have solutions with zero spin but a nonzero distribu-
tion of five spin-quadrupole moments Q;;, or ({S;S;}),
which are in turn determined by the “skyrmionic” dis-
tribution of the n vector in (39) with the classical
skyrmion energy Eo = 16mqJe. The distribution of
the spin-quadrupole moments ({S;S;}) can be easily
obtained as

52y _ 420 )\2a

< z> - (’I"Qq +A2q)27

N 2q \2¢q .

(83) = ol A riay (48)

(,r2q + A2q)2 ’

. (A2 —p20)pa e
(Ty) = _Z\/i (r29 + X\240)2

We emphasize that the distribution of five indepen-
dent quadrupole order parameters for the quadrupole
skyrmion are straightforwardly determined by a single
vector field m(r) (n(r)) while (S) = 0.

Figure 2 demonstrates the radial distribution
of different (pseudo)spin order parameters for the
quadrupole skyrmion. We see a circular layered
structure with clearly visible anticorrelation effects

due to the (pseudo)spin kinematics. Interestingly, at

Fiqy
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the center (r = 0) and far from the center (r — o)
for such a skyrmion, we deal with an M = 0, or
Mott insulating state, while in the domain wall center
(r = A), we arrive at an M = +1 superposition with
the maximal value of the [(S2)| parameter, whose
weight diminishes in moving away from the center.
The [(T4)| parameter vanishes at the domain wall
center r = A, at the skyrmion center r = 0, and at
the infinity r — oo (o 1), with the two extremums
at r = ﬁ In other words, we arrive at a very
complicated interplay of single- and two-boson super-
fluids with density maxima at r = ﬁ and at the
domain wall center (r = \). The ring-shaped domain
wall is an area with a circular distribution of the
superfluid order parameters, or a circular “bosonic”
supercurrent. A nonzero T-type order parameter
distribution points to a circular “one-boson” current
with a puzzlingly opposite sign (7 phase difference)
of the (%) parameter for the “internal” (0 < r < \)
and “external” (r > M) parts of the skyrmion, while
the ($2) parameter defines the two-boson, or dimer
superfluid order. The specific spatial separation of
different order parameters that avoid each other
reflects the competition of different k, j terms in (43).
Given the simplest winding number ¢ = 1, we arrive
at the p or d-wave (dy2_,2/d,, in-plane symmetry of
the one-boson or dimer superfluid order parameters).
One of the most exciting features of the quadrupole
skyrmion is that such a skyrmionic structure is char-
acterized by a uniform distribution of the mean on-site
boson density (n;) = n = 1 for (S;.) = 0. In other
words, the quadrupole skyrmionic structure and the
bare “parent” Mott insulating phase have absolutely the
same distribution of the mean on-site densities. On one
hand, this point underlines an unconventional quantum
nature of the quadrupole skyrmion under considera-
tion, while on the other hand, it makes the quadrupole
skyrmion texture an “invisible being” for several exper-
imental techniques. However, the domain-wall center
of the quadrupole skyrmion appears to reveal maximal
values of the pseudospin susceptibility x.. [31]. This
means that the domain wall appears to form a very
efficient ring-shaped potential well for the boson local-
ization, thus giving rise to a novel type of a “charged”
topological defect. In the framework of the pseudospin
formalism, the “charging” of a bare “neutral” skyrmion
corresponds to a single-magnon AS, = =+1 (single
particle) or a two-magnon AS, = %2 (two-particle)
dimer excitations. It is worth noting that for large
negative A, the single-magnon (single-particle) excita-
tions may not be the lowest-energy excitations of the
strongly anisotropic pseudospin system. Their energy

9 ZKST®, Bem. 3 (9)

may surpass the energy of a two-magnon bound state
(bimagnon), or the two-boson dimer excitation created
at a particular site. Thus we arrive at a competition
of two types of “charged” quadrupole skyrmions with
AN = £1 and AN = +2 (AN is the total num-
ber of bosons). Such a “charged” topological defect
can be addressed as an extended skyrmion-like mobile
quasiparticle. However, it must be borne in mind that
skyrmion corresponds to a collective state (excitation)
of the whole system.

Addition or removal of a boson in the half-filled
(n = 1) boson system can be a driving force for the
nucleation of multi-center “charged” skyrmions. Such
topological structures, rather than uniform phases pre-
dicted by the mean-field approximation, are believed to
describe the evolution of the EBHM systems away from
half-filling. Tt is worth noting that the multi-center
skyrmions are considered as systems of skyrmion-like
quasiparticles forming skyrmion liquids and skyrmion
lattices, or crystals (see, e. g., Refs. [32, 33]).

5.2.3. Dipole-quadrupole (pseudo)spin skyrmions

In the continual limit with .J; = J, = .J, Hamilto-
nian (44) can be transformed into the classical Hamil-
tonian of the fully SU(3)-symmetric scale-invariant
model, which can be rewritten as [11]

Hisotr = 2J/d2r{(V@)2 +sin? O(Vn)? +

+sin” © cos® O [cos® n(VT;)? +sin® n(VE)?] +
+sin* @ cos? sin® (V¥ — VIy)2},  (49)

where we use representation (6) and set ¥y = & — @3,
Uy = &3 — ®,. The topological solutions for Hamilto-
nian (49) can be classified by three topological quantum
numbers (winding numbers) at least: the phases n and
¥, 5 can change by 27 after passing around the center
of the defect. The appropriate modes may have a very
complicated topological structure due to the possibility
for one defect to have several different centers (while
one of the phases 1, Uy 23 changes by 27 under one
turn around one center (71, 1), other phases may pass
around other centers (r;,;)). We note that for such
a center, the winding numbers may take half-integer
Hence, we arrive at a large variety of topo-
logical structures representing solutions of the model.
Below, we briefly address two simplest classes of such
solutions. One type of skyrmions can be obtained for
the trivial phases Wy 5. If these are constant, the R
vector distribution (see (6)) represents a skyrmion de-
scribed by the usual formula (39). All but one topo-

values.
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logical quantum numbers are zero for this class of solu-
tions. It includes both dipole and quadrupole solutions:
depending on the selected constant phases, we can ob-
tain both “electric” and different “magnetic” skyrmions.
The substitution ®; = ®; = &3 leads to the elec-
tric skyrmion that was obtained above as a solution
of a more general SU(3)-anisotropic model. Another
example is given by ®; = &, = 0, &3 = x/2. This
substitution implies that b || z, a || 2y, S || 2y, and
S = sin O cos Ofsinn, — cosn, 0}. Nominally, this is an
in-plane spin vortex with a varying length of the spin
vector
_2rA[r? — A7
S| = Wa

which is zero at the circle r = A, at the center r =
= 0, and at the infinity r — oo, and has maxima
at 7 = Av/2 + 1). In addition to the nonzero in-
plane components of the spin-dipole moment (S, ,),
this vortex is characterized by a nonzero distribution of
(pseudo)spin-quadrupole moments. We emphasize the
difference between spin-1/2 systems, in which there are
solutions such as in-plane vortices with the energy hav-
ing a well-known logarithmic dependence on the size of
the system and a fixed spin length, and spin-1 systems,
in which the in-plane vortices can also exist but can
have a finite energy and a varying spin length. The
distribution of quadrupole components associated with
an in-plane spin-1 vortex is nontrivial. Such solutions
can be termed “in-plane dipole-quadrupole skyrmions”.

Other types of the simplest solutions with the
phases ¥; = Q1¢, ¥y = @2p governed by two inte-
ger winding numbers Q1 2 and n =n(r), © = O(r) are
considered in Ref. [11].

6. CONCLUSION

The pseudospin formalism is shown to constitute
a powerful method for studying complex phenomena
in interacting quantum systems. We have focused
here on the most prominent and intensively studied
S = 1 pseudospin formalism for the extended boson
Hubbard model with truncation of the on-site Hilbert
space to the three lowest occupation states n = 0,
1, 2. The EHBM Hamiltonian is a paradigmatic
model for the highly topical field of ultracold gases
in optical lattices. At variance with the standard
EHBM Hamiltonian, which seems to be insufficient for
quantitatively describing the physics of boson systems,
the generalized non-Heisenberg effective pseudospin
Hamiltonian in Eqs. (21)—(24) provides a deeper link
with boson system and a physically clear description of

“the myriad of phases”, from uniform Mott insulating
phases and density waves to two types of superfluids
and supersolids. The Hamiltonian could provide a
novel starting point for analytic and computational
studies of semi-hard core boson systems. Furthermore,
we argue that the 2D S = 1 pseudospin system is
prone to a topological phase separation and address
different types of unconventional skyrmion-like struc-
tures, which, to the best of our knowledge, have
not been analyzed until now. The structures are
characterized by a complicated interplay of the insu-
lating and two superfluid phases with a single boson
and boson dimers condensation. We also discussed
the skyrmions as classical solutions of the continual
isotropic models; however, this idealized object is
believed to preserve its main features for strongly
anisotropic (pseudo)spin lattice quantum systems.
Strictly speaking, the continuous model is relevant for
discrete lattices only if we deal with long-wavelength
inhomogeneities whose size is much larger than the
lattice spacing. In a discrete lattice, the very notion of
a topological excitation seems to be inconsistent. At
the same time, both quantum effects and the discrete-
ness of the lattice itself do not prohibit considering
the nanoscale (pseudo)spin textures whose topology
and spin arrangement are those of a skyrmion [27, 28].
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